
www.manaraa.com

www.manaraa.com

This page intentionally left blank

www.manaraa.com

Third Edition

Data
Structures
and Algorithm
Analysis in

JavaTMTM

www.manaraa.com

This page intentionally left blank

www.manaraa.com

Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Third Edition

Data
Structures
and Algorithm
Analysis in

Java
Mark A l l e n We i ss
Florida International University

PEARSON

TM

www.manaraa.com

Editorial Director: Marcia Horton Project Manager: Pat Brown
Editor-in-Chief: Michael Hirsch Manufacturing Buyer: Pat Brown
Editorial Assistant: Emma Snider Art Director: Jayne Conte
Director of Marketing: Patrice Jones Cover Designer: Bruce Kenselaar
Marketing Manager: Yezan Alayan Cover Photo: c© De-Kay Dreamstime.com
Marketing Coordinator: Kathryn Ferranti Media Editor: Daniel Sandin
Director of Production: Vince O’Brien Full-Service Project Management: Integra
Managing Editor: Jeff Holcomb Composition: Integra
Production Project Manager: Kayla Printer/Binder: Courier Westford

Smith-Tarbox Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: Berkeley-Book

Copyright c© 2012, 2007, 1999 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved.
Printed in the United States of America. This publication is protected by Copyright, and permission should
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Weiss, Mark Allen.
Data structures and algorithm analysis in Java / Mark Allen Weiss. – 3rd ed.

p. cm.
ISBN-13: 978-0-13-257627-7 (alk. paper)
ISBN-10: 0-13-257627-9 (alk. paper)
1. Java (Computer program language) 2. Data structures (Computer science)
3. Computer algorithms. I. Title.
QA76.73.J38W448 2012
005.1–dc23 2011035536

15 14 13 12 11—CRW—10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-257627-9
ISBN 13: 9780-13-257627-7

www.manaraa.com

To the love of my life, Jill.

www.manaraa.com

This page intentionally left blank

www.manaraa.com

CONTENTS

Preface xvii

Chapter 1 Introduction 1
1.1 What’s the Book About? 1

1.2 Mathematics Review 2

1.2.1 Exponents 3
1.2.2 Logarithms 3
1.2.3 Series 4
1.2.4 Modular Arithmetic 5
1.2.5 The P Word 6

1.3 A Brief Introduction to Recursion 8

1.4 Implementing Generic Components Pre-Java 5 12

1.4.1 Using Object for Genericity 13
1.4.2 Wrappers for Primitive Types 14
1.4.3 Using Interface Types for Genericity 14
1.4.4 Compatibility of Array Types 16

1.5 Implementing Generic Components Using Java 5 Generics 16

1.5.1 Simple Generic Classes and Interfaces 17
1.5.2 Autoboxing/Unboxing 18
1.5.3 The Diamond Operator 18
1.5.4 Wildcards with Bounds 19
1.5.5 Generic Static Methods 20
1.5.6 Type Bounds 21
1.5.7 Type Erasure 22
1.5.8 Restrictions on Generics 23

vii

www.manaraa.com

viii Contents

1.6 Function Objects 24

Summary 26
Exercises 26
References 28

Chapter 2 Algorithm Analysis 29
2.1 Mathematical Background 29

2.2 Model 32

2.3 What to Analyze 33

2.4 Running Time Calculations 35

2.4.1 A Simple Example 36
2.4.2 General Rules 36
2.4.3 Solutions for the Maximum Subsequence Sum Problem 39
2.4.4 Logarithms in the Running Time 45
2.4.5 A Grain of Salt 49
Summary 49
Exercises 50
References 55

Chapter 3 Lists, Stacks, and Queues 57
3.1 Abstract Data Types (ADTs) 57

3.2 The List ADT 58

3.2.1 Simple Array Implementation of Lists 58
3.2.2 Simple Linked Lists 59

3.3 Lists in the Java Collections API 61

3.3.1 Collection Interface 61
3.3.2 Iterator s 61
3.3.3 The List Interface, ArrayList, and LinkedList 63
3.3.4 Example: Using remove on a LinkedList 65
3.3.5 ListIterators 67

3.4 Implementation of ArrayList 67

3.4.1 The Basic Class 68
3.4.2 The Iterator and Java Nested and Inner Classes 71

3.5 Implementation of LinkedList 75

3.6 The Stack ADT 82

3.6.1 Stack Model 82

www.manaraa.com

Contents ix

3.6.2 Implementation of Stacks 83
3.6.3 Applications 84

3.7 The Queue ADT 92

3.7.1 Queue Model 92
3.7.2 Array Implementation of Queues 92
3.7.3 Applications of Queues 95
Summary 96
Exercises 96

Chapter 4 Trees 101
4.1 Preliminaries 101

4.1.1 Implementation of Trees 102
4.1.2 Tree Traversals with an Application 103

4.2 Binary Trees 107

4.2.1 Implementation 108
4.2.2 An Example: Expression Trees 109

4.3 The Search Tree ADT—Binary Search Trees 112

4.3.1 contains 113
4.3.2 findMin and findMax 115
4.3.3 insert 116
4.3.4 remove 118
4.3.5 Average-Case Analysis 120

4.4 AVL Trees 123

4.4.1 Single Rotation 125
4.4.2 Double Rotation 128

4.5 Splay Trees 137

4.5.1 A Simple Idea (That Does Not Work) 137
4.5.2 Splaying 139

4.6 Tree Traversals (Revisited) 145

4.7 B-Trees 147

4.8 Sets and Maps in the Standard Library 152

4.8.1 Sets 152
4.8.2 Maps 153
4.8.3 Implementation of TreeSet and TreeMap 153
4.8.4 An Example That Uses Several Maps 154
Summary 160
Exercises 160
References 167

www.manaraa.com

x Contents

Chapter 5 Hashing 171
5.1 General Idea 171

5.2 Hash Function 172

5.3 Separate Chaining 174

5.4 Hash Tables Without Linked Lists 179

5.4.1 Linear Probing 179
5.4.2 Quadratic Probing 181
5.4.3 Double Hashing 183

5.5 Rehashing 188

5.6 Hash Tables in the Standard Library 189

5.7 Hash Tables with Worst-Case O(1) Access 192

5.7.1 Perfect Hashing 193
5.7.2 Cuckoo Hashing 195
5.7.3 Hopscotch Hashing 205

5.8 Universal Hashing 211

5.9 Extendible Hashing 214

Summary 217
Exercises 218
References 222

Chapter 6 Priority Queues (Heaps) 225
6.1 Model 225

6.2 Simple Implementations 226

6.3 Binary Heap 226

6.3.1 Structure Property 227
6.3.2 Heap-Order Property 229
6.3.3 Basic Heap Operations 229
6.3.4 Other Heap Operations 234

6.4 Applications of Priority Queues 238

6.4.1 The Selection Problem 238
6.4.2 Event Simulation 239

6.5 d-Heaps 240

6.6 Leftist Heaps 241

6.6.1 Leftist Heap Property 241
6.6.2 Leftist Heap Operations 242

6.7 Skew Heaps 249

www.manaraa.com

Contents xi

6.8 Binomial Queues 252

6.8.1 Binomial Queue Structure 252
6.8.2 Binomial Queue Operations 253
6.8.3 Implementation of Binomial Queues 256

6.9 Priority Queues in the Standard Library 261

Summary 261
Exercises 263
References 267

Chapter 7 Sorting 271
7.1 Preliminaries 271

7.2 Insertion Sort 272

7.2.1 The Algorithm 272
7.2.2 Analysis of Insertion Sort 272

7.3 A Lower Bound for Simple Sorting Algorithms 273

7.4 Shellsort 274

7.4.1 Worst-Case Analysis of Shellsort 276
7.5 Heapsort 278

7.5.1 Analysis of Heapsort 279
7.6 Mergesort 282

7.6.1 Analysis of Mergesort 284
7.7 Quicksort 288

7.7.1 Picking the Pivot 290
7.7.2 Partitioning Strategy 292
7.7.3 Small Arrays 294
7.7.4 Actual Quicksort Routines 294
7.7.5 Analysis of Quicksort 297
7.7.6 A Linear-Expected-Time Algorithm for Selection 300

7.8 A General Lower Bound for Sorting 302

7.8.1 Decision Trees 302
7.9 Decision-Tree Lower Bounds for Selection Problems 304

7.10 Adversary Lower Bounds 307

7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 310

7.12 External Sorting 315

7.12.1 Why We Need New Algorithms 316
7.12.2 Model for External Sorting 316
7.12.3 The Simple Algorithm 316

www.manaraa.com

xii Contents

7.12.4 Multiway Merge 317
7.12.5 Polyphase Merge 318
7.12.6 Replacement Selection 319
Summary 321
Exercises 321
References 327

Chapter 8 The Disjoint Set Class 331
8.1 Equivalence Relations 331

8.2 The Dynamic Equivalence Problem 332

8.3 Basic Data Structure 333

8.4 Smart Union Algorithms 337

8.5 Path Compression 340

8.6 Worst Case for Union-by-Rank and Path Compression 341

8.6.1 Slowly Growing Functions 342
8.6.2 An Analysis By Recursive Decomposition 343
8.6.3 An O(M log * N) Bound 350
8.6.4 An O(M α(M, N)) Bound 350

8.7 An Application 352

Summary 355
Exercises 355
References 357

Chapter 9 Graph Algorithms 359
9.1 Definitions 359

9.1.1 Representation of Graphs 360
9.2 Topological Sort 362

9.3 Shortest-Path Algorithms 366

9.3.1 Unweighted Shortest Paths 367
9.3.2 Dijkstra’s Algorithm 372
9.3.3 Graphs with Negative Edge Costs 380
9.3.4 Acyclic Graphs 380
9.3.5 All-Pairs Shortest Path 384
9.3.6 Shortest-Path Example 384

9.4 Network Flow Problems 386

9.4.1 A Simple Maximum-Flow Algorithm 388

www.manaraa.com

Contents xiii

9.5 Minimum Spanning Tree 393

9.5.1 Prim’s Algorithm 394
9.5.2 Kruskal’s Algorithm 397

9.6 Applications of Depth-First Search 399

9.6.1 Undirected Graphs 400
9.6.2 Biconnectivity 402
9.6.3 Euler Circuits 405
9.6.4 Directed Graphs 409
9.6.5 Finding Strong Components 411

9.7 Introduction to NP-Completeness 412

9.7.1 Easy vs. Hard 413
9.7.2 The Class NP 414
9.7.3 NP-Complete Problems 415
Summary 417
Exercises 417
References 425

Chapter 10 Algorithm Design
Techniques 429

10.1 Greedy Algorithms 429

10.1.1 A Simple Scheduling Problem 430
10.1.2 Huffman Codes 433
10.1.3 Approximate Bin Packing 439

10.2 Divide and Conquer 448

10.2.1 Running Time of Divide-and-Conquer Algorithms 449
10.2.2 Closest-Points Problem 451
10.2.3 The Selection Problem 455
10.2.4 Theoretical Improvements for Arithmetic Problems 458

10.3 Dynamic Programming 462

10.3.1 Using a Table Instead of Recursion 463
10.3.2 Ordering Matrix Multiplications 466
10.3.3 Optimal Binary Search Tree 469
10.3.4 All-Pairs Shortest Path 472

10.4 Randomized Algorithms 474

10.4.1 Random Number Generators 476
10.4.2 Skip Lists 480
10.4.3 Primality Testing 483

www.manaraa.com

xiv Contents

10.5 Backtracking Algorithms 486

10.5.1 The Turnpike Reconstruction Problem 487
10.5.2 Games 490
Summary 499
Exercises 499
References 508

Chapter 11 Amortized Analysis 513
11.1 An Unrelated Puzzle 514

11.2 Binomial Queues 514

11.3 Skew Heaps 519

11.4 Fibonacci Heaps 522

11.4.1 Cutting Nodes in Leftist Heaps 522
11.4.2 Lazy Merging for Binomial Queues 525
11.4.3 The Fibonacci Heap Operations 528
11.4.4 Proof of the Time Bound 529

11.5 Splay Trees 531

Summary 536
Exercises 536
References 538

Chapter 12 Advanced Data Structures
and Implementation 541

12.1 Top-Down Splay Trees 541

12.2 Red-Black Trees 549

12.2.1 Bottom-Up Insertion 549
12.2.2 Top-Down Red-Black Trees 551
12.2.3 Top-Down Deletion 556

12.3 Treaps 558

12.4 Suffix Arrays and Suffix Trees 560

12.4.1 Suffix Arrays 561
12.4.2 Suffix Trees 564
12.4.3 Linear-Time Construction of Suffix Arrays and Suffix Trees 567

12.5 k-d Trees 578

www.manaraa.com

Contents xv

12.6 Pairing Heaps 583

Summary 588
Exercises 590
References 594

Index 599

www.manaraa.com

This page intentionally left blank

www.manaraa.com

PREFACE

Purpose/Goals
This new Java edition describes data structures, methods of organizing large amounts of
data, and algorithm analysis, the estimation of the running time of algorithms. As computers
become faster and faster, the need for programs that can handle large amounts of input
becomes more acute. Paradoxically, this requires more careful attention to efficiency, since
inefficiencies in programs become most obvious when input sizes are large. By analyzing
an algorithm before it is actually coded, students can decide if a particular solution will be
feasible. For example, in this text students look at specific problems and see how careful
implementations can reduce the time constraint for large amounts of data from centuries
to less than a second. Therefore, no algorithm or data structure is presented without an
explanation of its running time. In some cases, minute details that affect the running time
of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency.

This book is suitable for either an advanced data structures (CS7) course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of intermedi-
ate programming, including such topics as object-based programming and recursion, and
some background in discrete math.

Summary of the Most Significant Changes in the Third Edition
The third edition incorporates numerous bug fixes, and many parts of the book have
undergone revision to increase the clarity of presentation. In addition,

� Chapter 4 includes implementation of the AVL tree deletion algorithm—a topic often
requested by readers.

� Chapter 5 has been extensively revised and enlarged and now contains material on two
newer algorithms: cuckoo hashing and hopscotch hashing. Additionally, a new section
on universal hashing has been added.

� Chapter 7 now contains material on radix sort, and a new section on lower bound
proofs has been added. xvii

www.manaraa.com

xviii Preface

� Chapter 8 uses the new union/find analysis by Seidel and Sharir, and shows the
O(Mα(M, N)) bound instead of the weaker O(M log∗ N) bound in prior editions.

� Chapter 12 adds material on suffix trees and suffix arrays, including the linear-time
suffix array construction algorithm by Karkkainen and Sanders (with implementation).
The sections covering deterministic skip lists and AA-trees have been removed.

� Throughout the text, the code has been updated to use the diamond operator from
Java 7.

Approach
Although the material in this text is largely language independent, programming requires
the use of a specific language. As the title implies, we have chosen Java for this book.

Java is often examined in comparison with C++. Java offers many benefits, and pro-
grammers often view Java as a safer, more portable, and easier-to-use language than C++.
As such, it makes a fine core language for discussing and implementing fundamental data
structures. Other important parts of Java, such as threads and its GUI, although important,
are not needed in this text and thus are not discussed.

Complete versions of the data structures, in both Java and C++, are available on
the Internet. We use similar coding conventions to make the parallels between the two
languages more evident.

Overview
Chapter 1 contains review material on discrete math and recursion. I believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
presents material that serves as a review of inheritance in Java. Included is a discussion of
Java generics.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analysis and
its major weaknesses. Many examples are provided, including an in-depth explanation of
logarithmic running time. Simple recursive programs are analyzed by intuitively converting
them into iterative programs. More complicated divide-and-conquer programs are intro-
duced, but some of the analysis (solving recurrence relations) is implicitly delayed until
Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. This chapter has been significantly revised
from prior editions. It now includes a discussion of the Collections API ArrayList
and LinkedList classes, and it provides implementations of a significant subset of the
collections API ArrayList and LinkedList classes.

Chapter 4 covers trees, with an emphasis on search trees, including external search
trees (B-trees). The UNIX file system and expression trees are used as examples. AVL trees
and splay trees are introduced. More careful treatment of search tree implementation details
is found in Chapter 12. Additional coverage of trees, such as file compression and game
trees, is deferred until Chapter 10. Data structures for an external medium are considered
as the final topic in several chapters. New to this edition is a discussion of the Collections
API TreeSet and TreeMap classes, including a significant example that illustrates the use of
three separate maps to efficiently solve a problem.

www.manaraa.com

Preface xix

Chapter 5 discusses hash tables, including the classic algorithms such as sepa-
rate chaining and linear and quadratic probing, as well as several newer algorithms,
namely cuckoo hashing and hopscotch hashing. Universal hashing is also discussed, and
extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chapter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four
algorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. New to
this edition is radix sort and lower bound proofs for selection-related problems. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. The anal-
ysis is new. This is a short and specific chapter that can be skipped if Kruskal’s algorithm
is not discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice, but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all the standard algorithms are
presented along with appropriate data structures, pseudocode, and analysis of running
time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the student’s appreciation of an example algorithm is not obscured by
implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 and 6
and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the suffix tree and array, the k-d tree, and
the pairing heap. This chapter departs from the rest of the text by providing complete and
careful implementations for the search trees and pairing heap. The material is structured so
that the instructor can integrate sections into discussions from other chapters. For exam-
ple, the top-down red-black tree in Chapter 12 can be discussed along with AVL trees
(in Chapter 4).

Chapters 1–9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover Chapters 7–11. The advanced data structures analyzed in Chapter 11 can easily
be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9 is
far too brief to be used in such a course. You might find it useful to use an additional work
on NP-completeness to augment this text.

Exercises
Exercises, provided at the end of each chapter, match the order in which material is pre-
sented. The last exercises may address the chapter as a whole rather than a specific section.
Difficult exercises are marked with an asterisk, and more challenging exercises have two
asterisks.

www.manaraa.com

xx Preface

References
References are placed at the end of each chapter. Generally the references either are his-
torical, representing the original source of the material, or they represent extensions and
improvements to the results given in the text. Some references represent solutions to
exercises.

Supplements
The following supplements are available to all readers at
www.pearsonhighered.com/cssupport:

� Source code for example programs

In addition, the following material is available only to qualified instructors at Pearson’s
Instructor Resource Center (www.pearsonhighered.com/irc). Visit the IRC or contact your
campus Pearson representative for access.

� Solutions to selected exercises
� Figures from the book

Acknowledgments
Many, many people have helped me in the preparation of books in this series. Some are
listed in other versions of the book; thanks to all.

As usual, the writing process was made easier by the professionals at Pearson. I’d like to
thank my editor, Michael Hirsch, and production editor, Pat Brown. I’d also like to thank
Abinaya Rajendran and her team in Integra Software Services for their fine work putting
the final pieces together. My wonderful wife Jill deserves extra special thanks for everything
she does.

Finally, I’d like to thank the numerous readers who have sent e-mail messages and
pointed out errors or inconsistencies in earlier versions. My World Wide Web page
www.cis.fiu.edu/~weiss contains updated source code (in Java and C++), an errata list,
and a link to submit bug reports.

M.A.W.
Miami, Florida

www.pearsonhighered.com/cssupport
www.pearsonhighered.com/irc
www.cis.fiu.edu/~weiss

www.manaraa.com

C H A P T E R 1

Introduction

In this chapter, we discuss the aims and goals of this text and briefly review programming
concepts and discrete mathematics. We will

� See that how a program performs for reasonably large input is just as important as its
performance on moderate amounts of input.

� Summarize the basic mathematical background needed for the rest of the book.
� Briefly review recursion.
� Summarize some important features of Java that are used throughout the text.

1.1 What’s the Book About?
Suppose you have a group of N numbers and would like to determine the kth largest. This
is known as the selection problem. Most students who have had a programming course
or two would have no difficulty writing a program to solve this problem. There are quite a
few “obvious” solutions.

One way to solve this problem would be to read the N numbers into an array, sort the
array in decreasing order by some simple algorithm such as bubblesort, and then return
the element in position k.

A somewhat better algorithm might be to read the first k elements into an array and
sort them (in decreasing order). Next, each remaining element is read one by one. As a new
element arrives, it is ignored if it is smaller than the kth element in the array. Otherwise, it
is placed in its correct spot in the array, bumping one element out of the array. When the
algorithm ends, the element in the kth position is returned as the answer.

Both algorithms are simple to code, and you are encouraged to do so. The natural ques-
tions, then, are which algorithm is better and, more important, is either algorithm good
enough? A simulation using a random file of 30 million elements and k = 15,000,000
will show that neither algorithm finishes in a reasonable amount of time; each requires
several days of computer processing to terminate (albeit eventually with a correct answer).
An alternative method, discussed in Chapter 7, gives a solution in about a second. Thus,
although our proposed algorithms work, they cannot be considered good algorithms,
because they are entirely impractical for input sizes that a third algorithm can handle in a
reasonable amount of time.

1

www.manaraa.com

2 Chapter 1 Introduction

1 2 3 4

1 t h i s

2 w a t s

3 o a h g

4 f g d t

Figure 1.1 Sample word puzzle

A second problem is to solve a popular word puzzle. The input consists of a two-
dimensional array of letters and a list of words. The object is to find the words in the puzzle.
These words may be horizontal, vertical, or diagonal in any direction. As an example, the
puzzle shown in Figure 1.1 contains the words this, two, fat, and that. The word this begins
at row 1, column 1, or (1,1), and extends to (1,4); two goes from (1,1) to (3,1); fat goes
from (4,1) to (2,3); and that goes from (4,4) to (1,1).

Again, there are at least two straightforward algorithms that solve the problem. For
each word in the word list, we check each ordered triple (row, column, orientation) for
the presence of the word. This amounts to lots of nested for loops but is basically
straightforward.

Alternatively, for each ordered quadruple (row, column, orientation, number of characters)
that doesn’t run off an end of the puzzle, we can test whether the word indicated is in the
word list. Again, this amounts to lots of nested for loops. It is possible to save some time
if the maximum number of characters in any word is known.

It is relatively easy to code up either method of solution and solve many of the real-life
puzzles commonly published in magazines. These typically have 16 rows, 16 columns,
and 40 or so words. Suppose, however, we consider the variation where only the puzzle
board is given and the word list is essentially an English dictionary. Both of the solutions
proposed require considerable time to solve this problem and therefore are not acceptable.
However, it is possible, even with a large word list, to solve the problem in a matter of
seconds.

An important concept is that, in many problems, writing a working program is not
good enough. If the program is to be run on a large data set, then the running time becomes
an issue. Throughout this book we will see how to estimate the running time of a program
for large inputs and, more important, how to compare the running times of two programs
without actually coding them. We will see techniques for drastically improving the speed
of a program and for determining program bottlenecks. These techniques will enable us to
find the section of the code on which to concentrate our optimization efforts.

1.2 Mathematics Review
This section lists some of the basic formulas you need to memorize or be able to derive
and reviews basic proof techniques.

www.manaraa.com

1.2 Mathematics Review 3

1.2.1 Exponents

XAXB = XA+B

XA

XB
= XA−B

(XA)B = XAB

XN + XN = 2XN �= X2N

2N + 2N = 2N+1

1.2.2 Logarithms
In computer science, all logarithms are to the base 2 unless specified otherwise.

Definition 1.1.
XA = B if and only if logX B = A

Several convenient equalities follow from this definition.

Theorem 1.1.

logA B = logC B

logC A
; A, B, C > 0, A �= 1

Proof.
Let X = logC B, Y = logC A, and Z = logA B. Then, by the definition of logarithms,
CX = B, CY = A, and AZ = B. Combining these three equalities yields CX = B =
(CY)Z. Therefore, X = YZ, which implies Z = X/Y, proving the theorem.

Theorem 1.2.

log AB = log A + log B; A, B > 0

Proof.
Let X = log A, Y = log B, and Z = log AB. Then, assuming the default base of 2,
2X = A, 2Y = B, and 2Z = AB. Combining the last three equalities yields 2X2Y =
AB = 2Z. Therefore, X + Y = Z, which proves the theorem.

Some other useful formulas, which can all be derived in a similar manner, follow.

log A/B = log A − log B

log(AB) = B log A

log X < X for all X > 0

log 1 = 0, log 2 = 1, log 1,024 = 10, log 1,048,576 = 20

www.manaraa.com

4 Chapter 1 Introduction

1.2.3 Series
The easiest formulas to remember are

N∑
i=0

2i = 2N+1 − 1

and the companion,

N∑
i=0

Ai = AN+1 − 1

A − 1

In the latter formula, if 0 < A < 1, then

N∑
i=0

Ai ≤ 1

1 − A

and as N tends to ∞, the sum approaches 1/(1 − A). These are the “geometric series”
formulas.

We can derive the last formula for
∑∞

i=0 Ai (0 < A < 1) in the following manner. Let
S be the sum. Then

S = 1 + A + A2 + A3 + A4 + A5 + · · ·
Then

AS = A + A2 + A3 + A4 + A5 + · · ·
If we subtract these two equations (which is permissible only for a convergent series),
virtually all the terms on the right side cancel, leaving

S − AS = 1

which implies that

S = 1

1 − A

We can use this same technique to compute
∑∞

i=1 i/2i, a sum that occurs frequently.
We write

S = 1

2
+ 2

22
+ 3

23
+ 4

24
+ 5

25
+ · · ·

and multiply by 2, obtaining

2S = 1 + 2

2
+ 3

22
+ 4

23
+ 5

24
+ 6

25
+ · · ·

www.manaraa.com

1.2 Mathematics Review 5

Subtracting these two equations yields

S = 1 + 1

2
+ 1

22
+ 1

23
+ 1

24
+ 1

25
+ · · ·

Thus, S = 2.
Another type of common series in analysis is the arithmetic series. Any such series can

be evaluated from the basic formula.
N∑

i=1

i = N(N + 1)

2
≈ N2

2

For instance, to find the sum 2 + 5 + 8 + · · · + (3k − 1), rewrite it as 3(1 + 2 + 3 + · · · +
k) − (1 + 1 + 1 + · · · + 1), which is clearly 3k(k + 1)/2 − k. Another way to remember
this is to add the first and last terms (total 3k + 1), the second and next to last terms (total
3k + 1), and so on. Since there are k/2 of these pairs, the total sum is k(3k + 1)/2, which
is the same answer as before.

The next two formulas pop up now and then but are fairly uncommon.

N∑
i=1

i2 = N(N + 1)(2N + 1)

6
≈ N3

3

N∑
i=1

ik ≈ Nk+1

|k + 1| k �= −1

When k = −1, the latter formula is not valid. We then need the following formula,
which is used far more in computer science than in other mathematical disciplines. The
numbers HN are known as the harmonic numbers, and the sum is known as a harmonic
sum. The error in the following approximation tends to γ ≈ 0.57721566, which is known
as Euler’s constant.

HN =
N∑

i=1

1

i
≈ loge N

These two formulas are just general algebraic manipulations.

N∑
i=1

f(N) = N f(N)

N∑
i=n0

f(i) =
N∑

i=1

f(i) −
n0−1∑
i=1

f(i)

1.2.4 Modular Arithmetic
We say that A is congruent to B modulo N, written A ≡ B (mod N), if N divides A − B.
Intuitively, this means that the remainder is the same when either A or B is divided by
N. Thus, 81 ≡ 61 ≡ 1 (mod 10). As with equality, if A ≡ B (mod N), then A + C ≡
B + C (mod N) and AD ≡ BD (mod N).

www.manaraa.com

6 Chapter 1 Introduction

Often, N is a prime number. In that case, there are three important theorems.

First, if N is prime, then ab ≡ 0 (mod N) is true if and only if a ≡ 0 (mod N)
or b ≡ 0 (mod N). In other words, if a prime number N divides a product of two
numbers, it divides at least one of the two numbers.

Second, if N is prime, then the equation ax ≡ 1 (mod N) has a unique solution
(mod N), for all 0 < a < N. This solution 0 < x < N, is the multiplicative inverse.

Third, if N is prime, then the equation x2 ≡ a (mod N) has either two solutions
(mod N), for all 0 < a < N, or no solutions.

There are many theorems that apply to modular arithmetic, and some of them require
extraordinary proofs in number theory. We will use modular arithmetic sparingly, and the
preceding theorems will suffice.

1.2.5 The P Word
The two most common ways of proving statements in data structure analysis are proof
by induction and proof by contradiction (and occasionally proof by intimidation, used
by professors only). The best way of proving that a theorem is false is by exhibiting a
counterexample.

Proof by Induction
A proof by induction has two standard parts. The first step is proving a base case, that is,
establishing that a theorem is true for some small (usually degenerate) value(s); this step is
almost always trivial. Next, an inductive hypothesis is assumed. Generally this means that
the theorem is assumed to be true for all cases up to some limit k. Using this assumption,
the theorem is then shown to be true for the next value, which is typically k + 1. This
proves the theorem (as long as k is finite).

As an example, we prove that the Fibonacci numbers, F0 = 1, F1 = 1, F2 = 2, F3 = 3,
F4 = 5, . . . , Fi = Fi−1 +Fi−2, satisfy Fi < (5/3)i, for i ≥ 1. (Some definitions have F0 = 0,
which shifts the series.) To do this, we first verify that the theorem is true for the trivial
cases. It is easy to verify that F1 = 1 < 5/3 and F2 = 2 < 25/9; this proves the basis.
We assume that the theorem is true for i = 1, 2, . . . , k; this is the inductive hypothesis. To
prove the theorem, we need to show that Fk+1 < (5/3)k+1. We have

Fk+1 = Fk + Fk−1

by the definition, and we can use the inductive hypothesis on the right-hand side,
obtaining

Fk+1 < (5/3)k + (5/3)k−1

< (3/5)(5/3)k+1 + (3/5)2(5/3)k+1

< (3/5)(5/3)k+1 + (9/25)(5/3)k+1

www.manaraa.com

1.2 Mathematics Review 7

which simplifies to

Fk+1 < (3/5 + 9/25)(5/3)k+1

< (24/25)(5/3)k+1

< (5/3)k+1

proving the theorem.
As a second example, we establish the following theorem.

Theorem 1.3.
If N ≥ 1, then

∑N
i=1 i2 = N(N+1)(2N+1)

6

Proof.
The proof is by induction. For the basis, it is readily seen that the theorem is true when
N = 1. For the inductive hypothesis, assume that the theorem is true for 1 ≤ k ≤ N.
We will establish that, under this assumption, the theorem is true for N + 1. We have

N+1∑
i=1

i2 =
N∑

i=1

i2 + (N + 1)2

Applying the inductive hypothesis, we obtain

N+1∑
i=1

i2 = N(N + 1)(2N + 1)

6
+ (N + 1)2

= (N + 1)

[
N(2N + 1)

6
+ (N + 1)

]

= (N + 1)
2N2 + 7N + 6

6

= (N + 1)(N + 2)(2N + 3)

6

Thus,

N+1∑
i=1

i2 = (N + 1)[(N + 1) + 1][2(N + 1) + 1]

6

proving the theorem.

Proof by Counterexample
The statement Fk ≤k2 is false. The easiest way to prove this is to compute F11 =144>112.

Proof by Contradiction
Proof by contradiction proceeds by assuming that the theorem is false and showing that this
assumption implies that some known property is false, and hence the original assumption
was erroneous. A classic example is the proof that there is an infinite number of primes. To

www.manaraa.com

8 Chapter 1 Introduction

prove this, we assume that the theorem is false, so that there is some largest prime Pk. Let
P1, P2, . . . , Pk be all the primes in order and consider

N = P1P2P3 · · · Pk + 1

Clearly, N is larger than Pk, so by assumption N is not prime. However, none of
P1, P2, . . . , Pk divides N exactly, because there will always be a remainder of 1. This is
a contradiction, because every number is either prime or a product of primes. Hence, the
original assumption, that Pk is the largest prime, is false, which implies that the theorem is
true.

1.3 A Brief Introduction to Recursion
Most mathematical functions that we are familiar with are described by a simple formula.
For instance, we can convert temperatures from Fahrenheit to Celsius by applying the
formula

C = 5(F − 32)/9

Given this formula, it is trivial to write a Java method; with declarations and braces
removed, the one-line formula translates to one line of Java.

Mathematical functions are sometimes defined in a less standard form. As an example,
we can define a function f , valid on nonnegative integers, that satisfies f(0) = 0 and
f(x) = 2f(x − 1) + x2. From this definition we see that f(1) = 1, f(2) = 6, f(3) = 21,
and f(4) = 58. A function that is defined in terms of itself is called recursive. Java allows
functions to be recursive.1 It is important to remember that what Java provides is merely
an attempt to follow the recursive spirit. Not all mathematically recursive functions are
efficiently (or correctly) implemented by Java’s simulation of recursion. The idea is that the
recursive function f ought to be expressible in only a few lines, just like a nonrecursive
function. Figure 1.2 shows the recursive implementation of f .

Lines 3 and 4 handle what is known as the base case, that is, the value for which
the function is directly known without resorting to recursion. Just as declaring f(x) =
2f(x −1)+ x2 is meaningless, mathematically, without including the fact that f(0) = 0, the
recursive Java method doesn’t make sense without a base case. Line 6 makes the recursive
call.

There are several important and possibly confusing points about recursion. A common
question is: Isn’t this just circular logic? The answer is that although we are defining a
method in terms of itself, we are not defining a particular instance of the method in terms
of itself. In other words, evaluating f(5) by computing f(5) would be circular. Evaluating
f(5) by computing f(4) is not circular—unless, of course, f(4) is evaluated by eventually
computing f(5). The two most important issues are probably the how and why questions.

1 Using recursion for numerical calculations is usually a bad idea. We have done so to illustrate the basic
points.

www.manaraa.com

1.3 A Brief Introduction to Recursion 9

1 public static int f(int x)
2 {
3 if(x == 0)
4 return 0;
5 else
6 return 2 * f(x - 1) + x * x;
7 }

Figure 1.2 A recursive method

In Chapter 3, the how and why issues are formally resolved. We will give an incomplete
description here.

It turns out that recursive calls are handled no differently from any others. If f is called
with the value of 4, then line 6 requires the computation of 2 ∗ f(3) + 4 ∗ 4. Thus, a call
is made to compute f(3). This requires the computation of 2 ∗ f(2) + 3 ∗ 3. Therefore,
another call is made to compute f(2). This means that 2 ∗ f(1) + 2 ∗ 2 must be evaluated.
To do so, f(1) is computed as 2 ∗ f(0) + 1 ∗ 1. Now, f(0) must be evaluated. Since
this is a base case, we know a priori that f(0) = 0. This enables the completion of the
calculation for f(1), which is now seen to be 1. Then f(2), f(3), and finally f(4) can be
determined. All the bookkeeping needed to keep track of pending calls (those started but
waiting for a recursive call to complete), along with their variables, is done by the computer
automatically. An important point, however, is that recursive calls will keep on being made
until a base case is reached. For instance, an attempt to evaluate f(−1) will result in calls
to f(−2), f(−3), and so on. Since this will never get to a base case, the program won’t
be able to compute the answer (which is undefined anyway). Occasionally, a much more
subtle error is made, which is exhibited in Figure 1.3. The error in Figure 1.3 is that
bad(1) is defined, by line 6, to be bad(1). Obviously, this doesn’t give any clue as to what
bad(1) actually is. The computer will thus repeatedly make calls to bad(1) in an attempt
to resolve its values. Eventually, its bookkeeping system will run out of space, and the
program will terminate abnormally. Generally, we would say that this method doesn’t work
for one special case but is correct otherwise. This isn’t true here, since bad(2) calls bad(1).
Thus, bad(2) cannot be evaluated either. Furthermore, bad(3), bad(4), and bad(5) all make
calls to bad(2). Since bad(2) is unevaluable, none of these values are either. In fact, this

1 public static int bad(int n)
2 {
3 if(n == 0)
4 return 0;
5 else
6 return bad(n / 3 + 1) + n - 1;
7 }

Figure 1.3 A nonterminating recursive method

www.manaraa.com

10 Chapter 1 Introduction

program doesn’t work for any nonnegative value of n, except 0. With recursive programs,
there is no such thing as a “special case.”

These considerations lead to the first two fundamental rules of recursion:

1. Base cases. You must always have some base cases, which can be solved without
recursion.

2. Making progress. For the cases that are to be solved recursively, the recursive call must
always be to a case that makes progress toward a base case.

Throughout this book, we will use recursion to solve problems. As an example of
a nonmathematical use, consider a large dictionary. Words in dictionaries are defined in
terms of other words. When we look up a word, we might not always understand the
definition, so we might have to look up words in the definition. Likewise, we might not
understand some of those, so we might have to continue this search for a while. Because
the dictionary is finite, eventually either (1) we will come to a point where we understand
all of the words in some definition (and thus understand that definition and retrace our
path through the other definitions) or (2) we will find that the definitions are circular
and we are stuck, or that some word we need to understand for a definition is not in the
dictionary.

Our recursive strategy to understand words is as follows: If we know the meaning of a
word, then we are done; otherwise, we look the word up in the dictionary. If we understand
all the words in the definition, we are done; otherwise, we figure out what the definition
means by recursively looking up the words we don’t know. This procedure will terminate
if the dictionary is well defined but can loop indefinitely if a word is either not defined or
circularly defined.

Printing Out Numbers
Suppose we have a positive integer, n, that we wish to print out. Our routine will have the
heading printOut(n). Assume that the only I/O routines available will take a single-digit
number and output it to the terminal. We will call this routine printDigit; for example,
printDigit(4) will output a 4 to the terminal.

Recursion provides a very clean solution to this problem. To print out 76234, we need
to first print out 7623 and then print out 4. The second step is easily accomplished with
the statement printDigit(n%10), but the first doesn’t seem any simpler than the original
problem. Indeed it is virtually the same problem, so we can solve it recursively with the
statement printOut(n/10).

This tells us how to solve the general problem, but we still need to make sure that
the program doesn’t loop indefinitely. Since we haven’t defined a base case yet, it is clear
that we still have something to do. Our base case will be printDigit(n) if 0 ≤ n < 10.
Now printOut(n) is defined for every positive number from 0 to 9, and larger numbers are
defined in terms of a smaller positive number. Thus, there is no cycle. The entire method
is shown in Figure 1.4.

www.manaraa.com

1.3 A Brief Introduction to Recursion 11

1 public static void printOut(int n) /* Print nonnegative n */
2 {
3 if(n >= 10)
4 printOut(n / 10);
5 printDigit(n % 10);
6 }

Figure 1.4 Recursive routine to print an integer

We have made no effort to do this efficiently. We could have avoided using the mod
routine (which can be very expensive) because n%10 = n −
n/10� ∗ 10.2

Recursion and Induction
Let us prove (somewhat) rigorously that the recursive number-printing program works. To
do so, we’ll use a proof by induction.

Theorem 1.4.
The recursive number-printing algorithm is correct for n ≥ 0.

Proof (by induction on the number of digits in n).
First, if n has one digit, then the program is trivially correct, since it merely makes
a call to printDigit. Assume then that printOut works for all numbers of k or fewer
digits. A number of k + 1 digits is expressed by its first k digits followed by its least
significant digit. But the number formed by the first k digits is exactly
n/10�, which,
by the inductive hypothesis, is correctly printed, and the last digit is n mod 10, so
the program prints out any (k + 1)-digit number correctly. Thus, by induction, all
numbers are correctly printed.

This proof probably seems a little strange in that it is virtually identical to the algorithm
description. It illustrates that in designing a recursive program, all smaller instances of the
same problem (which are on the path to a base case) may be assumed to work correctly. The
recursive program needs only to combine solutions to smaller problems, which are “mag-
ically” obtained by recursion, into a solution for the current problem. The mathematical
justification for this is proof by induction. This gives the third rule of recursion:

3. Design rule. Assume that all the recursive calls work.

This rule is important because it means that when designing recursive programs, you gen-
erally don’t need to know the details of the bookkeeping arrangements, and you don’t have
to try to trace through the myriad of recursive calls. Frequently, it is extremely difficult
to track down the actual sequence of recursive calls. Of course, in many cases this is an
indication of a good use of recursion, since the computer is being allowed to work out the
complicated details.

2
x� is the largest integer that is less than or equal to x.

www.manaraa.com

12 Chapter 1 Introduction

The main problem with recursion is the hidden bookkeeping costs. Although these
costs are almost always justifiable, because recursive programs not only simplify the algo-
rithm design but also tend to give cleaner code, recursion should never be used as a
substitute for a simple for loop. We’ll discuss the overhead involved in recursion in more
detail in Section 3.6.

When writing recursive routines, it is crucial to keep in mind the four basic rules of
recursion:

1. Base cases. You must always have some base cases, which can be solved without
recursion.

2. Making progress. For the cases that are to be solved recursively, the recursive call must
always be to a case that makes progress toward a base case.

3. Design rule. Assume that all the recursive calls work.

4. Compound interest rule. Never duplicate work by solving the same instance of a problem
in separate recursive calls.

The fourth rule, which will be justified (along with its nickname) in later sections, is the
reason that it is generally a bad idea to use recursion to evaluate simple mathematical func-
tions, such as the Fibonacci numbers. As long as you keep these rules in mind, recursive
programming should be straightforward.

1.4 Implementing Generic Components
Pre-Java 5

An important goal of object-oriented programming is the support of code reuse. An impor-
tant mechanism that supports this goal is the generic mechanism: If the implementation
is identical except for the basic type of the object, a generic implementation can be used
to describe the basic functionality. For instance, a method can be written to sort an array
of items; the logic is independent of the types of objects being sorted, so a generic method
could be used.

Unlike many of the newer languages (such as C++, which uses templates to implement
generic programming), before version 1.5, Java did not support generic implementations
directly. Instead, generic programming was implemented using the basic concepts of inher-
itance. This section describes how generic methods and classes can be implemented in Java
using the basic principles of inheritance.

Direct support for generic methods and classes was announced by Sun in June 2001 as
a future language addition. Finally, in late 2004, Java 5 was released and provided support
for generic methods and classes. However, using generic classes requires an understanding
of the pre-Java 5 idioms for generic programming. As a result, an understanding of how
inheritance is used to implement generic programs is essential, even in Java 5.

www.manaraa.com

1.4 Implementing Generic Components Pre-Java 5 13

1.4.1 Using Object for Genericity
The basic idea in Java is that we can implement a generic class by using an appropriate
superclass, such as Object. An example is the MemoryCell class shown in Figure 1.5.

There are two details that must be considered when we use this strategy. The first is
illustrated in Figure 1.6, which depicts a main that writes a "37" to a MemoryCell object and
then reads from the MemoryCell object. To access a specific method of the object, we must
downcast to the correct type. (Of course, in this example, we do not need the downcast,
since we are simply invoking the toString method at line 9, and this can be done for any
object.)

A second important detail is that primitive types cannot be used. Only reference
types are compatible with Object. A standard workaround to this problem is discussed
momentarily.

1 // MemoryCell class
2 // Object read() --> Returns the stored value
3 // void write(Object x) --> x is stored
4
5 public class MemoryCell
6 {
7 // Public methods
8 public Object read() { return storedValue; }
9 public void write(Object x) { storedValue = x; }

10
11 // Private internal data representation
12 private Object storedValue;
13 }

Figure 1.5 A generic MemoryCell class (pre-Java 5)

1 public class TestMemoryCell
2 {
3 public static void main(String [] args)
4 {
5 MemoryCell m = new MemoryCell();
6
7 m.write("37");
8 String val = (String) m.read();
9 System.out.println("Contents are: " + val);

10 }
11 }

Figure 1.6 Using the generic MemoryCell class (pre-Java 5)

www.manaraa.com

14 Chapter 1 Introduction

1.4.2 Wrappers for Primitive Types
When we implement algorithms, often we run into a language typing problem: We have
an object of one type, but the language syntax requires an object of a different type.

This technique illustrates the basic theme of a wrapper class. One typical use is to
store a primitive type, and add operations that the primitive type either does not support
or does not support correctly.

In Java, we have already seen that although every reference type is compatible with
Object, the eight primitive types are not. As a result, Java provides a wrapper class for each
of the eight primitive types. For instance, the wrapper for the int type is Integer. Each
wrapper object is immutable (meaning its state can never change), stores one primitive
value that is set when the object is constructed, and provides a method to retrieve the
value. The wrapper classes also contain a host of static utility methods.

As an example, Figure 1.7 shows how we can use the MemoryCell to store integers.

1.4.3 Using Interface Types for Genericity
Using Object as a generic type works only if the operations that are being performed can
be expressed using only methods available in the Object class.

Consider, for example, the problem of finding the maximum item in an array of items.
The basic code is type-independent, but it does require the ability to compare any two
objects and decide which is larger and which is smaller. Thus we cannot simply find the
maximum of an array of Object—we need more information. The simplest idea would be to
find the maximum of an array of Comparable. To determine order, we can use the compareTo
method that we know must be available for all Comparables. The code to do this is shown
in Figure 1.8, which provides a main that finds the maximum in an array of String or Shape.

It is important to mention a few caveats. First, only objects that implement the
Comparable interface can be passed as elements of the Comparable array. Objects that have a
compareTo method but do not declare that they implement Comparable are not Comparable,
and do not have the requisite IS-A relationship. Thus, it is presumed that Shape implements

1 public class WrapperDemo
2 {
3 public static void main(String [] args)
4 {
5 MemoryCell m = new MemoryCell();
6
7 m.write(new Integer(37));
8 Integer wrapperVal = (Integer) m.read();
9 int val = wrapperVal.intValue();

10 System.out.println("Contents are: " + val);
11 }
12 }

Figure 1.7 An illustration of the Integer wrapper class

www.manaraa.com

1.4 Implementing Generic Components Pre-Java 5 15

1 class FindMaxDemo
2 {
3 /**
4 * Return max item in arr.
5 * Precondition: arr.length > 0
6 */
7 public static Comparable findMax(Comparable [] arr)
8 {
9 int maxIndex = 0;

10
11 for(int i = 1; i < arr.length; i++)
12 if(arr[i].compareTo(arr[maxIndex]) > 0)
13 maxIndex = i;
14
15 return arr[maxIndex];
16 }
17
18 /**
19 * Test findMax on Shape and String objects.
20 */
21 public static void main(String [] args)
22 {
23 Shape [] sh1 = { new Circle(2.0),
24 new Square(3.0),
25 new Rectangle(3.0, 4.0) };
26
27 String [] st1 = { "Joe", "Bob", "Bill", "Zeke" };
28
29 System.out.println(findMax(sh1));
30 System.out.println(findMax(st1));
31 }
32 }

Figure 1.8 A generic findMax routine, with demo using shapes and strings (pre-Java 5)

the Comparable interface, perhaps comparing areas of Shapes. It is also implicit in the test
program that Circle, Square, and Rectangle are subclasses of Shape.

Second, if the Comparable array were to have two objects that are incompatible (e.g., a
String and a Shape), the compareTo method would throw a ClassCastException. This is the
expected (indeed, required) behavior.

Third, as before, primitives cannot be passed as Comparables, but the wrappers work
because they implement the Comparable interface.

Fourth, it is not required that the interface be a standard library interface.
Finally, this solution does not always work, because it might be impossible to declare

that a class implements a needed interface. For instance, the class might be a library class,

www.manaraa.com

16 Chapter 1 Introduction

while the interface is a user-defined interface. And if the class is final, we can’t extend it
to create a new class. Section 1.6 offers another solution for this problem, which is the
function object. The function object uses interfaces also and is perhaps one of the central
themes encountered in the Java library.

1.4.4 Compatibility of Array Types
One of the difficulties in language design is how to handle inheritance for aggregate types.
Suppose that Employee IS-A Person. Does this imply that Employee[] IS-A Person[]? In other
words, if a routine is written to accept Person[] as a parameter, can we pass an Employee[]
as an argument?

At first glance, this seems like a no-brainer, and Employee[] should be type-compatible
with Person[]. However, this issue is trickier than it seems. Suppose that in addition to
Employee, Student IS-A Person. Suppose the Employee[] is type-compatible with Person[].
Then consider this sequence of assignments:

Person[] arr = new Employee[5]; // compiles: arrays are compatible
arr[0] = new Student(...); // compiles: Student IS-A Person

Both assignments compile, yet arr[0] is actually referencing an Employee, and Student
IS-NOT-A Employee. Thus we have type confusion. The runtime system cannot throw a
ClassCastException since there is no cast.

The easiest way to avoid this problem is to specify that the arrays are not type-
compatible. However, in Java the arrays are type-compatible. This is known as a covariant
array type. Each array keeps track of the type of object it is allowed to store. If
an incompatible type is inserted into the array, the Virtual Machine will throw an
ArrayStoreException.

The covariance of arrays was needed in earlier versions of Java because otherwise the
calls on lines 29 and 30 in Figure 1.8 would not compile.

1.5 Implementing Generic Components
Using Java 5 Generics

Java 5 supports generic classes that are very easy to use. However, writing generic classes
requires a little more work. In this section, we illustrate the basics of how generic classes
and methods are written. We do not attempt to cover all the constructs of the language,
which are quite complex and sometimes tricky. Instead, we show the syntax and idioms
that are used throughout this book.

www.manaraa.com

1.5 Implementing Generic Components Using Java 5 Generics 17

1.5.1 Simple Generic Classes and Interfaces
Figure 1.9 shows a generic version of the MemoryCell class previously depicted in Figure 1.5.
Here, we have changed the name to GenericMemoryCell because neither class is in a package
and thus the names cannot be the same.

When a generic class is specified, the class declaration includes one or more type
parameters enclosed in angle brackets <> after the class name. Line 1 shows that the
GenericMemoryCell takes one type parameter. In this instance, there are no explicit restric-
tions on the type parameter, so the user can create types such as GenericMemoryCell<String>
and GenericMemoryCell<Integer> but not GenericMemoryCell<int>. Inside the GenericMemo-
ryCell class declaration, we can declare fields of the generic type and methods that use
the generic type as a parameter or return type. For example, in line 5 of Figure 1.9, the
write method for GenericMemoryCell<String> requires a parameter of type String. Passing
anything else will generate a compiler error.

Interfaces can also be declared as generic. For example, prior to Java 5 the Comparable
interface was not generic, and its compareTo method took an Object as the parameter. As
a result, any reference variable passed to the compareTo method would compile, even if
the variable was not a sensible type, and only at runtime would the error be reported as
a ClassCastException. In Java 5, the Comparable class is generic, as shown in Figure 1.10.
The String class, for instance, now implements Comparable<String> and has a compareTo
method that takes a String as a parameter. By making the class generic, many of the errors
that were previously only reported at runtime become compile-time errors.

1 public class GenericMemoryCell<AnyType>
2 {
3 public AnyType read()
4 { return storedValue; }
5 public void write(AnyType x)
6 { storedValue = x; }
7
8 private AnyType storedValue;
9 }

Figure 1.9 Generic implementation of the MemoryCell class

1 package java.lang;
2
3 public interface Comparable<AnyType>
4 {
5 public int compareTo(AnyType other);
6 }

Figure 1.10 Comparable interface, Java 5 version which is generic

www.manaraa.com

18 Chapter 1 Introduction

1.5.2 Autoboxing/Unboxing
The code in Figure 1.7 is annoying to write because using the wrapper class requires
creation of an Integer object prior to the call to write, and then the extraction of the int
value from the Integer, using the intValue method. Prior to Java 5, this is required because
if an int is passed in a place where an Integer object is required, the compiler will generate
an error message, and if the result of an Integer object is assigned to an int, the compiler
will generate an error message. This resulting code in Figure 1.7 accurately reflects the
distinction between primitive types and reference types, yet it does not cleanly express the
programmer’s intent of storing ints in the collection.

Java 5 rectifies this situation. If an int is passed in a place where an Integer is
required, the compiler will insert a call to the Integer constructor behind the scenes. This
is known as autoboxing. And if an Integer is passed in a place where an int is required,
the compiler will insert a call to the intValue method behind the scenes. This is known
as auto-unboxing. Similar behavior occurs for the seven other primitive/wrapper pairs.
Figure 1.11a illustrates the use of autoboxing and unboxing in Java 5. Note that the enti-
ties referenced in the GenericMemoryCell are still Integer objects; int cannot be substituted
for Integer in the GenericMemoryCell instantiations.

1.5.3 The Diamond Operator
In Figure 1.11a, line 5 is annoying because since m is of type GenericMemoryCell<Integer>,
it is obvious that object being created must also be GenericMemoryCell<Integer>; any other
type parameter would generate a compiler error. Java 7 adds a new language feature, known
as the diamond operator, that allows line 5 to be rewritten as

GenericMemoryCell<Integer> m = new GenericMemoryCell<>();

The diamond operator simplifies the code, with no cost to the developer, and we use it
throughout the text. Figure 1.11b shows the Java 7 version, incorporating the diamond
operator.

1 class BoxingDemo
2 {
3 public static void main(String [] args)
4 {
5 GenericMemoryCell<Integer> m = new GenericMemoryCell<Integer>();
6
7 m.write(37);
8 int val = m.read();
9 System.out.println("Contents are: " + val);

10 }
11 }

Figure 1.11a Autoboxing and unboxing (Java 5)

www.manaraa.com

1.5 Implementing Generic Components Using Java 5 Generics 19

1 class BoxingDemo
2 {
3 public static void main(String [] args)
4 {
5 GenericMemoryCell<Integer> m = new GenericMemoryCell<>();
6
7 m.write(5);
8 int val = m.read();
9 System.out.println("Contents are: " + val);

10 }
11 }

Figure 1.11b Autoboxing and unboxing (Java 7, using diamond operator)

1.5.4 Wildcards with Bounds
Figure 1.12 shows a static method that computes the total area in an array of Shapes (we
assume Shape is a class with an area method; Circle and Square extend Shape). Suppose we
want to rewrite the method so that it works with a parameter that is Collection<Shape>.
Collection is described in Chapter 3; for now, the only important thing about it is that it
stores a collection of items that can be accessed with an enhanced for loop. Because of
the enhanced for loop, the code should be identical, and the resulting code is shown in
Figure 1.13. If we pass a Collection<Shape>, the code works. However, what happens if
we pass a Collection<Square>? The answer depends on whether a Collection<Square> IS-A
Collection<Shape>. Recall from Section 1.4.4 that the technical term for this is whether we
have covariance.

In Java, as we mentioned in Section 1.4.4, arrays are covariant. So Square[] IS-A
Shape[]. On the one hand, consistency would suggest that if arrays are covariant, then
collections should be covariant too. On the other hand, as we saw in Section 1.4.4, the
covariance of arrays leads to code that compiles but then generates a runtime exception
(an ArrayStoreException). Because the entire reason to have generics is to generate compiler

1 public static double totalArea(Shape [] arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

Figure 1.12 totalArea method for Shape[]

www.manaraa.com

20 Chapter 1 Introduction

1 public static double totalArea(Collection<Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

Figure 1.13 totalArea method that does not work if passed a Collection<Square>

1 public static double totalArea(Collection<? extends Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

Figure 1.14 totalArea method revised with wildcards that works if passed a
Collection<Square>

errors rather than runtime exceptions for type mismatches, generic collections are not
covariant. As a result, we cannot pass a Collection<Square> as a parameter to the method
in Figure 1.13.

What we are left with is that generics (and the generic collections) are not covariant
(which makes sense), but arrays are. Without additional syntax, users would tend to avoid
collections because the lack of covariance makes the code less flexible.

Java 5 makes up for this with wildcards. Wildcards are used to express subclasses
(or superclasses) of parameter types. Figure 1.14 illustrates the use of wildcards with a
bound to write a totalArea method that takes as parameter a Collection<T>, where T IS-A
Shape. Thus, Collection<Shape> and Collection<Square> are both acceptable parameters.
Wildcards can also be used without a bound (in which case extends Object is presumed)
or with super instead of extends (to express superclass rather than subclass); there are also
some other syntax uses that we do not discuss here.

1.5.5 Generic Static Methods
In some sense, the totalArea method in Figure 1.14 is generic, since it works for different
types. But there is no specific type parameter list, as was done in the GenericMemoryCell

www.manaraa.com

1.5 Implementing Generic Components Using Java 5 Generics 21

1 public static <AnyType> boolean contains(AnyType [] arr, AnyType x)
2 {
3 for(AnyType val : arr)
4 if(x.equals(val))
5 return true;
6
7 return false;
8 }

Figure 1.15 Generic static method to search an array

class declaration. Sometimes the specific type is important perhaps because one of the
following reasons apply:

1. The type is used as the return type.

2. The type is used in more than one parameter type.

3. The type is used to declare a local variable.

If so, then an explicit generic method with type parameters must be declared.
For instance, Figure 1.15 illustrates a generic static method that performs a sequential

search for value x in array arr. By using a generic method instead of a nongeneric method
that uses Object as the parameter types, we can get compile-time errors if searching for an
Apple in an array of Shapes.

The generic method looks much like the generic class in that the type parameter list
uses the same syntax. The type parameters in a generic method precede the return type.

1.5.6 Type Bounds
Suppose we want to write a findMax routine. Consider the code in Figure 1.16. This code
cannot work because the compiler cannot prove that the call to compareTo at line 6 is valid;
compareTo is guaranteed to exist only if AnyType is Comparable. We can solve this problem

1 public static <AnyType> AnyType findMax(AnyType [] arr)
2 {
3 int maxIndex = 0;
4
5 for(int i = 1; i < arr.length; i++)
6 if(arr[i].compareTo(arr[maxIndex]) > 0)
7 maxIndex = i;
8
9 return arr[maxIndex];

10 }

Figure 1.16 Generic static method to find largest element in an array that does not work

www.manaraa.com

22 Chapter 1 Introduction

1 public static <AnyType extends Comparable<? super AnyType>>
2 AnyType findMax(AnyType [] arr)
3 {
4 int maxIndex = 0;
5
6 for(int i = 1; i < arr.length; i++)
7 if(arr[i].compareTo(arr[maxIndex]) > 0)
8 maxIndex = i;
9

10 return arr[maxIndex];
11 }

Figure 1.17 Generic static method to find largest element in an array. Illustrates a bounds
on the type parameter

by using a type bound. The type bound is specified inside the angle brackets <>, and it
specifies properties that the parameter types must have. A naïve attempt is to rewrite the
signature as

public static <AnyType extends Comparable> ...

This is naïve because, as we know, the Comparable interface is now generic. Although
this code would compile, a better attempt would be

public static <AnyType extends Comparable<AnyType>> ...

However, this attempt is not satisfactory. To see the problem, suppose Shape imple-
ments Comparable<Shape>. Suppose Square extends Shape. Then all we know is that Square
implements Comparable<Shape>. Thus, a Square IS-A Comparable<Shape>, but it IS-NOT-A
Comparable<Square>!

As a result, what we need to say is that AnyType IS-A Comparable<T> where T is a super-
class of AnyType. Since we do not need to know the exact type T, we can use a wildcard.
The resulting signature is

public static <AnyType extends Comparable<? super AnyType>>

Figure 1.17 shows the implementation of findMax. The compiler will accept arrays
of types T only such that T implements the Comparable<S> interface, where T IS-A S.
Certainly the bounds declaration looks like a mess. Fortunately, we won’t see anything
more complicated than this idiom.

1.5.7 Type Erasure
Generic types, for the most part, are constructs in the Java language but not in the Virtual
Machine. Generic classes are converted by the compiler to nongeneric classes by a pro-
cess known as type erasure. The simplified version of what happens is that the compiler
generates a raw class with the same name as the generic class with the type parameters
removed. The type variables are replaced with their bounds, and when calls are made

www.manaraa.com

1.5 Implementing Generic Components Using Java 5 Generics 23

to generic methods that have an erased return type, casts are inserted automatically. If a
generic class is used without a type parameter, the raw class is used.

One important consequence of type erasure is that the generated code is not much
different than the code that programmers have been writing before generics and in fact is
not any faster. The significant benefit is that the programmer does not have to place casts
in the code, and the compiler will do significant type checking.

1.5.8 Restrictions on Generics
There are numerous restrictions on generic types. Every one of the restrictions listed here
is required because of type erasure.

Primitive Types
Primitive types cannot be used for a type parameter. Thus GenericMemoryCell<int> is illegal.
You must use wrapper classes.

instanceof tests
instanceof tests and typecasts work only with raw type. In the following code

GenericMemoryCell<Integer> cell1 = new GenericMemoryCell<>();
cell1.write(4);
Object cell = cell1;
GenericMemoryCell<String> cell2 = (GenericMemoryCell<String>) cell;
String s = cell2.read();

the typecast succeeds at runtime since all types are GenericMemoryCell. Eventually, a run-
time error results at the last line because the call to read tries to return a String but cannot.
As a result, the typecast will generate a warning, and a corresponding instanceof test is
illegal.

Static Contexts
In a generic class, static methods and fields cannot refer to the class’s type variables since,
after erasure, there are no type variables. Further, since there is really only one raw class,
static fields are shared among the class’s generic instantiations.

Instantiation of Generic Types
It is illegal to create an instance of a generic type. If T is a type variable, the statement

T obj = new T(); // Right-hand side is illegal

is illegal. T is replaced by its bounds, which could be Object (or even an abstract class), so
the call to new cannot make sense.

Generic Array Objects
It is illegal to create an array of a generic type. If T is a type variable, the statement

T [] arr = new T[10]; // Right-hand side is illegal

www.manaraa.com

24 Chapter 1 Introduction

is illegal. T would be replaced by its bounds, which would probably be Object, and then the
cast (generated by type erasure) to T[] would fail because Object[] IS-NOT-A T[]. Because
we cannot create arrays of generic objects, generally we must create an array of the erased
type and then use a typecast. This typecast will generate a compiler warning about an
unchecked type conversion.

Arrays of Parameterized Types
Instantiation of arrays of parameterized types is illegal. Consider the following code:

1 GenericMemoryCell<String> [] arr1 = new GenericMemoryCell<>[10];
2 GenericMemoryCell<Double> cell = new GenericMemoryCell<>(); cell.write(4.5);
3 Object [] arr2 = arr1;
4 arr2[0] = cell;
5 String s = arr1[0].read();

Normally, we would expect that the assignment at line 4, which has the wrong type,
would generate an ArrayStoreException. However, after type erasure, the array type is
GenericMemoryCell[], and the object added to the array is GenericMemoryCell, so there is
no ArrayStoreException. Thus, this code has no casts, yet it will eventually generate a
ClassCastException at line 5, which is exactly the situation that generics are supposed to
avoid.

1.6 Function Objects
In Section 1.5, we showed how to write generic algorithms. As an example, the generic
method in Figure 1.16 can be used to find the maximum item in an array.

However, that generic method has an important limitation: It works only for objects
that implement the Comparable interface, using compareTo as the basis for all comparison
decisions. In many situations, this approach is not feasible. For instance, it is a stretch
to presume that a Rectangle class will implement Comparable, and even if it does, the
compareTo method that it has might not be the one we want. For instance, given a 2-by-10
rectangle and a 5-by-5 rectangle, which is the larger rectangle? The answer would depend
on whether we are using area or width to decide. Or perhaps if we are trying to fit the rect-
angle through an opening, the larger rectangle is the rectangle with the larger minimum
dimension. As a second example, if we wanted to find the maximum string (alphabeti-
cally last) in an array of strings, the default compareTo does not ignore case distinctions, so
“ZEBRA” would be considered to precede “alligator” alphabetically, which is probably not
what we want.

The solution in these situations is to rewrite findMax to accept two parameters: an array
of objects and a comparison function that explains how to decide which of two objects is
the larger and which is the smaller. In effect, the objects no longer know how to compare
themselves; instead, this information is completely decoupled from the objects in the array.

An ingenious way to pass functions as parameters is to notice that an object contains
both data and methods, so we can define a class with no data and one method and pass

www.manaraa.com

1.6 Function Objects 25

1 // Generic findMax, with a function object.
2 // Precondition: a.size() > 0.
3 public static <AnyType>
4 AnyType findMax(AnyType [] arr, Comparator<? super AnyType> cmp)
5 {
6 int maxIndex = 0;
7
8 for(int i = 1; i < arr.size(); i++)
9 if(cmp.compare(arr[i], arr[maxIndex]) > 0)

10 maxIndex = i;
11
12 return arr[maxIndex];
13 }
14
15 class CaseInsensitiveCompare implements Comparator<String>
16 {
17 public int compare(String lhs, String rhs)
18 { return lhs.compareToIgnoreCase(rhs); }
19 }
20
21 class TestProgram
22 {
23 public static void main(String [] args)
24 {
25 String [] arr = { "ZEBRA", "alligator", "crocodile" };
26 System.out.println(findMax(arr, new CaseInsensitiveCompare()))
27 }
28 }

Figure 1.18 Using a function object as a second parameter to findMax; output is ZEBRA

an instance of the class. In effect, a function is being passed by placing it inside an object.
This object is commonly known as a function object.

Figure 1.18 shows the simplest implementation of the function object idea. findMax
takes a second parameter, which is an object of type Comparator. The Comparator inter-
face is specified in java.util and contains a compare method. This interface is shown in
Figure 1.19.

Any class that implements the Comparator<AnyType> interface type must have a method
named compare that takes two parameters of the generic type (AnyType) and returns an int,
following the same general contract as compareTo. Thus, in Figure 1.18, the call to compare
at line 9 can be used to compare array items. The bounded wildcard at line 4 is used to
signal that if we are finding the maximum in an array of items, the comparator must know
how to compare items, or objects of the items’ supertype. To use this version of findMax, at
line 26, we can see that findMax is called by passing an array of String and an object that

www.manaraa.com

26 Chapter 1 Introduction

1 package java.util;
2
3 public interface Comparator<AnyType>
4 {
5 int compare(AnyType lhs, AnyType rhs);
6 }

Figure 1.19 The Comparator interface

implements Comparator<String>. This object is of type CaseInsensitiveCompare, which is a
class we write.

In Chapter 4, we will give an example of a class that needs to order the items it stores.
We will write most of the code using Comparable and show the adjustments needed to use
the function objects. Elsewhere in the book, we will avoid the detail of function objects to
keep the code as simple as possible, knowing that it is not difficult to add function objects
later.

Summary

This chapter sets the stage for the rest of the book. The time taken by an algorithm con-
fronted with large amounts of input will be an important criterion for deciding if it is a
good algorithm. (Of course, correctness is most important.) Speed is relative. What is fast
for one problem on one machine might be slow for another problem or a different machine.
We will begin to address these issues in the next chapter and will use the mathematics
discussed here to establish a formal model.

Exercises

1.1 Write a program to solve the selection problem. Let k = N/2. Draw a table showing
the running time of your program for various values of N.

1.2 Write a program to solve the word puzzle problem.

1.3 Write a method to output an arbitrary double number (which might be negative)
using only printDigit for I/O.

1.4 C allows statements of the form

#include filename

which reads filename and inserts its contents in place of the include statement.
Include statements may be nested; in other words, the file filename may itself con-
tain an include statement, but, obviously, a file can’t include itself in any chain.
Write a program that reads in a file and outputs the file as modified by the include
statements.

www.manaraa.com

Exercises 27

1.5 Write a recursive method that returns the number of 1’s in the binary representation
of N. Use the fact that this is equal to the number of 1’s in the representation of N/2,
plus 1, if N is odd.

1.6 Write the routines with the following declarations:

public void permute(String str);
private void permute(char [] str, int low, int high);

The first routine is a driver that calls the second and prints all the permutations of
the characters in String str. If str is "abc", then the strings that are output are abc,
acb, bac, bca, cab, and cba. Use recursion for the second routine.

1.7 Prove the following formulas:
a. log X < X for all X > 0
b. log(AB) = B log A

1.8 Evaluate the following sums:
a.

∑∞
i=0

1
4i

b.
∑∞

i=0
i

4i

�c.
∑∞

i=0
i2

4i

��d.
∑∞

i=0
iN

4i

1.9 Estimate

N∑
i=
N/2�

1

i

�1.10 What is 2100 (mod 5)?

1.11 Let Fi be the Fibonacci numbers as defined in Section 1.2. Prove the following:
a.

∑N−2
i=1 Fi = FN − 2

b. FN < φN, with φ = (1 + √
5)/2

��c. Give a precise closed-form expression for FN.

1.12 Prove the following formulas:
a.

∑N
i=1(2i − 1) = N2

b.
∑N

i=1i3 =
(∑N

i=1i
)2

1.13 Design a generic class, Collection, that stores a collection of Objects (in an array),
along with the current size of the collection. Provide public methods isEmpty,
makeEmpty, insert, remove, and isPresent. isPresent(x) returns true if and only if
an Object that is equal to x (as defined by equals) is present in the collection.

1.14 Design a generic class, OrderedCollection, that stores a collection of Comparables
(in an array), along with the current size of the collection. Provide public methods
isEmpty, makeEmpty, insert, remove, findMin, and findMax. findMin and findMax return
references to the smallest and largest, respectively, Comparable in the collection (or
null if the collection is empty).

www.manaraa.com

28 Chapter 1 Introduction

1.15 Define a Rectangle class that provides getLength and getWidth methods. Using the
findMax routines in Figure 1.18, write a main that creates an array of Rectangle
and finds the largest Rectangle first on the basis of area, and then on the basis of
perimeter.

References

There are many good textbooks covering the mathematics reviewed in this chapter. A small
subset is [1], [2], [3], [11], [13], and [14]. Reference [11] is specifically geared toward the
analysis of algorithms. It is the first volume of a three-volume series that will be cited
throughout this text. More advanced material is covered in [8].

Throughout this book we will assume a knowledge of Java [4], [6], [7]. The material
in this chapter is meant to serve as an overview of the features that we will use in this
text. We also assume familiarity with recursion (the recursion summary in this chapter is
meant to be a quick review). We will attempt to provide hints on its use where appropriate
throughout the textbook. Readers not familiar with recursion should consult [14] or any
good intermediate programming textbook.

General programming style is discussed in several books. Some of the classics are [5],
[9], and [10].

1. M. O. Albertson and J. P. Hutchinson, Discrete Mathematics with Algorithms, John Wiley &
Sons, New York, 1988.

2. Z. Bavel, Math Companion for Computer Science, Reston Publishing Co., Reston, Va., 1982.
3. R. A. Brualdi, Introductory Combinatorics, North-Holland, New York, 1977.
4. G. Cornell and C. S. Horstmann, Core Java, Vol. I, 8th ed., Prentice Hall, Upper Saddle

River, N.J., 2009.
5. E. W. Dijkstra, A Discipline of Programming, Prentice Hall, Englewood Cliffs, N.J., 1976.
6. D. Flanagan, Java in a Nutshell, 5th ed., O’Reilly and Associates, Sebastopol, Calif., 2005.
7. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, 3d ed., Addison-

Wesley, Reading, Mass., 2005.
8. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley,

Reading, Mass., 1989.
9. D. Gries, The Science of Programming, Springer-Verlag, New York, 1981.

10. B. W. Kernighan and P. J. Plauger, The Elements of Programming Style, 2d ed., McGraw-Hill,
New York, 1978.

11. D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d ed.,
Addison-Wesley, Reading, Mass., 1997.

12. F. S. Roberts, Applied Combinatorics, Prentice Hall, Englewood Cliffs, N.J., 1984.
13. A. Tucker, Applied Combinatorics, 2d ed., John Wiley & Sons, New York, 1984.
14. M. A. Weiss, Data Structures and Problem Solving Using Java, 4th ed., Addison-Wesley,

Boston, Mass., 2010.

www.manaraa.com

C H A P T E R 2

Algorithm Analysis

An algorithm is a clearly specified set of simple instructions to be followed to solve a
problem. Once an algorithm is given for a problem and decided (somehow) to be correct,
an important step is to determine how much in the way of resources, such as time or space,
the algorithm will require. An algorithm that solves a problem but requires a year is hardly
of any use. Likewise, an algorithm that requires hundreds of gigabytes of main memory is
not (currently) useful on most machines.

In this chapter, we shall discuss

� How to estimate the time required for a program.
� How to reduce the running time of a program from days or years to fractions of a

second.
� The results of careless use of recursion.
� Very efficient algorithms to raise a number to a power and to compute the greatest

common divisor of two numbers.

2.1 Mathematical Background
The analysis required to estimate the resource use of an algorithm is generally a theoretical
issue, and therefore a formal framework is required. We begin with some mathematical
definitions.

Throughout the book we will use the following four definitions:

Definition 2.1.
T(N) = O(f(N)) if there are positive constants c and n0 such that T(N) ≤ cf(N) when
N ≥ n0.

Definition 2.2.
T(N) = �(g(N)) if there are positive constants c and n0 such that T(N) ≥ cg(N) when
N ≥ n0.

Definition 2.3.
T(N) = �(h(N)) if and only if T(N) = O(h(N)) and T(N) = �(h(N)).

29

www.manaraa.com

30 Chapter 2 Algorithm Analysis

Definition 2.4.
T(N) = o(p(N)) if for all positive constants c there exists an n0 such that T(N) < cp(N)
when N > n0. Less formally, T(N) = o(p(N)) if T(N) = O(p(N)) and T(N) �= �(p(N)).

The idea of these definitions is to establish a relative order among functions. Given two
functions, there are usually points where one function is smaller than the other function,
so it does not make sense to claim, for instance, f(N) < g(N). Thus, we compare their
relative rates of growth. When we apply this to the analysis of algorithms, we shall see
why this is the important measure.

Although 1,000N is larger than N2 for small values of N, N2 grows at a faster rate, and
thus N2 will eventually be the larger function. The turning point is N = 1,000 in this case.
The first definition says that eventually there is some point n0 past which c · f(N) is always
at least as large as T(N), so that if constant factors are ignored, f(N) is at least as big as
T(N). In our case, we have T(N) = 1,000N, f(N) = N2, n0 = 1,000, and c = 1. We could
also use n0 = 10 and c = 100. Thus, we can say that 1,000N = O(N2) (order N-squared).
This notation is known as Big-Oh notation. Frequently, instead of saying “order . . . ,” one
says “Big-Oh”

If we use the traditional inequality operators to compare growth rates, then the
first definition says that the growth rate of T(N) is less than or equal to (≤) that of
f(N). The second definition, T(N) = �(g(N)) (pronounced “omega”), says that the
growth rate of T(N) is greater than or equal to (≥) that of g(N). The third definition,
T(N) = �(h(N)) (pronounced “theta”), says that the growth rate of T(N) equals (=)
the growth rate of h(N). The last definition, T(N) = o(p(N)) (pronounced “little-oh”),
says that the growth rate of T(N) is less than (<) the growth rate of p(N). This is
different from Big-Oh, because Big-Oh allows the possibility that the growth rates are
the same.

To prove that some function T(N) = O(f(N)), we usually do not apply these defini-
tions formally but instead use a repertoire of known results. In general, this means that a
proof (or determination that the assumption is incorrect) is a very simple calculation and
should not involve calculus, except in extraordinary circumstances (not likely to occur in
an algorithm analysis).

When we say that T(N) = O(f(N)), we are guaranteeing that the function T(N) grows
at a rate no faster than f(N); thus f(N) is an upper bound on T(N). Since this implies that
f(N) = �(T(N)), we say that T(N) is a lower bound on f(N).

As an example, N3 grows faster than N2, so we can say that N2 = O(N3) or N3 =
�(N2). f(N) = N2 and g(N) = 2N2 grow at the same rate, so both f(N) = O(g(N)) and
f(N) = �(g(N)) are true. When two functions grow at the same rate, then the decision of
whether or not to signify this with �() can depend on the particular context. Intuitively,
if g(N) = 2N2, then g(N) = O(N4), g(N) = O(N3), and g(N) = O(N2) are all technically
correct, but the last option is the best answer. Writing g(N) = �(N2) says not only that
g(N) = O(N2), but also that the result is as good (tight) as possible.

www.manaraa.com

2.1 Mathematical Background 31

Function Name

c Constant

log N Logarithmic

log2 N Log-squared

N Linear

N log N

N2 Quadratic

N3 Cubic

2N Exponential

Figure 2.1 Typical growth rates

The important things to know are

Rule 1.
If T1(N) = O(f(N)) and T2(N) = O(g(N)), then

(a) T1(N) + T2(N) = O(f(N) + g(N)) (intuitively and less formally it is
O(max(f(N), g(N)))),

(b) T1(N) ∗ T2(N) = O(f(N) ∗ g(N)).

Rule 2.
If T(N) is a polynomial of degree k, then T(N) = �(Nk).

Rule 3.
logk N = O(N) for any constant k. This tells us that logarithms grow very slowly.

This information is sufficient to arrange most of the common functions by growth rate
(see Figure 2.1).

Several points are in order. First, it is very bad style to include constants or low-order
terms inside a Big-Oh. Do not say T(N) = O(2N2) or T(N) = O(N2 +N). In both cases, the
correct form is T(N) = O(N2). This means that in any analysis that will require a Big-Oh
answer, all sorts of shortcuts are possible. Lower-order terms can generally be ignored, and
constants can be thrown away. Considerably less precision is required in these cases.

Second, we can always determine the relative growth rates of two functions f(N) and
g(N) by computing limN→∞ f(N)/g(N), using L’Hôpital’s rule if necessary.1 The limit can
have four possible values:

� The limit is 0: This means that f(N) = o(g(N)).
� The limit is c �= 0: This means that f(N) = �(g(N)).

1 L’Hôpital’s rule states that if limN→∞ f(N) = ∞ and limN→∞ g(N) = ∞, then limN→∞ f(N)/g(N) =
limN→∞ f ′(N)/g′(N), where f ′(N) and g′(N) are the derivatives of f(N) and g(N), respectively.

www.manaraa.com

32 Chapter 2 Algorithm Analysis

� The limit is ∞: This means that g(N) = o(f(N)).
� The limit does not exist: There is no relation (this will not happen in our context).

Using this method almost always amounts to overkill. Usually the relation between
f(N) and g(N) can be derived by simple algebra. For instance, if f(N) = N log N and
g(N) = N1.5, then to decide which of f(N) and g(N) grows faster, one really needs to
determine which of log N and N0.5 grows faster. This is like determining which of log2 N
or N grows faster. This is a simple problem, because it is already known that N grows faster
than any power of a log. Thus, g(N) grows faster than f(N).

One stylistic note: It is bad to say f(N) ≤ O(g(N)), because the inequality is implied by
the definition. It is wrong to write f(N) ≥ O(g(N)), which does not make sense.

As an example of the typical kinds of analysis that are performed, consider the problem
of downloading a file over the Internet. Suppose there is an initial 3-sec delay (to set up
a connection), after which the download proceeds at 1.5 M(bytes)/sec. Then it follows
that if the file is N megabytes, the time to download is described by the formula T(N) =
N/1.5 + 3. This is a linear function. Notice that the time to download a 1,500M file
(1,003 sec) is approximately (but not exactly) twice the time to download a 750M file (503
sec). This is typical of a linear function. Notice, also, that if the speed of the connection
doubles, both times decrease, but the 1,500M file still takes approximately twice the time
to download as a 750M file. This is the typical characteristic of linear-time algorithms, and
it is why we write T(N) = O(N), ignoring constant factors. (Although using Big-Theta
would be more precise, Big-Oh answers are typically given.)

Observe, too, that this behavior is not true of all algorithms. For the first selection
algorithm described in Section 1.1, the running time is controlled by the time it takes to
perform a sort. For a simple sorting algorithm, such as the suggested bubble sort, when the
amount of input doubles, the running time increases by a factor of four for large amounts
of input. This is because those algorithms are not linear. Instead, as we will see when we
discuss sorting, trivial sorting algorithms are O(N2), or quadratic.

2.2 Model
In order to analyze algorithms in a formal framework, we need a model of computation.
Our model is basically a normal computer, in which instructions are executed sequentially.
Our model has the standard repertoire of simple instructions, such as addition, multipli-
cation, comparison, and assignment, but, unlike the case with real computers, it takes
exactly one time unit to do anything (simple). To be reasonable, we will assume that, like
a modern computer, our model has fixed-size (say, 32-bit) integers and that there are no
fancy operations, such as matrix inversion or sorting, that clearly cannot be done in one
time unit. We also assume infinite memory.

This model clearly has some weaknesses. Obviously, in real life, not all operations take
exactly the same time. In particular, in our model one disk read counts the same as an
addition, even though the addition is typically several orders of magnitude faster. Also, by
assuming infinite memory, we ignore the fact that the cost of a memory access can increase
when slower memory is used due to larger memory requirements.

www.manaraa.com

2.3 What to Analyze 33

2.3 What to Analyze
The most important resource to analyze is generally the running time. Several factors
affect the running time of a program. Some, such as the compiler and computer used,
are obviously beyond the scope of any theoretical model, so, although they are important,
we cannot deal with them here. The other main factors are the algorithm used and the
input to the algorithm.

Typically, the size of the input is the main consideration. We define two functions,
Tavg(N) and Tworst(N), as the average and worst-case running time, respectively, used by
an algorithm on input of size N. Clearly, Tavg(N) ≤ Tworst(N). If there is more than one
input, these functions may have more than one argument.

Occasionally the best-case performance of an algorithm is analyzed. However, this is
often of little interest, because it does not represent typical behavior. Average-case perfor-
mance often reflects typical behavior, while worst-case performance represents a guarantee
for performance on any possible input. Notice, also, that, although in this chapter we ana-
lyze Java code, these bounds are really bounds for the algorithms rather than programs.
Programs are an implementation of the algorithm in a particular programming language,
and almost always the details of the programming language do not affect a Big-Oh answer. If
a program is running much more slowly than the algorithm analysis suggests, there may be
an implementation inefficiency. This is more common in languages (like C++) where arrays
can be inadvertently copied in their entirety, instead of passed with references. However,
this can occur in Java, too. Thus in future chapters we will analyze the algorithms rather
than the programs.

Generally, the quantity required is the worst-case time, unless otherwise specified. One
reason for this is that it provides a bound for all input, including particularly bad input,
which an average-case analysis does not provide. The other reason is that average-case
bounds are usually much more difficult to compute. In some instances, the definition
of “average” can affect the result. (For instance, what is average input for the following
problem?)

As an example, in the next section, we shall consider the following problem:

Maximum Subsequence Sum Problem.

Given (possibly negative) integers A1, A2, . . . , AN, find the maximum value of
∑j

k=i Ak.
(For convenience, the maximum subsequence sum is 0 if all the integers are negative.)
Example:

For input −2, 11, −4, 13, −5, −2, the answer is 20 (A2 through A4).

This problem is interesting mainly because there are so many algorithms to solve it,
and the performance of these algorithms varies drastically. We will discuss four algo-
rithms to solve this problem. The running time on some computer (the exact computer
is unimportant) for these algorithms is given in Figure 2.2.

There are several important things worth noting in this table. For a small amount of
input, the algorithms all run in a blink of the eye, so if only a small amount of input is
expected, it might be silly to expend a great deal of effort to design a clever algorithm.
On the other hand, there is a large market these days for rewriting programs that were
written five years ago based on a no-longer-valid assumption of small input size. These

www.manaraa.com

34 Chapter 2 Algorithm Analysis

Algorithm Time

Input 1 2 3 4

Size O(N3) O(N2) O(N log N) O(N)

N = 100 0.000159 0.000006 0.000005 0.000002

N = 1,000 0.095857 0.000371 0.000060 0.000022

N = 10,000 86.67 0.033322 0.000619 0.000222

N = 100,000 NA 3.33 0.006700 0.002205

N = 1,000,000 NA NA 0.074870 0.022711

Figure 2.2 Running times of several algorithms for maximum
subsequence sum (in seconds)

programs are now too slow, because they used poor algorithms. For large amounts of
input, algorithm 4 is clearly the best choice (although algorithm 3 is still usable).

Second, the times given do not include the time required to read the input. For algo-
rithm 4, the time merely to read in the input from a disk is likely to be an order of
magnitude larger than the time required to solve the problem. This is typical of many
efficient algorithms. Reading the data is generally the bottleneck; once the data are read,
the problem can be solved quickly. For inefficient algorithms this is not true, and significant
computer resources must be used. Thus it is important that, whenever possible, algorithms
be efficient enough not to be the bottleneck of a problem.

Notice that algorithm 4, which is linear, exhibits the nice behavior that as the prob-
lem size increases by a factor of ten, the running time also increases by a factor of ten.

0

R
un

ni
ng

 T
im

e

10 20 30 40 50 60 70 80 90 100
Input Size (N)

Linear
O(N log N)

Quadratic
Cubic

Figure 2.3 Plot (N vs. time) of various algorithms

www.manaraa.com

2.4 Running Time Calculations 35

0
0

R
un

ni
ng

 T
im

e

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input Size (N)

Linear
O(N log N)

Quadratic
Cubic

Figure 2.4 Plot (N vs. time) of various algorithms

Algorithm 2, which is quadratic, does not have this behavior; a tenfold increase in input
size yields roughly a hundredfold (102) increase in running time. And algorithm 1, which
is cubic, yields a thousandfold (103) increase in running time. We would expect algorithm
1 to take nearly 9,000 seconds (or two and half hours) to complete for N = 100,000.
Similarly, we would expect algorithm 2 to take roughly 333 seconds to complete for
N = 1,000,000. However, it is possible that Algorithm 2 could take somewhat longer
to complete due to the fact that N = 1,000,000 could also yield slower memory accesses
than N = 100,000 on modern computers, depending on the size of the memory cache.

Figure 2.3 shows the growth rates of the running times of the four algorithms. Even
though this graph encompasses only values of N ranging from 10 to 100, the relative
growth rates are still evident. Although the graph for the O(N log N) algorithm seems linear,
it is easy to verify that it is not by using a straight-edge (or piece of paper). Although the
graph for the O(N) algorithm seems constant, this is only because for small values of N, the
constant term is larger than the linear term. Figure 2.4 shows the performance for larger
values. It dramatically illustrates how useless inefficient algorithms are for even moderately
large amounts of input.

2.4 Running Time Calculations
There are several ways to estimate the running time of a program. The previous table was
obtained empirically. If two programs are expected to take similar times, probably the best
way to decide which is faster is to code them both up and run them!

www.manaraa.com

36 Chapter 2 Algorithm Analysis

Generally, there are several algorithmic ideas, and we would like to eliminate the bad
ones early, so an analysis is usually required. Furthermore, the ability to do an analysis
usually provides insight into designing efficient algorithms. The analysis also generally
pinpoints the bottlenecks, which are worth coding carefully.

To simplify the analysis, we will adopt the convention that there are no particular units
of time. Thus, we throw away leading constants. We will also throw away low-order terms,
so what we are essentially doing is computing a Big-Oh running time. Since Big-Oh is an
upper bound, we must be careful never to underestimate the running time of the program.
In effect, the answer provided is a guarantee that the program will terminate within a
certain time period. The program may stop earlier than this, but never later.

2.4.1 A Simple Example
Here is a simple program fragment to calculate

∑N
i=1 i3:

public static int sum(int n)
{

int partialSum;

1 partialSum = 0;
2 for(int i = 1; i <= n; i++)
3 partialSum += i * i * i;
4 return partialSum;

}

The analysis of this fragment is simple. The declarations count for no time. Lines 1 and
4 count for one unit each. Line 3 counts for four units per time executed (two multiplica-
tions, one addition, and one assignment) and is executed N times, for a total of 4N units.
Line 2 has the hidden costs of initializing i, testing i ≤ N, and incrementing i. The total
cost of all these is 1 to initialize, N + 1 for all the tests, and N for all the increments, which
is 2N + 2. We ignore the costs of calling the method and returning, for a total of 6N + 4.
Thus, we say that this method is O(N).

If we had to perform all this work every time we needed to analyze a program, the
task would quickly become infeasible. Fortunately, since we are giving the answer in terms
of Big-Oh, there are lots of shortcuts that can be taken without affecting the final answer.
For instance, line 3 is obviously an O(1) statement (per execution), so it is silly to count
precisely whether it is two, three, or four units; it does not matter. Line 1 is obviously
insignificant compared with the for loop, so it is silly to waste time here. This leads to
several general rules.

2.4.2 General Rules

Rule 1—for loops.
The running time of a for loop is at most the running time of the statements inside the
for loop (including tests) times the number of iterations.

www.manaraa.com

2.4 Running Time Calculations 37

Rule 2—Nested loops.
Analyze these inside out. The total running time of a statement inside a group of nested
loops is the running time of the statement multiplied by the product of the sizes of all
the loops.

As an example, the following program fragment is O(N2):

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

k++;

Rule 3—Consecutive Statements.
These just add (which means that the maximum is the one that counts; see rule 1(a)
on page 31).

As an example, the following program fragment, which has O(N) work followed by O(N2)
work, is also O(N2):

for(i = 0; i < n; i++)
a[i] = 0;

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

a[i] += a[j] + i + j;

Rule 4—if/else.
For the fragment

if(condition)
S1

else
S2

the running time of an if/else statement is never more than the running time of the
test plus the larger of the running times of S1 and S2.

Clearly, this can be an overestimate in some cases, but it is never an underestimate.
Other rules are obvious, but a basic strategy of analyzing from the inside (or deepest

part) out works. If there are method calls, these must be analyzed first. If there are recursive
methods, there are several options. If the recursion is really just a thinly veiled for loop,
the analysis is usually trivial. For instance, the following method is really just a simple loop
and is O(N):

public static long factorial(int n)
{

if(n <= 1)
return 1;

else
return n * factorial(n - 1);

}

www.manaraa.com

38 Chapter 2 Algorithm Analysis

This example is really a poor use of recursion. When recursion is properly used, it is
difficult to convert the recursion into a simple loop structure. In this case, the analysis will
involve a recurrence relation that needs to be solved. To see what might happen, consider
the following program, which turns out to be a horrible use of recursion:

public static long fib(int n)
{

1 if(n <= 1)
2 return 1;

else
3 return fib(n - 1) + fib(n - 2);

}

At first glance, this seems like a very clever use of recursion. However, if the program
is coded up and run for values of N around 40, it becomes apparent that this program
is terribly inefficient. The analysis is fairly simple. Let T(N) be the running time for the
method call fib(n). If N = 0 or N = 1, then the running time is some constant value,
which is the time to do the test at line 1 and return. We can say that T(0) = T(1) = 1
because constants do not matter. The running time for other values of N is then measured
relative to the running time of the base case. For N > 2, the time to execute the method is
the constant work at line 1 plus the work at line 3. Line 3 consists of an addition and two
method calls. Since the method calls are not simple operations, they must be analyzed by
themselves. The first method call is fib(n - 1) and hence, by the definition of T, requires
T(N − 1) units of time. A similar argument shows that the second method call requires
T(N − 2) units of time. The total time required is then T(N − 1) + T(N − 2) + 2, where the
2 accounts for the work at line 1 plus the addition at line 3. Thus, for N ≥ 2, we have the
following formula for the running time of fib(n):

T(N) = T(N − 1) + T(N − 2) + 2

Since fib(N) = fib(N − 1) + fib(N − 2), it is easy to show by induction that T(N) ≥ fib(N).
In Section 1.2.5, we showed that fib(N) < (5/3)N. A similar calculation shows that (for
N > 4) fib(N) ≥ (3/2)N, and so the running time of this program grows exponentially. This
is about as bad as possible. By keeping a simple array and using a for loop, the running
time can be reduced substantially.

This program is slow because there is a huge amount of redundant work being per-
formed, violating the fourth major rule of recursion (the compound interest rule), which
was presented in Section 1.3. Notice that the first call on line 3, fib(n - 1), actually com-
putes fib(n - 2) at some point. This information is thrown away and recomputed by the
second call on line 3. The amount of information thrown away compounds recursively and
results in the huge running time. This is perhaps the finest example of the maxim “Don’t
compute anything more than once” and should not scare you away from using recursion.
Throughout this book, we shall see outstanding uses of recursion.

www.manaraa.com

2.4 Running Time Calculations 39

2.4.3 Solutions for the Maximum Subsequence
Sum Problem

We will now present four algorithms to solve the maximum subsequence sum prob-
lem posed earlier. The first algorithm, which merely exhaustively tries all possibilities,
is depicted in Figure 2.5. The indices in the for loop reflect the fact that in Java, arrays
begin at 0, instead of 1. Also, the algorithm does not compute the actual subsequences;
additional code is required to do this.

Convince yourself that this algorithm works (this should not take much convincing).
The running time is O(N3) and is entirely due to lines 13 and 14, which consist of an O(1)
statement buried inside three nested for loops. The loop at line 8 is of size N.

The second loop has size N − i which could be small but could also be of size N. We
must assume the worst, with the knowledge that this could make the final bound a bit
high. The third loop has size j − i + 1, which, again, we must assume is of size N. The total
is O(1 · N · N · N) = O(N3). Line 6 takes only O(1) total, and lines 16 and 17 take only
O(N2) total, since they are easy expressions inside only two loops.

It turns out that a more precise analysis, taking into account the actual size of these
loops, shows that the answer is �(N3) and that our estimate above was a factor of 6 too
high (which is all right, because constants do not matter). This is generally true in these
kinds of problems. The precise analysis is obtained from the sum

∑N−1
i=0

∑N−1
j=i

∑j
k=i 1,

1 /**
2 * Cubic maximum contiguous subsequence sum algorithm.
3 */
4 public static int maxSubSum1(int [] a)
5 {
6 int maxSum = 0;
7
8 for(int i = 0; i < a.length; i++)
9 for(int j = i; j < a.length; j++)

10 {
11 int thisSum = 0;
12
13 for(int k = i; k <= j; k++)
14 thisSum += a[k];
15
16 if(thisSum > maxSum)
17 maxSum = thisSum;
18 }
19
20 return maxSum;
21 }

Figure 2.5 Algorithm 1

www.manaraa.com

40 Chapter 2 Algorithm Analysis

which tells how many times line 14 is executed. The sum can be evaluated inside out,
using formulas from Section 1.2.3. In particular, we will use the formulas for the sum of
the first N integers and first N squares. First we have

j∑
k=i

1 = j − i + 1

Next we evaluate

N−1∑
j=i

(j − i + 1) = (N − i + 1)(N − i)

2

This sum is computed by observing that it is just the sum of the first N − i integers. To
complete the calculation, we evaluate

N−1∑
i=0

(N − i + 1)(N − i)

2
=

N∑
i=1

(N − i + 1)(N − i + 2)

2

= 1

2

N∑
i=1

i2 −
(

N + 3

2

) N∑
i=1

i + 1

2
(N2 + 3N + 2)

N∑
i=1

1

= 1

2

N(N + 1)(2N + 1)

6
−

(
N + 3

2

)
N(N + 1)

2
+ N2 + 3N + 2

2
N

= N3 + 3N2 + 2N

6

We can avoid the cubic running time by removing a for loop. This is not always pos-
sible, but in this case there are an awful lot of unnecessary computations present in the
algorithm. The inefficiency that the improved algorithm corrects can be seen by noticing

that
∑j

k=i Ak = Aj + ∑j−1
k=i Ak, so the computation at lines 13 and 14 in algorithm 1 is

unduly expensive. Figure 2.6 shows an improved algorithm. Algorithm 2 is clearly O(N2);
the analysis is even simpler than before.

There is a recursive and relatively complicated O(N log N) solution to this problem,
which we now describe. If there didn’t happen to be an O(N) (linear) solution, this would
be an excellent example of the power of recursion. The algorithm uses a “divide-and-
conquer” strategy. The idea is to split the problem into two roughly equal subproblems,
which are then solved recursively. This is the “divide” part. The “conquer” stage consists
of patching together the two solutions of the subproblems, and possibly doing a small
amount of additional work, to arrive at a solution for the whole problem.

In our case, the maximum subsequence sum can be in one of three places. Either it
occurs entirely in the left half of the input, or entirely in the right half, or it crosses the
middle and is in both halves. The first two cases can be solved recursively. The last case
can be obtained by finding the largest sum in the first half that includes the last element

www.manaraa.com

2.4 Running Time Calculations 41

1 /**
2 * Quadratic maximum contiguous subsequence sum algorithm.
3 */
4 public static int maxSubSum2(int [] a)
5 {
6 int maxSum = 0;
7
8 for(int i = 0; i < a.length; i++)
9 {

10 int thisSum = 0;
11 for(int j = i; j < a.length; j++)
12 {
13 thisSum += a[j];
14
15 if(thisSum > maxSum)
16 maxSum = thisSum;
17 }
18 }
19
20 return maxSum;
21 }

Figure 2.6 Algorithm 2

in the first half, and the largest sum in the second half that includes the first element in
the second half. These two sums can then be added together. As an example, consider the
following input:

First Half Second Half

4 −3 5 −2 −1 2 6 −2

The maximum subsequence sum for the first half is 6 (elements A1 through A3) and for
the second half is 8 (elements A6 through A7).

The maximum sum in the first half that includes the last element in the first half is 4
(elements A1 through A4), and the maximum sum in the second half that includes the first
element in the second half is 7 (elements A5 through A7). Thus, the maximum sum that
spans both halves and goes through the middle is 4 + 7 = 11 (elements A1 through A7).

We see, then, that among the three ways to form a large maximum subsequence, for
our example, the best way is to include elements from both halves. Thus, the answer is 11.
Figure 2.7 shows an implementation of this strategy.

The code for algorithm 3 deserves some comment. The general form of the call for the
recursive method is to pass the input array along with the left and right borders, which

www.manaraa.com

42 Chapter 2 Algorithm Analysis

1 /**
2 * Recursive maximum contiguous subsequence sum algorithm.
3 * Finds maximum sum in subarray spanning a[left..right].
4 * Does not attempt to maintain actual best sequence.
5 */
6 private static int maxSumRec(int [] a, int left, int right)
7 {
8 if(left == right) // Base case
9 if(a[left] > 0)

10 return a[left];
11 else
12 return 0;
13
14 int center = (left + right) / 2;
15 int maxLeftSum = maxSumRec(a, left, center);
16 int maxRightSum = maxSumRec(a, center + 1, right);
17
18 int maxLeftBorderSum = 0, leftBorderSum = 0;
19 for(int i = center; i >= left; i--)
20 {
21 leftBorderSum += a[i];
22 if(leftBorderSum > maxLeftBorderSum)
23 maxLeftBorderSum = leftBorderSum;
24 }
25
26 int maxRightBorderSum = 0, rightBorderSum = 0;
27 for(int i = center + 1; i <= right; i++)
28 {
29 rightBorderSum += a[i];
30 if(rightBorderSum > maxRightBorderSum)
31 maxRightBorderSum = rightBorderSum;
32 }
33
34 return max3(maxLeftSum, maxRightSum,
35 maxLeftBorderSum + maxRightBorderSum);
36 }
37
38 /**
39 * Driver for divide-and-conquer maximum contiguous
40 * subsequence sum algorithm.
41 */
42 public static int maxSubSum3(int [] a)
43 {
44 return maxSumRec(a, 0, a.length - 1);
45 }

Figure 2.7 Algorithm 3

www.manaraa.com

2.4 Running Time Calculations 43

delimit the portion of the array that is operated upon. A one-line driver program sets this
up by passing the borders 0 and N − 1 along with the array.

Lines 8 to 12 handle the base case. If left == right, there is one element, and it is the
maximum subsequence if the element is nonnegative. The case left > right is not possible
unless N is negative (although minor perturbations in the code could mess this up). Lines
15 and 16 perform the two recursive calls. We can see that the recursive calls are always
on a smaller problem than the original, although minor perturbations in the code could
destroy this property. Lines 18 to 24 and 26 to 32 calculate the two maximum sums that
touch the center divider. The sum of these two values is the maximum sum that spans both
halves. The routine max3 (not shown) returns the largest of the three possibilities.

Algorithm 3 clearly requires more effort to code than either of the two previous algo-
rithms. However, shorter code does not always mean better code. As we have seen in the
earlier table showing the running times of the algorithms, this algorithm is considerably
faster than the other two for all but the smallest of input sizes.

The running time is analyzed in much the same way as for the program that computes
the Fibonacci numbers. Let T(N) be the time it takes to solve a maximum subsequence
sum problem of size N. If N = 1, then the program takes some constant amount of time
to execute lines 8 to 12, which we shall call one unit. Thus, T(1) = 1. Otherwise, the
program must perform two recursive calls, the two for loops between lines 19 and 32, and
some small amount of bookkeeping, such as lines 14 and 18. The two for loops combine
to touch every element in the subarray, and there is constant work inside the loops, so the
time expended in lines 19 to 32 is O(N). The code in lines 8 to 14, 18, 26, and 34 is all
a constant amount of work and can thus be ignored compared with O(N). The remainder
of the work is performed in lines 15 and 16. These lines solve two subsequence problems
of size N/2 (assuming N is even). Thus, these lines take T(N/2) units of time each, for a
total of 2T(N/2). The total time for the algorithm then is 2T(N/2) + O(N). This gives the
equations

T(1) = 1

T(N) = 2T(N/2) + O(N)

To simplify the calculations, we can replace the O(N) term in the equation above with
N; since T(N) will be expressed in Big-Oh notation anyway, this will not affect the answer.
In Chapter 7, we shall see how to solve this equation rigorously. For now, if T(N) =
2T(N/2)+N, and T(1) = 1, then T(2) = 4 = 2∗2, T(4) = 12 = 4∗3, T(8) = 32 = 8∗4,
and T(16) = 80 = 16∗5. The pattern that is evident, and can be derived, is that if N = 2k,
then T(N) = N ∗ (k + 1) = N log N + N = O(N log N).

This analysis assumes N is even, since otherwise N/2 is not defined. By the recursive
nature of the analysis, it is really valid only when N is a power of 2, since otherwise we
eventually get a subproblem that is not an even size, and the equation is invalid. When
N is not a power of 2, a somewhat more complicated analysis is required, but the Big-Oh
result remains unchanged.

In future chapters, we will see several clever applications of recursion. Here, we present
a fourth algorithm to find the maximum subsequence sum. This algorithm is simpler to
implement than the recursive algorithm and also is more efficient. It is shown in Figure 2.8.

www.manaraa.com

44 Chapter 2 Algorithm Analysis

1 /**
2 * Linear-time maximum contiguous subsequence sum algorithm.
3 */
4 public static int maxSubSum4(int [] a)
5 {
6 int maxSum = 0, thisSum = 0;
7
8 for(int j = 0; j < a.length; j++)
9 {

10 thisSum += a[j];
11
12 if(thisSum > maxSum)
13 maxSum = thisSum;
14 else if(thisSum < 0)
15 thisSum = 0;
16 }
17
18 return maxSum;
19 }

Figure 2.8 Algorithm 4

It should be clear why the time bound is correct, but it takes a little thought to see
why the algorithm actually works. To sketch the logic, note that, like algorithms 1 and 2,
j is representing the end of the current sequence, while i is representing the start of the
current sequence. It happens that the use of i can be optimized out of the program if we do
not need to know where the actual best subsequence is, so in designing the algorithm, let’s
pretend that i is needed, and that we are trying to improve algorithm 2. One observation is
that if a[i] is negative, then it cannot possibly represent the start of the optimal sequence,
since any subsequence that begins by including a[i] would be improved by beginning
with a[i+1]. Similarly, any negative subsequence cannot possibly be a prefix of the optimal
subsequence (same logic). If, in the inner loop, we detect that the subsequence from a[i]
to a[j] is negative, then we can advance i. The crucial observation is that not only can we
advance i to i+1, but we can also actually advance it all the way to j+1. To see this, let p be
any index between i+1 and j. Any subsequence that starts at index p is not larger than the
corresponding subsequence that starts at index i and includes the subsequence from a[i]
to a[p-1], since the latter subsequence is not negative (j is the first index that causes the
subsequence starting at index i to become negative). Thus advancing i to j+1 is risk free:
we cannot miss an optimal solution.

This algorithm is typical of many clever algorithms: The running time is obvious, but
the correctness is not. For these algorithms, formal correctness proofs (more formal than
the sketch above) are almost always required; even then, however, many people still are not
convinced. In addition, many of these algorithms require trickier programming, leading
to longer development. But when these algorithms work, they run quickly, and we can

www.manaraa.com

2.4 Running Time Calculations 45

test much of the code logic by comparing it with an inefficient (but easily implemented)
brute-force algorithm using small input sizes.

An extra advantage of this algorithm is that it makes only one pass through the data,
and once a[i] is read and processed, it does not need to be remembered. Thus, if the
array is on a disk or is being transmitted over the Internet, it can be read sequentially, and
there is no need to store any part of it in main memory. Furthermore, at any point in time,
the algorithm can correctly give an answer to the subsequence problem for the data it has
already read (the other algorithms do not share this property). Algorithms that can do this
are called online algorithms. An online algorithm that requires only constant space and
runs in linear time is just about as good as possible.

2.4.4 Logarithms in the Running Time
The most confusing aspect of analyzing algorithms probably centers around the logarithm.
We have already seen that some divide-and-conquer algorithms will run in O(N log N)
time. Besides divide-and-conquer algorithms, the most frequent appearance of logarithms
centers around the following general rule: An algorithm is O(log N) if it takes constant (O(1))
time to cut the problem size by a fraction (which is usually 1

2). On the other hand, if constant
time is required to merely reduce the problem by a constant amount (such as to make the
problem smaller by 1), then the algorithm is O(N).

It should be obvious that only special kinds of problems can be O(log N). For instance,
if the input is a list of N numbers, an algorithm must take �(N) merely to read the input
in. Thus, when we talk about O(log N) algorithms for these kinds of problems, we usually
presume that the input is preread. We provide three examples of logarithmic behavior.

Binary Search
The first example is usually referred to as binary search.

Binary Search.
Given an integer X and integers A0, A1, . . . , AN−1, which are presorted and already in
memory, find i such that Ai = X, or return i = −1 if X is not in the input.

The obvious solution consists of scanning through the list from left to right and runs
in linear time. However, this algorithm does not take advantage of the fact that the list is
sorted and is thus not likely to be best. A better strategy is to check if X is the middle
element. If so, the answer is at hand. If X is smaller than the middle element, we can apply
the same strategy to the sorted subarray to the left of the middle element; likewise, if X is
larger than the middle element, we look to the right half. (There is also the case of when to
stop.) Figure 2.9 shows the code for binary search (the answer is mid). As usual, the code
reflects Java’s convention that arrays begin with index 0.

Clearly, all the work done inside the loop takes O(1) per iteration, so the analysis
requires determining the number of times around the loop. The loop starts with high -
low = N − 1 and finishes with high - low ≥ −1. Every time through the loop the value
high - low must be at least halved from its previous value; thus, the number of times
around the loop is at most �log(N − 1)� + 2. (As an example, if high - low = 128, then

www.manaraa.com

46 Chapter 2 Algorithm Analysis

1 /**
2 * Performs the standard binary search.
3 * @return index where item is found, or -1 if not found.
4 */
5 public static <AnyType extends Comparable<? super AnyType>>
6 int binarySearch(AnyType [] a, AnyType x)
7 {
8 int low = 0, high = a.length - 1;
9

10 while(low <= high)
11 {
12 int mid = (low + high) / 2;
13
14 if(a[mid].compareTo(x) < 0)
15 low = mid + 1;
16 else if(a[mid].compareTo(x) > 0)
17 high = mid - 1;
18 else
19 return mid; // Found
20 }
21 return NOT_FOUND; // NOT_FOUND is defined as -1
22 }

Figure 2.9 Binary search

the maximum values of high - low after each iteration are 64, 32, 16, 8, 4, 2, 1, 0, −1.)
Thus, the running time is O(log N). Equivalently, we could write a recursive formula for
the running time, but this kind of brute-force approach is usually unnecessary when you
understand what is really going on and why.

Binary search can be viewed as our first data structure implementation. It supports the
contains operation in O(log N) time, but all other operations (in particular insert) require
O(N) time. In applications where the data are static (that is, insertions and deletions are
not allowed), this could be very useful. The input would then need to be sorted once,
but afterward accesses would be fast. An example is a program that needs to maintain
information about the periodic table of elements (which arises in chemistry and physics).
This table is relatively stable, as new elements are added infrequently. The element names
could be kept sorted. Since there are only about 118 elements, at most eight accesses would
be required to find an element. Performing a sequential search would require many more
accesses.

Euclid’s Algorithm
A second example is Euclid’s algorithm for computing the greatest common divisor. The
greatest common divisor (gcd) of two integers is the largest integer that divides both. Thus,
gcd(50, 15) = 5. The algorithm in Figure 2.10 computes gcd(M, N), assuming M ≥ N. (If
N > M, the first iteration of the loop swaps them.)

www.manaraa.com

2.4 Running Time Calculations 47

1 public static long gcd(long m, long n)
2 {
3 while(n != 0)
4 {
5 long rem = m % n;
6 m = n;
7 n = rem;
8 }
9 return m;

10 }

Figure 2.10 Euclid’s algorithm

The algorithm works by continually computing remainders until 0 is reached. The last
nonzero remainder is the answer. Thus, if M = 1,989 and N = 1,590, then the sequence
of remainders is 399, 393, 6, 3, 0. Therefore, gcd(1989, 1590) = 3. As the example shows,
this is a fast algorithm.

As before, estimating the entire running time of the algorithm depends on determining
how long the sequence of remainders is. Although log N seems like a good answer, it is not
at all obvious that the value of the remainder has to decrease by a constant factor, since we
see that the remainder went from 399 to only 393 in the example. Indeed, the remainder
does not decrease by a constant factor in one iteration. However, we can prove that after
two iterations, the remainder is at most half of its original value. This would show that the
number of iterations is at most 2 log N = O(log N) and establish the running time. This
proof is easy, so we include it here. It follows directly from the following theorem.

Theorem 2.1.
If M > N, then M mod N < M/2.

Proof.
There are two cases. If N ≤ M/2, then since the remainder is smaller than N, the
theorem is true for this case. The other case is N > M/2. But then N goes into M once
with a remainder M − N < M/2, proving the theorem.

One might wonder if this is the best bound possible, since 2 log N is about 20 for our
example, and only seven operations were performed. It turns out that the constant can be
improved slightly, to roughly 1.44 log N, in the worst case (which is achievable if M and N
are consecutive Fibonacci numbers). The average-case performance of Euclid’s algorithm
requires pages and pages of highly sophisticated mathematical analysis, and it turns out
that the average number of iterations is about (12 ln 2 ln N)/π2 + 1.47.

Exponentiation
Our last example in this section deals with raising an integer to a power (which is also an
integer). Numbers that result from exponentiation are generally quite large, so an analysis
works only if we can assume that we have a machine that can store such large integers

www.manaraa.com

48 Chapter 2 Algorithm Analysis

1 public static long pow(long x, int n)
2 {
3 if(n == 0)
4 return 1;
5 if(n == 1)
6 return x;
7 if(isEven(n))
8 return pow(x * x, n / 2);
9 else

10 return pow(x * x, n / 2) * x;
11 }

Figure 2.11 Efficient exponentiation

(or a compiler that can simulate this). We will count the number of multiplications as the
measurement of running time.

The obvious algorithm to compute XN uses N−1 multiplications. A recursive algorithm
can do better. N ≤ 1 is the base case of the recursion. Otherwise, if N is even, we have
XN = XN/2 · XN/2, and if N is odd, XN = X(N−1)/2 · X(N−1)/2 · X.

For instance, to compute X62, the algorithm does the following calculations, which
involve only nine multiplications:

X3 = (X2)X, X7 = (X3)
2
X, X15 = (X7)

2
X, X31 = (X15)

2
X, X62 = (X31)

2

The number of multiplications required is clearly at most 2 log N, because at most two
multiplications (if N is odd) are required to halve the problem. Again, a recurrence formula
can be written and solved. Simple intuition obviates the need for a brute-force approach.

Figure 2.11 implements this idea.2 It is sometimes interesting to see how much the
code can be tweaked without affecting correctness. In Figure 2.11, lines 5 to 6 are actually
unnecessary, because if N is 1, then line 10 does the right thing. Line 10 can also be
rewritten as

10 return pow(x, n - 1) * x;

without affecting the correctness of the program. Indeed, the program will still run in
O(log N), because the sequence of multiplications is the same as before. However, all of
the following alternatives for line 8 are bad, even though they look correct:

8a return pow(pow(x, 2), n / 2);
8b return pow(pow(x, n / 2), 2);
8c return pow(x, n / 2) * pow(x, n / 2);

2 Java provides a BigInteger class that can be used to manipulate arbitrarily large integers. Translating
Figure 2.11 to use BigInteger instead of long is straightforward.

www.manaraa.com

Summary 49

Both lines 8a and 8b are incorrect because when N is 2, one of the recursive calls to pow
has 2 as the second argument. Thus no progress is made, and an infinite loop results (in
an eventual abnormal termination).

Using line 8c affects the efficiency, because there are now two recursive calls of size N/2
instead of only one. An analysis will show that the running time is no longer O(log N). We
leave it as an exercise to the reader to determine the new running time.

2.4.5 A Grain of Salt
Sometimes the analysis is shown empirically to be an overestimate. If this is the case,
then either the analysis needs to be tightened (usually by a clever observation), or it
may be that the average running time is significantly less than the worst-case running
time and no improvement in the bound is possible. For many complicated algorithms
the worst-case bound is achievable by some bad input but is usually an overestimate in
practice. Unfortunately, for most of these problems, an average-case analysis is extremely
complex (in many cases still unsolved), and a worst-case bound, even though overly
pessimistic, is the best analytical result known.

Summary

This chapter gives some hints on how to analyze the complexity of programs.
Unfortunately, it is not a complete guide. Simple programs usually have simple analyses,
but this is not always the case. As an example, later in the text we shall see a sorting algo-
rithm (Shellsort, Chapter 7) and an algorithm for maintaining disjoint sets (Chapter 8),
each of which requires about 20 lines of code. The analysis of Shellsort is still not com-
plete, and the disjoint set algorithm has an analysis that is extremely difficult and requires
pages and pages of intricate calculations. Most of the analyses that we will encounter here
will be simple and involve counting through loops.

An interesting kind of analysis, which we have not touched upon, is lower-bound
analysis. We will see an example of this in Chapter 7, where it is proved that any algorithm
that sorts by using only comparisons requires �(N log N) comparisons in the worst case.
Lower-bound proofs are generally the most difficult, because they apply not to an algorithm
but to a class of algorithms that solve a problem.

We close by mentioning that some of the algorithms described here have real-life
application. The gcd algorithm and the exponentiation algorithm are both used in cryptog-
raphy. Specifically, a 600-digit number is raised to a large power (usually another 600-digit
number), with only the low 600 or so digits retained after each multiplication. Since the
calculations require dealing with 600-digit numbers, efficiency is obviously important. The
straightforward algorithm for exponentiation would require about 10600 multiplications,
whereas the algorithm presented requires only about 4,000, in the worst case.

www.manaraa.com

50 Chapter 2 Algorithm Analysis

Exercises

2.1 Order the following functions by growth rate: N,
√

N, N1.5, N2, N log N,
N log log N, N log2 N, N log(N2), 2/N, 2N, 2N/2, 37, N2 log N, N3. Indicate which
functions grow at the same rate.

2.2 Suppose T1(N) = O(f(N)) and T2(N) = O(f(N)). Which of the following are true?
a. T1(N) + T2(N) = O(f(N))
b. T1(N) − T2(N) = o(f(N))

c.
T1(N)

T2(N)
= O(1)

d. T1(N) = O(T2(N))

2.3 Which function grows faster: N log N or N1+ε/
√

log N, ε > 0?

2.4 Prove that for any constant, k, logk N = o(N).

2.5 Find two functions f(N) and g(N) such that neither f(N) = O(g(N)) nor g(N) =
O(f(N)).

2.6 In a recent court case, a judge cited a city for contempt and ordered a
fine of $2 for the first day. Each subsequent day, until the city followed the
judge’s order, the fine was squared (that is, the fine progressed as follows:
$2, $4, $16, $256, $65, 536, . . .).
a. What would be the fine on day N?
b. How many days would it take the fine to reach D dollars? (A Big-Oh answer

will do.)

2.7 For each of the following six program fragments:
a. Give an analysis of the running time (Big-Oh will do).
b. Implement the code in Java, and give the running time for several values of N.
c. Compare your analysis with the actual running times.

(1) sum = 0;
for(i = 0; i < n; i++)

sum++;

(2) sum = 0;
for(i = 0; i < n; i++)

for(j = 0; j < n; j++)
sum++;

(3) sum = 0;
for(i = 0; i < n; i++)

for(j = 0; j < n * n; j++)
sum++;

(4) sum = 0;
for(i = 0; i < n; i++)

for(j = 0; j < i; j++)
sum++;

www.manaraa.com

Exercises 51

(5) sum = 0;
for(i = 0; i < n; i++)

for(j = 0; j < i * i; j++)
for(k = 0; k < j; k++)

sum++;

(6) sum = 0;
for(i = 1; i < n; i++)

for(j = 1; j < i * i; j++)
if(j % i == 0)

for(k = 0; k < j; k++)
sum++;

2.8 Suppose you need to generate a random permutation of the first N integers.
For example, {4, 3, 1, 5, 2} and {3, 1, 4, 2, 5} are legal permutations, but
{5, 4, 1, 2, 1} is not, because one number (1) is duplicated and another (3) is
missing. This routine is often used in simulation of algorithms. We assume the exis-
tence of a random number generator, r, with method randInt(i, j), that generates
integers between i and j with equal probability. Here are three algorithms:

1. Fill the array a from a[0] to a[n-1] as follows: To fill a[i], generate random
numbers until you get one that is not already in a[0], a[1], . . . , a[i-1].

2. Same as algorithm (1), but keep an extra array called the used array. When a
random number, ran, is first put in the array a, set used[ran] = true. This means
that when filling a[i] with a random number, you can test in one step to see
whether the random number has been used, instead of the (possibly) i steps in
the first algorithm.

3. Fill the array such that a[i] = i + 1. Then

for(i = 1; i < n; i++)
swapReferences(a[i], a[randInt(0, i)]);

a. Prove that all three algorithms generate only legal permutations and that all
permutations are equally likely.

b. Give as accurate (Big-Oh) an analysis as you can of the expected running time of
each algorithm.

c. Write (separate) programs to execute each algorithm 10 times, to get a good
average. Run program (1) for N = 250, 500, 1,000, 2,000; program (2) for
N = 25,000, 50,000, 100,000, 200,000, 400,000, 800,000; and program (3) for
N = 100,000, 200,000, 400,000, 800,000, 1,600,000, 3,200,000, 6,400,000.

d. Compare your analysis with the actual running times.
e. What is the worst-case running time of each algorithm?

2.9 Complete the table in Figure 2.2 with estimates for the running times that were
too long to simulate. Interpolate the running times for these algorithms and esti-
mate the time required to compute the maximum subsequence sum of 1 million
numbers. What assumptions have you made?

www.manaraa.com

52 Chapter 2 Algorithm Analysis

2.10 Determine, for the typical algorithms that you use to perform calculations by hand,
the running time to do the following:
a. Add two N-digit integers.
b. Multiply two N-digit integers.
c. Divide two N-digit integers.

2.11 An algorithm takes 0.5 ms for input size 100. How long will it take for input size
500 if the running time is the following (assume low-order terms are negligible):
a. linear
b. O(N log N)
c. quadratic
d. cubic

2.12 An algorithm takes 0.5 ms for input size 100. How large a problem can be solved in
1 min if the running time is the following (assume low-order terms are negligible):
a. linear
b. O(N log N)
c. quadratic
d. cubic

2.13 How much time is required to compute f(x) = ∑N
i=0 aixi:

a. Using a simple routine to perform exponentiation?
b. Using the routine in Section 2.4.4?

2.14 Consider the following algorithm (known as Horner’s rule) to evaluate f(x) =∑N
i=0 aixi:

poly = 0;
for(i = n; i >= 0; i--)

poly = x * poly + a[i];

a. Show how the steps are performed by this algorithm for x = 3, f(x) = 4x4 +
8x3 + x + 2.

b. Explain why this algorithm works.
c. What is the running time of this algorithm?

2.15 Give an efficient algorithm to determine if there exists an integer i such that Ai = i
in an array of integers A1 < A2 < A3 < · · · < AN. What is the running time of
your algorithm?

2.16 Write an alternative gcd algorithm based on the following observations (arrange so
that a > b):

� gcd(a, b) = 2gcd(a/2, b/2) if a and b are both even.
� gcd(a, b) = gcd(a/2, b) if a is even and b is odd.
� gcd(a, b) = gcd(a, b/2) if a is odd and b is even.
� gcd(a, b) = gcd((a + b)/2), (a − b)/2) if a and b are both odd.

www.manaraa.com

Exercises 53

2.17 Give efficient algorithms (along with running time analyses) to:
a. Find the minimum subsequence sum.

�b. Find the minimum positive subsequence sum.
�c. Find the maximum subsequence product.

2.18 An important problem in numerical analysis is to find a solution to the equation
f(X) = 0 for some arbitrary f . If the function is continuous and has two points
low and high such that f(low) and f(high) have opposite signs, then a root must
exist between low and high and can be found by a binary search. Write a function
that takes as parameters f , low, and high and solves for a zero. (To implement a
generic function as a parameter, pass a function object that implements the Function
interface, which you can define to contain a single method f.) What must you do
to ensure termination?

2.19 The maximum contiguous subsequence sum algorithms in the text do not give any
indication of the actual sequence. Modify them so that they return in a single object
the value of the maximum subsequence and the indices of the actual sequence.

2.20 a. Write a program to determine if a positive integer, N, is prime.
b. In terms of N, what is the worst-case running time of your program? (You should

be able to do this in O(
√

N).)
c. Let B equal the number of bits in the binary representation of N. What is the

value of B?
d. In terms of B, what is the worst-case running time of your program?
e. Compare the running times to determine if a 20-bit number and a 40-bit number

are prime.
f. Is it more reasonable to give the running time in terms of N or B? Why?

�2.21 The Sieve of Eratosthenes is a method used to compute all primes less than N. We
begin by making a table of integers 2 to N. We find the smallest integer, i, that is
not crossed out, print i, and cross out i, 2i, 3i, When i >

√
N, the algorithm

terminates. What is the running time of this algorithm?

2.22 Show that X62 can be computed with only eight multiplications.

2.23 Write the fast exponentiation routine without recursion.

2.24 Give a precise count on the number of multiplications used by the fast exponenti-
ation routine. (Hint: Consider the binary representation of N.)

2.25 Programs A and B are analyzed and found to have worst-case running times no
greater than 150N log2 N and N2, respectively. Answer the following questions, if
possible:
a. Which program has the better guarantee on the running time, for large values of

N (N > 10,000)?
b. Which program has the better guarantee on the running time, for small values

of N (N < 100)?
c. Which program will run faster on average for N = 1,000?
d. Is it possible that program B will run faster than program A on all possible

inputs?

www.manaraa.com

54 Chapter 2 Algorithm Analysis

2.26 A majority element in an array, A, of size N is an element that appears more than
N/2 times (thus, there is at most one). For example, the array

3, 3, 4, 2, 4, 4, 2, 4, 4

has a majority element (4), whereas the array

3, 3, 4, 2, 4, 4, 2, 4

does not. If there is no majority element, your program should indicate this. Here
is a sketch of an algorithm to solve the problem:

First, a candidate majority element is found (this is the harder part). This candidate is the
only element that could possibly be the majority element. The second step determines if
this candidate is actually the majority. This is just a sequential search through the array. To
find a candidate in the array, A, form a second array, B. Then compare A1 and A2. If they
are equal, add one of these to B; otherwise do nothing. Then compare A3 and A4. Again if
they are equal, add one of these to B; otherwise do nothing. Continue in this fashion until
the entire array is read. Then recursively find a candidate for B; this is the candidate for
A (why?).

a. How does the recursion terminate?
�b. How is the case where N is odd handled?
�c. What is the running time of the algorithm?
d. How can we avoid using an extra array B?

�e. Write a program to compute the majority element.

2.27 The input is an N by N matrix of numbers that is already in memory. Each individ-
ual row is increasing from left to right. Each individual column is increasing from
top to bottom. Give an O(N) worst-case algorithm that decides if a number X is in
the matrix.

2.28 Design efficient algorithms that take an array of positive numbers a, and determine:
a. the maximum value of a[j]+a[i], with j ≥ i.
b. the maximum value of a[j]-a[i], with j ≥ i.
c. the maximum value of a[j]*a[i], with j ≥ i.
d. the maximum value of a[j]/a[i], with j ≥ i.

�2.29 Why is it important to assume that integers in our computer model have a fixed
size?

2.30 Consider the word puzzle problem described in Chapter 1. Suppose we fix the size
of the longest word to be 10 characters.
a. In terms of R and C, which are the number of rows and columns in the puz-

zle, and W, which is the number of words, what are the running times of the
algorithms described in Chapter 1?

b. Suppose the word list is presorted. Show how to use binary search to obtain an
algorithm with significantly better running time.

www.manaraa.com

References 55

2.31 Suppose that line 15 in the binary search routine had the statement low = mid
instead of low = mid + 1. Would the routine still work?

2.32 Implement the binary search so that only one two-way comparison is performed in
each iteration. (The text implementation uses three-way comparisons. Assume that
only a lessThan method is available.)

2.33 Suppose that lines 15 and 16 in algorithm 3 (Fig. 2.7) are replaced by

15 int maxLeftSum = maxSubSum(a, left, center - 1);
16 int maxRightSum = maxSubSum(a, center, right);

Would the routine still work?
�2.34 The inner loop of the cubic maximum subsequence sum algorithm performs

N(N+1)(N+2)/6 iterations of the innermost code. The quadratic version performs
N(N + 1)/2 iterations. The linear version performs N iterations. What pattern is
evident? Can you give a combinatoric explanation of this phenomenon?

References

Analysis of the running time of algorithms was first made popular by Knuth in the
three-part series [5], [6], and [7]. Analysis of the gcd algorithm appears in [6]. Another
early text on the subject is [1].

Big-Oh, Big-Omega, Big-Theta, and little-oh notation were advocated by Knuth in [8].
There is still not uniform agreement on the matter, especially when it comes to using �().
Many people prefer to use O(), even though it is less expressive. Additionally, O() is still
used in some corners to express a lower bound, when �() is called for.

The maximum subsequence sum problem is from [3]. The series of books [2], [3], and
[4] show how to optimize programs for speed.

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

2. J. L. Bentley, Writing Efficient Programs, Prentice Hall, Englewood Cliffs, N.J., 1982.
3. J. L. Bentley, Programming Pearls, Addison-Wesley, Reading, Mass., 1986.
4. J. L. Bentley, More Programming Pearls, Addison-Wesley, Reading, Mass., 1988.
5. D. E. Knuth, The Art of Computer Programming, Vol 1: Fundamental Algorithms, 3d ed.,

Addison-Wesley, Reading, Mass., 1997.
6. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, 3d ed.,

Addison-Wesley, Reading, Mass., 1998.
7. D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, 2d ed., Addison-

Wesley, Reading, Mass., 1998.
8. D. E. Knuth, “Big Omicron and Big Omega and Big Theta,” ACM SIGACT News, 8 (1976),

18–23.

www.manaraa.com

This page intentionally left blank

www.manaraa.com

C H A P T E R 3

Lists, Stacks, and Queues

This chapter discusses three of the most simple and basic data structures. Virtually every
significant program will use at least one of these structures explicitly, and a stack is always
implicitly used in a program, whether or not you declare one. Among the highlights of this
chapter, we will

� Introduce the concept of Abstract Data Types (ADTs).
� Show how to efficiently perform operations on lists.
� Introduce the stack ADT and its use in implementing recursion.
� Introduce the queue ADT and its use in operating systems and algorithm design.

In this chapter, we provide code that implements a significant subset of two library
classes: ArrayList and LinkedList.

3.1 Abstract Data Types (ADTs)
An abstract data type (ADT) is a set of objects together with a set of operations. Abstract
data types are mathematical abstractions; nowhere in an ADT’s definition is there any men-
tion of how the set of operations is implemented. Objects such as lists, sets, and graphs,
along with their operations, can be viewed as abstract data types, just as integers, reals,
and booleans are data types. Integers, reals, and booleans have operations associated with
them, and so do abstract data types. For the set ADT, we might have such operations as add,
remove, and contains. Alternatively, we might only want the two operations union and find,
which would define a different ADT on the set.

The Java class allows for the implementation of ADTs, with appropriate hiding of imple-
mentation details. Thus any other part of the program that needs to perform an operation
on the ADT can do so by calling the appropriate method. If for some reason implementa-
tion details need to be changed, it should be easy to do so by merely changing the routines
that perform the ADT operations. This change, in a perfect world, would be completely
transparent to the rest of the program.

There is no rule telling us which operations must be supported for each ADT; this is a
design decision. Error handling and tie breaking (where appropriate) are also generally up
to the program designer. The three data structures that we will study in this chapter are

57

www.manaraa.com

58 Chapter 3 Lists, Stacks, and Queues

primary examples of ADTs. We will see how each can be implemented in several ways, but
if they are done correctly, the programs that use them will not necessarily need to know
which implementation was used.

3.2 The List ADT
We will deal with a general list of the form A0, A1, A2, . . ., AN−1. We say that the size of
this list is N. We will call the special list of size 0 an empty list.

For any list except the empty list, we say that Ai follows (or succeeds) Ai−1 (i < N)
and that Ai−1 precedes Ai (i > 0). The first element of the list is A0, and the last element
is AN−1. We will not define the predecessor of A0 or the successor of AN−1. The position
of element Ai in a list is i. Throughout this discussion, we will assume, to simplify matters,
that the elements in the list are integers, but in general, arbitrarily complex elements are
allowed (and easily handled by a generic Java class).

Associated with these “definitions” is a set of operations that we would like to perform
on the list ADT. Some popular operations are printList and makeEmpty, which do the obvious
things; find, which returns the position of the first occurrence of an item; insert and
remove, which generally insert and remove some element from some position in the list;
and findKth, which returns the element in some position (specified as an argument). If the
list is 34, 12, 52, 16, 12, then find(52) might return 2; insert(x,2) might make the list
into 34, 12, x, 52, 16, 12 (if we insert into the position given); and remove(52) might turn
that list into 34, 12, x, 16, 12.

Of course, the interpretation of what is appropriate for a method is entirely up to the
programmer, as is the handling of special cases (for example, what does find(1) return
above?). We could also add operations such as next and previous, which would take a
position as argument and return the position of the successor and predecessor, respectively.

3.2.1 Simple Array Implementation of Lists
All these instructions can be implemented just by using an array. Although arrays are cre-
ated with a fixed capacity, we can create a different array with double the capacity when
needed. This solves the most serious problem with using an array, namely that historically,
to use an array, an estimate of the maximum size of the list was required. This estimate is
not needed in Java, or any modern programming language. The following code fragment
illustrates how an array, arr, which initially has length 10, can be expanded as needed:

int [] arr = new int[10];
...

// Later on we decide arr needs to be larger.
int [] newArr = new int[arr.length * 2];
for(int i = 0; i < arr.length; i++)

newArr[i] = arr[i];
arr = newArr;

www.manaraa.com

3.2 The List ADT 59

An array implementation allows printList to be carried out in linear time, and the
findKth operation takes constant time, which is as good as can be expected. However,
insertion and deletion are potentially expensive, depending on where the insertions and
deletions occur. In the worst case, inserting into position 0 (in other words, at the front
of the list) requires pushing the entire array down one spot to make room, and deleting
the first element requires shifting all the elements in the list up one spot, so the worst
case for these operations is O(N). On average, half of the list needs to be moved for either
operation, so linear time is still required. On the other hand, if all the operations occur at
the high end of the list, then no elements need to be shifted, and then adding and deleting
take O(1) time.

There are many situations where the list is built up by insertions at the high end,
and then only array accesses (i.e., findKth operations) occur. In such a case, the array is
a suitable implementation. However, if insertions and deletions occur throughout the list,
and in particular, at the front of the list, then the array is not a good option. The next
subsection deals with the alternative: the linked list.

3.2.2 Simple Linked Lists
In order to avoid the linear cost of insertion and deletion, we need to ensure that the list
is not stored contiguously, since otherwise entire parts of the list will need to be moved.
Figure 3.1 shows the general idea of a linked list.

The linked list consists of a series of nodes, which are not necessarily adjacent in
memory. Each node contains the element and a link to a node containing its successor. We
call this the next link. The last cell’s next link references null.

To execute printList or find(x) we merely start at the first node in the list and then
traverse the list by following the next links. This operation is clearly linear-time, as in
the array implementation, although the constant is likely to be larger than if an array
implementation were used. The findKth operation is no longer quite as efficient as an
array implementation; findKth(i) takes O(i) time and works by traversing down the list in
the obvious manner. In practice, this bound is pessimistic, because frequently the calls to
findKth are in sorted order (by i). As an example, findKth(2), findKth(3), findKth(4), and
findKth(6) can all be executed in one scan down the list.

The remove method can be executed in one next reference change. Figure 3.2 shows
the result of deleting the third element in the original list.

The insert method requires obtaining a new node from the system by using a new call
and then executing two reference maneuvers. The general idea is shown in Figure 3.3. The
dashed line represents the old next reference.

A0 A1 A2 A3 A4

Figure 3.1 A linked list

www.manaraa.com

60 Chapter 3 Lists, Stacks, and Queues

A0 A1 A2 A3 A4

Figure 3.2 Deletion from a linked list

A0 A1 A2 A3 A4

X

Figure 3.3 Insertion into a linked list

As we can see, in principle, if we know where a change is to be made, inserting or
removing an item from a linked list does not require moving lots of items and instead
involves only a constant number of changes to node links.

The special case of adding to the front or removing the first item is thus a constant-
time operation, presuming of course that a link to the front of the linked list is maintained.
The special case of adding at the end (i.e., making the new item as the last item) can be
constant-time, as long as we maintain a link to the last node. Thus, a typical linked list
keeps links to both ends of the list. Removing the last item is trickier, because we have
to find the next-to-last item, change its next link to null, and then update the link that
maintains the last node. In the classic linked list, where each node stores a link to its next
node, having a link to the last node provides no information about the next-to-last node.

The obvious idea of maintaining a third link to the next-to-last node doesn’t work,
because it too would need to be updated during a remove. Instead, we have every node
maintain a link to its previous node in the list. This is shown in Figure 3.4 and is known
as a doubly linked list.

first last

a b c d

Figure 3.4 A doubly linked list

www.manaraa.com

3.3 Lists in the Java Collections API 61

3.3 Lists in the Java Collections API
The Java language includes, in its library, an implementation of common data structures.
This part of the language is popularly known as the Collections API. The List ADT is one
of the data structures implemented in the Collections API. We will see some others in
Chapters 4 and 5.

3.3.1 Collection Interface
The Collections API resides in package java.util. The notion of a collection, which stores
a collection of identically typed objects, is abstracted in the Collection interface. Figure 3.5
shows the most important parts of this interface (some methods are not shown).

Many of the methods in the Collection interface do the obvious things that their names
suggest. So size returns the number of items in the collection; isEmpty returns true if and
only if the size of the collection is zero. contains returns true if x is in the collection. Note
that the interface doesn’t specify how the collection decides if x is in the collection—this is
determined by the actual classes that implement the Collection interface. add and remove
add and remove item x from the collection, returning true if the operation succeeds and
false if it fails for a plausible (nonexceptional) reason. For instance, a remove can fail if
the item is not present in the collection, and if the particular collection does not allow
duplicates, then add can fail when an attempt is made to insert a duplicate.

The Collection interface extends the Iterable interface. Classes that implement the
Iterable interface can have the enhanced for loop used on them to view all their items.
For instance, the routine in Figure 3.6 can be used to print all the items in any collection.
The implementation of this version of print is identical, character-for-character, with a
corresponding implementation that could be used if coll had type AnyType[].

3.3.2 Iterator s
Collections that implement the Iterable interface must provide a method named iterator
that returns an object of type Iterator. The Iterator is an interface defined in package
java.util and is shown in Figure 3.7.

1 public interface Collection<AnyType> extends Iterable<AnyType>
2 {
3 int size();
4 boolean isEmpty();
5 void clear();
6 boolean contains(AnyType x);
7 boolean add(AnyType x);
8 boolean remove(AnyType x);
9 java.util.Iterator<AnyType> iterator();

10 }

Figure 3.5 Subset of the Collection interface in package java.util

www.manaraa.com

62 Chapter 3 Lists, Stacks, and Queues

1 public static <AnyType> void print(Collection<AnyType> coll)
2 {
3 for(AnyType item : coll)
4 System.out.println(item);
5 }

Figure 3.6 Using the enhanced for loop on an Iterable type

1 public interface Iterator<AnyType>
2 {
3 boolean hasNext();
4 AnyType next();
5 void remove();
6 }

Figure 3.7 The Iterator interface in package java.util

The idea of the Iterator is that via the iterator method, each collection can create, and
return to the client, an object that implements the Iterator interface and stores internally
its notion of a current position.

Each call to next gives the next item in the collection (that has not yet been seen). Thus
the first call to next gives the first item, the second call gives the second item, and so forth.
hasNext can be used to tell you if there is a next item. When the compiler sees an enhanced
for loop being used on an object that is Iterable, it mechanically replaces the enhanced
for loop with calls to the iterator method to obtain an Iterator and then calls to next and
hasNext. Thus the previously seen print routine is rewritten by the compiler as shown in
Figure 3.8.

Because of the limited set of methods available in the Iterator interface, it is hard to
use the Iterator for anything more than a simple traversal through the Collection. The
Iterator interface also contains a method called remove. With this method you can remove
the last item returned by next (after which you cannot call remove again until after another

1 public static <AnyType> void print(Collection<AnyType> coll)
2 {
3 Iterator<AnyType> itr = coll.iterator();
4 while(itr.hasNext())
5 {
6 AnyType item = itr.next();
7 System.out.println(item);
8 }
9 }

Figure 3.8 The enhanced for loop on an Iterable type rewritten by the compiler to use
an iterator

www.manaraa.com

3.3 Lists in the Java Collections API 63

call to next). Although the Collection interface also contains a remove method, there are
presumably advantages to using the Iterator’s remove method instead.

The main advantage of the Iterator’s remove method is that the Collection’s remove
method must first find the item to remove. Presumably it is much less expensive to remove
an item if you know exactly where it is. An example that we will see in the next section
removes every other item in the collection. This code is easy to write with an iterator, and
potentially more efficient than using the Collection’s remove method.

When using the iterator directly (rather than indirectly via an enhanced for loop) it
is important to keep in mind a fundamental rule: If you make a structural change to the
collection being iterated (i.e., an add, remove, or clear method is applied on the collection),
then the iterator is no longer valid (and a ConcurrentModificationException is thrown on
subsequent attempts to use the iterator). This is necessary to avoid ugly situations in which
the iterator is prepared to give a certain item as the next item, and then that item is either
removed, or perhaps a new item is inserted just prior to the next item. This means that you
shouldn’t obtain an iterator until immediately prior to the need to use it. However, if the
iterator invokes its remove method, then the iterator is still valid. This is a second reason to
prefer the iterator’s remove method sometimes.

3.3.3 The List Interface, ArrayList, and LinkedList
The collection that concerns us the most in this section is the list, which is specified by the
List interface in package java.util. The List interface extends Collection, so it contains
all the methods in the Collection interface, plus a few others. Figure 3.9 illustrates the
most important of these methods.

get and set allow the client to access or change an item at the specified position in the
list, given by its index, idx. Index 0 is the front of the list, index size()-1 represents the last
item in the list, and index size() represents the position where a newly added item can be
placed. add allows the placement of a new item in position idx (pushing subsequent items
one position higher). Thus, an add at position 0 is adding at the front, whereas an add at
position size() is adding an item as the new last item. In addition to the standard remove
that takes AnyType as a parameter, remove is overloaded to remove an item at a specified
position. Finally, the List interface specifies the listIterator method that produces a more

1 public interface List<AnyType> extends Collection<AnyType>
2 {
3 AnyType get(int idx);
4 AnyType set(int idx, AnyType newVal);
5 void add(int idx, AnyType x);
6 void remove(int idx);
7
8 ListIterator<AnyType> listIterator(int pos);
9 }

Figure 3.9 Subset of the List interface in package java.util

www.manaraa.com

64 Chapter 3 Lists, Stacks, and Queues

complicated iterator than normally expected. The ListIterator interface is discussed in
Section 3.3.5.

There are two popular implementations of the List ADT. The ArrayList provides a grow-
able array implementation of the List ADT. The advantage of using the ArrayList is that
calls to get and set take constant time. The disadvantage is that insertion of new items
and removal of existing items is expensive, unless the changes are made at the end of the
ArrayList. The LinkedList provides a doubly linked list implementation of the List ADT. The
advantage of using the LinkedList is that insertion of new items and removal of existing
items is cheap, provided that the position of the changes is known. This means that adds
and removes from the front of the list are constant-time operations, so much so that the
LinkedList provides methods addFirst and removeFirst, addLast and removeLast, and get-
First and getLast to efficiently add, remove, and access the items at both ends of the list.
The disadvantage is that the LinkedList is not easily indexable, so calls to get are expensive
unless they are very close to one of the ends of the list (if the call to get is for an item near
the back of the list, the search can proceed from the back of the list). To see the differences,
we look at some methods that operate on a List. First, suppose we construct a List by
adding items at the end.

public static void makeList1(List<Integer> lst, int N)
{

lst.clear();
for(int i = 0; i < N; i++)

lst.add(i);
}

Regardless of whether an ArrayList or LinkedList is passed as a parameter, the running
time of makeList1 is O(N) because each call to add, being at the end of the list, takes constant
time (the occasional expansion of the ArrayList is safe to ignore). On the other hand, if we
construct a List by adding items at the front,

public static void makeList2(List<Integer> lst, int N)
{

lst.clear();
for(int i = 0; i < N; i++)

lst.add(0, i);
}

the running time is O(N) for a LinkedList, but O(N2) for an ArrayList, because in an
ArrayList, adding at the front is an O(N) operation.

The next routine attempts to compute the sum of the numbers in a List:

public static int sum(List<Integer> lst)
{

int total = 0;
for(int i = 0; i < N; i++)

total += lst.get(i);
return total;

}

www.manaraa.com

3.3 Lists in the Java Collections API 65

Here, the running time is O(N) for an ArrayList, but O(N2) for a LinkedList, because in
a LinkedList, calls to get are O(N) operations. Instead, use an enhanced for loop, which
will make the running time O(N) for any List, because the iterator will efficiently advance
from one item to the next.

Both ArrayList and LinkedList are inefficient for searches, so calls to the Collection
contains and remove methods (that take an AnyType as parameter) take linear time.

In an ArrayList, there is a notion of a capacity, which represents the size of the under-
lying array. The ArrayList automatically increases the capacity as needed to ensure that it
is at least as large as the size of the list. If an early estimate of the size is available, ensureCa-
pacity can set the capacity to a sufficiently large amount to avoid a later expansion of the
array capacity. Also, trimToSize can be used after all ArrayList adds are completed to avoid
wasted space.

3.3.4 Example: Using remove on a LinkedList
As an example, we provide a routine that removes all even-valued items in a list. Thus, if
the list contains 6, 5, 1, 4, 2, then after the method is invoked it will contain 5, 1.

There are several possible ideas for an algorithm that deletes items from the list as
they are encountered. Of course, one idea is to construct a new list containing all the odd
numbers, and then clear the original list and copy the odd numbers back into it. But we are
more interested in writing a clean version that avoids making a copy and instead removes
items from the list as they are encountered.

This is almost certainly a losing strategy for an ArrayList, since removing from almost
anywhere in an ArrayList is expensive. In a LinkedList, there is some hope, as we know
that removing from a known position can be done efficiently by rearranging some links.

Figure 3.10 shows the first attempt. On an ArrayList, as expected, the remove is not
efficient, so the routine takes quadratic time. A LinkedList exposes two problems. First,
the call to get is not efficient, so the routine takes quadratic time. Additionally, the call to
remove is equally inefficient, because it is expensive to get to position i.

Figure 3.11 shows one attempt to rectify the problem. Instead of using get, we use an
iterator to step through the list. This is efficient. But then we use the Collection’s remove

1 public static void removeEvensVer1(List<Integer> lst)
2 {
3 int i = 0;
4 while(i < lst.size())
5 if(lst.get(i) % 2 == 0)
6 lst.remove(i);
7 else
8 i++;
9 }

Figure 3.10 Removes the even numbers in a list; quadratic on all types of lists

www.manaraa.com

66 Chapter 3 Lists, Stacks, and Queues

1 public static void removeEvensVer2(List<Integer> lst)
2 {
3 for(Integer x : lst)
4 if(x % 2 == 0)
5 lst.remove(x);
6 }

Figure 3.11 Removes the even numbers in a list; doesn’t work because of
ConcurrentModificationException

1 public static void removeEvensVer3(List<Integer> lst)
2 {
3 Iterator<Integer> itr = lst.iterator();
4
5 while(itr.hasNext())
6 if(itr.next() % 2 == 0)
7 itr.remove();
8 }

Figure 3.12 Removes the even numbers in a list; quadratic on ArrayList, but linear time
for LinkedList

method to remove an even-valued item. This is not an efficient operation because the
remove method has to search for the item again, which takes linear time. But if we run the
code, we find out that the situation is even worse: The program generates an exception
because when an item is removed, the underlying iterator used by the enhanced for loop
is invalidated. (The code in Figure 3.10 explains why: we cannot expect the enhanced for
loop to understand that it must advance only if an item is not removed.)

Figure 3.12 shows an idea that works: After the iterator finds an even-valued item,
we can use the iterator to remove the value it has just seen. For a LinkedList, the call to
the iterator’s remove method is only constant time, because the iterator is at (or near) the
node that needs to be removed. Thus, for a LinkedList, the entire routine takes linear time,
rather than quadratic time. For an ArrayList, even though the iterator is at the point that
needs to be removed, the remove is still expensive, because array items must be shifted, so
as expected, the entire routine still takes quadratic time for an ArrayList.

If we run the code in Figure 3.12, passing a LinkedList<Integer>, it takes 0.039 seconds
for an 800,000-item list, and 0.073 seconds for a 1,600,000 item LinkedList, and is
clearly a linear-time routine, because the running time increases by the same factor as the
input size. When we pass an ArrayList<Integer>, the routine takes almost five minutes
for an 800,000-item ArrayList, and about twenty minutes for a 1,600,000-item ArrayList;
the fourfold increase in running time when the input increases by only a factor of two is
consistent with quadratic behavior.

www.manaraa.com

3.4 Implementation of ArrayList 67

1 public interface ListIterator<AnyType> extends Iterator<AnyType>
2 {
3 boolean hasPrevious();
4 AnyType previous();
5
6 void add(AnyType x);
7 void set(AnyType newVal);
8 }

Figure 3.13 Subset of the ListIterator interface in package java.util

5 8 6 914 5 8 6 914 5 8 6 914

(a) (b) (c)

Figure 3.14 (a) Normal starting point: next returns 5, previous is illegal, add places item
before 5; (b) next returns 8, previous returns 5, add places item between 5 and 8; (c) next
is illegal, previous returns 9, add places item after 9

3.3.5 ListIterators
Figure 3.13 shows that a ListIterator extends the functionality of an Iterator for Lists.
previous and hasPrevious allow traversal of the list from the back to the front. add places
a new item into the list in the current position. The notion of the current position is
abstracted by viewing the iterator as being between the item that would be given by a
call to next and the item that would be given by a call to previous, an abstraction that is
illustrated in Figure 3.14. add is a constant-time operation for a LinkedList but is expensive
for an ArrayList. set changes the last value seen by the iterator and is convenient for
LinkedLists. As an example, it can be used to subtract 1 from all the even numbers in
a List, which would be hard to do on a LinkedList without using the ListIterator’s set
method.

3.4 Implementation of ArrayList
In this section, we provide the implementation of a usable ArrayList generic class. To avoid
ambiguities with the library class, we will name our class MyArrayList. We do not provide
a MyCollection or MyList interface; rather, MyArrayList is standalone. Before examining the
(nearly one hundred lines of) MyArrayList code, we outline the main details.

1. The MyArrayList will maintain the underlying array, the array capacity, and the current
number of items stored in the MyArrayList.

www.manaraa.com

68 Chapter 3 Lists, Stacks, and Queues

2. The MyArrayList will provide a mechanism to change the capacity of the underlying
array. The capacity is changed by obtaining a new array, copying the old array into the
new array, and allowing the Virtual Machine to reclaim the old array.

3. The MyArrayList will provide an implementation of get and set.

4. The MyArrayList will provide basic routines, such as size, isEmpty, and clear, which are
typically one-liners; a version of remove; and also two versions of add. The add routines
will increase capacity if the size and capacity are the same.

5. The MyArrayList will provide a class that implements the Iterator interface. This class
will store the index of the next item in the iteration sequence and provide implemen-
tations of next, hasNext, and remove. The MyArrayList’s iterator method simply returns
a newly constructed instance of the class that implements the Iterator interface.

3.4.1 The Basic Class
Figure 3.15 and Figure 3.16 show the MyArrayList class. Like its Collections API counter-
part, there is some error checking to ensure valid bounds; however, in order to concentrate
on the basics of writing the iterator class, we do not check for a structural modification that
could invalidate an iterator, nor do we check for an illegal iterator remove. These checks are
shown in the subsequent implementation of MyLinkedList in Section 3.5 and are exactly
the same for both list implementations.

As shown on lines 5–6, the MyArrayList stores the size and array as its data members.
A host of short routines, namely clear, doClear (used to avoid having the constructor

invoke an overridable method), size, trimToSize, isEmpty, get, and set, are implemented
in lines 11 to 38.

The ensureCapacity routine is shown at lines 40 to 49. Expanding capacity is done with
the same logic outlined earlier: saving a reference to the original array at line 45, allocation
of a new array at line 46, and copying of the old contents at lines 47 to 48. As shown
at lines 42 to 43, the ensureCapacity routine can also be used to shrink the underlying
array, but only if the specified new capacity is at least as large as the size. If it isn’t, the
ensureCapacity request is ignored. At line 46, we see an idiom that is required because
generic array creation is illegal. Instead, we create an array of the generic type’s bound and
then use an array cast. This will generate a compiler warning but is unavoidable in the
implementation of generic collections.

Two versions of add are shown. The first adds at the end of the list and is trivially
implemented by calling the more general version that adds at the specified position. That
version is computationally expensive because it requires shifting elements that are at or
after the specified position an additional position higher. add may require increasing capac-
ity. Expanding capacity is very expensive, so if the capacity is expanded, it is made twice
as large as the size to avoid having to change the capacity again unless the size increases
dramatically (the +1 is used in case the size is 0).

The remove method is similar to add, in that elements that are at or after the specified
position must be shifted to one position lower.

The remaining routine deals with the iterator method and the implementation of the
associated iterator class. In Figure 3.16, this is shown at lines 77 to 96. The iterator

www.manaraa.com

1 public class MyArrayList<AnyType> implements Iterable<AnyType>
2 {
3 private static final int DEFAULT_CAPACITY = 10;
4
5 private int theSize;
6 private AnyType [] theItems;
7
8 public MyArrayList()
9 { doClear(); }

10
11 public void clear()
12 { doClear(); }
13
14 private void doClear()
15 { theSize = 0; ensureCapacity(DEFAULT_CAPACITY); }
16
17 public int size()
18 { return theSize; }
19 public boolean isEmpty()
20 { return size() == 0; }
21 public void trimToSize()
22 { ensureCapacity(size()); }
23
24 public AnyType get(int idx)
25 {
26 if(idx < 0 || idx >= size())
27 throw new ArrayIndexOutOfBoundsException();
28 return theItems[idx];
29 }
30
31 public AnyType set(int idx, AnyType newVal)
32 {
33 if(idx < 0 || idx >= size())
34 throw new ArrayIndexOutOfBoundsException();
35 AnyType old = theItems[idx];
36 theItems[idx] = newVal;
37 return old;
38 }
39
40 public void ensureCapacity(int newCapacity)
41 {
42 if(newCapacity < theSize)
43 return;
44
45 AnyType [] old = theItems;
46 theItems = (AnyType []) new Object[newCapacity];
47 for(int i = 0; i < size(); i++)
48 theItems[i] = old[i];
49 }

Figure 3.15 MyArrayList class (Part 1 of 2)

www.manaraa.com

50 public boolean add(AnyType x)
51 {
52 add(size(), x);
53 return true;
54 }
55
56 public void add(int idx, AnyType x)
57 {
58 if(theItems.length == size())
59 ensureCapacity(size() * 2 + 1);
60 for(int i = theSize; i > idx; i--)
61 theItems[i] = theItems[i - 1];
62 theItems[idx] = x;
63
64 theSize++;
65 }
66
67 public AnyType remove(int idx)
68 {
69 AnyType removedItem = theItems[idx];
70 for(int i = idx; i < size() - 1; i++)
71 theItems[i] = theItems[i + 1];
72
73 theSize--;
74 return removedItem;
75 }
76
77 public java.util.Iterator<AnyType> iterator()
78 { return new ArrayListIterator(); }
79
80 private class ArrayListIterator implements java.util.Iterator<AnyType>
81 {
82 private int current = 0;
83
84 public boolean hasNext()
85 { return current < size(); }
86
87 public AnyType next()
88 {
89 if(!hasNext())
90 throw new java.util.NoSuchElementException();
91 return theItems[current++];
92 }
93
94 public void remove()
95 { MyArrayList.this.remove(--current); }
96 }
97 }

Figure 3.16 MyArrayList class (Part 2 of 2)

www.manaraa.com

3.4 Implementation of ArrayList 71

method simply returns an instance of ArrayListIterator, which is a class that implements
the Iterator interface. The ArrayListIterator stores the notion of a current position, and
provides implementations of hasNext, next, and remove. The current position represents the
(array index of the) next element that is to be viewed, so initially the current position is 0.

3.4.2 The Iterator and Java Nested and Inner Classes
The ArrayListIterator class uses a tricky Java construct known as the inner class. Clearly
the class is declared inside of the MyArrayList class, a feature that is supported by many
languages. However, an inner class in Java has a more subtle property.

To see how an inner class works, Figure 3.17 sketches the iterator idea (however, the
code is flawed), making ArrayListIterator a top-level class. We focus only on the data
fields of MyArrayList, the iterator method in MyArrayList, and the ArrayListIterator (but
not its remove method).

In Figure 3.17, ArrayListIterator is generic, it stores a current position, and the code
attempts to use the current position in next to index the array and then advance. Note that
if arr is an array, arr[idx++] uses idx to the array, and then advances idx. The positioning
of the ++ matters. The form we used is called the postfix ++ operator, in which the ++ is
after idx. But in the prefix ++ operator, arr[++idx] advances idx and then uses the new
idx to index the array. The problem with Figure 3.17 is that theItems[current++] is illegal,
because theItems is not part of the ArrayListIterator class; it is part of the MyArrayList.
Thus the code doesn’t make sense at all.

1 public class MyArrayList<AnyType> implements Iterable<AnyType>
2 {
3 private int theSize;
4 private AnyType [] theItems;
5 ...
6 public java.util.Iterator<AnyType> iterator()
7 { return new ArrayListIterator<AnyType>(); }
8 }
9 class ArrayListIterator<AnyType> implements java.util.Iterator<AnyType>

10 {
11 private int current = 0;
12 ...
13 public boolean hasNext()
14 { return current < size(); }
15 public AnyType next()
16 { return theItems[current++]; }
17 }

Figure 3.17 Iterator Version #1 (doesn’t work): The iterator is a top-level class and stores
the current position. It doesn’t work because theItems and size() are not part of the
ArrayListIterator class

www.manaraa.com

72 Chapter 3 Lists, Stacks, and Queues

1 public class MyArrayList<AnyType> implements Iterable<AnyType>
2 {
3 private int theSize;
4 private AnyType [] theItems;
5 ...
6 public java.util.Iterator<AnyType> iterator()
7 { return new ArrayListIterator<AnyType>(this); }
8 }
9 class ArrayListIterator<AnyType> implements java.util.Iterator<AnyType>

10 {
11 private int current = 0;
12 private MyArrayList<AnyType> theList;
13 ...
14 public ArrayListIterator(MyArrayList<AnyType> list)
15 { theList = list; }
16
17 public boolean hasNext()
18 { return current < theList.size(); }
19 public AnyType next()
20 { return theList.theItems[current++]; }
21 }

Figure 3.18 Iterator Version #2 (almost works): The iterator is a top-level class and stores
the current position and a link to the MyArrayList. It doesn’t work because theItems is
private in the MyArrayList class

The simplest solution is shown in Figure 3.18, which is unfortunately also flawed, but
in a more minor way. In Figure 3.18, we solve the problem of not having the array in the
iterator by having the iterator store a reference to the MyArrayList that it is iterating over.
This reference is a second data field and is initialized by a new one-parameter constructor
for ArrayListIterator. Now that we have a reference to MyArrayList, we can access the
array field that is contained in MyArrayList (and also get the size of the MyArrayList, which
is needed in hasNext).

The flaw in Figure 3.18 is that theItems is a private field in MyArrayList, and since
ArrayListIterator is a different class, it is illegal to access theItems in the next method.
The simplest fix would be to change the visibility of theItems in MyArrayList from private
to something less restrictive (such as public, or the default which is known as package
visibility). But this violates basic principles of good object-oriented programming, which
requires data to be as hidden as possible.

Instead, Figure 3.19 shows a solution that works: Make the ArrayListIterator class
a nested class. When we make ArrayListIterator a nested class, it is placed inside of
another class (in this case MyArrayList) which is the outer class. We must use the word
static to signify that it is nested; without static we will get an inner class, which is some-
times good and sometimes bad. The nested class is the type of class that is typical of many
programming languages. Observe that the nested class can be made private, which is nice

www.manaraa.com

3.4 Implementation of ArrayList 73

1 public class MyArrayList<AnyType> implements Iterable<AnyType>
2 {
3 private int theSize;
4 private AnyType [] theItems;
5 ...
6 public java.util.Iterator<AnyType> iterator()
7 { return new ArrayListIterator<AnyType>(this); }
8
9 private static class ArrayListIterator<AnyType>

10 implements java.util.Iterator<AnyType>
11 {
12 private int current = 0;
13 private MyArrayList<AnyType> theList;
14 ...
15 public ArrayListIterator(MyArrayList<AnyType> list)
16 { theList = list; }
17
18 public boolean hasNext()
19 { return current < theList.size(); }
20 public AnyType next()
21 { return theList.theItems[current++]; }
22 }
23 }

Figure 3.19 Iterator Version #3 (works): The iterator is a nested class and stores the
current position and a link to the MyArrayList. It works because the nested class is
considered part of the MyArrayList class

because then it is inaccessible except by the outer class MyArrayList. More importantly,
because the nested class is considered to be part of the outer class, there are no visibility
issues that arise: theItems is a visible member of class MyArrayList, because next is part of
MyArrayList.

Now that we have a nested class, we can discuss the inner class. The problem with
the nested class is that in our original design, when we wrote theItems without referring
to MyArrayList that it was contained in, the code looked nice, and kind of made sense,
but was illegal because it was impossible for the compiler to deduce which MyArrayList
was being referred to. It would be nice not to have to keep track of this ourselves. This is
exactly what an inner class does for you.

When you declare an inner class, the compiler adds an implicit reference to the
outer class object that caused the inner class object’s construction. If the name of the
outer class is Outer, then the implicit reference is Outer.this. Thus if ArrayListIterator
is declared as an inner class, without the static, then MyArrayList.this and theList would
both be referencing the same MyArrayList. Thus theList would be redundant and could be
removed.

www.manaraa.com

74 Chapter 3 Lists, Stacks, and Queues

lst

itr1

items: 3, 5, 2
theSize: 3

MyArrayList.this
current = 3

MyArrayList.this
current = 0

itr2

Figure 3.20 Iterator/container with inner classes

The inner class is useful in a situation in which each inner class object is associated
with exactly one instance of an outer class object. In such a case, the inner class object can
never exist without having an outer class object with which to be associated. In the case
of the MyArrayList and its iterator, Figure 3.20 shows the relationship between the iterator
class and MyArrayList class, when inner classes are used to implement the iterator.

The use of theList.theItems could be replaced with MyArrayList.this.theItems. This
is hardly an improvement, but a further simplification is possible. Just as this.data can
be written simply as data (provided there is no other variable named data that could
clash), MyArrayList.this.theItems can be written simply as theItems. Figure 3.21 shows
the simplification of the ArrayListIterator.

1 public class MyArrayList<AnyType> implements Iterable<AnyType>
2 {
3 private int theSize;
4 private AnyType [] theItems;
5 ...
6 public java.util.Iterator<AnyType> iterator()
7 { return new ArrayListIterator(); }
8
9 private class ArrayListIterator implements java.util.Iterator<AnyType>

10 {
11 private int current = 0;
12
13 public boolean hasNext()
14 { return current < size(); }
15 public AnyType next()
16 { return theItems[current++]; }
17 public void remove()
18 { MyArrayList.this.remove(--current); }
19 }
20 }

Figure 3.21 Iterator Version #4 (works): The iterator is an inner class and stores the
current position and an implicit link to the MyArrayList

www.manaraa.com

3.5 Implementation of LinkedList 75

First, the ArrayListIterator is implicitly generic, since it is now tied to MyArrayList,
which is generic; we don’t have to say so.

Second, theList is gone, and we use size() and theItems[current++] as shorthands for
MyArrayList.this.size() and MyArrayList.this.theItems[current++]. The removal of the-
List as a data member also removes the associated constructor, so the code reverts back to
the style in Version #1.

We can implement the iterator’s remove by calling MyArrayList’s remove. Since
MyArrayList’s remove would conflict with ArrayListIterator’s remove, we have to use
MyArrayList.this.remove. Note that after the item is removed, elements shift, so for current
to be viewing the same element, it must also shift. Hence the use of --, rather than -1.

Inner classes are a syntactical convenience for Java programmers. They are not needed
to write any Java code, but their presence in the language allows the Java programmer to
write code in the style that was natural (like Version #1), with the compiler writing the
extra code required to associate the inner class object with the outer class object.

3.5 Implementation of LinkedList
In this section, we provide the implementation of a usable LinkedList generic class. As
in the case of the ArrayList class, our list class will be named MyLinkedList to avoid
ambiguities with the library class.

Recall that the LinkedList class will be implemented as a doubly linked list, and that
we will need to maintain references to both ends of the list. Doing so allows us to maintain
constant time cost per operation, so long as the operation occurs at a known position. The
known position can be either end, or at a position specified by an iterator (however, we do
not implement a ListIterator, thus leaving some code for the reader).

In considering the design, we will need to provide three classes:

1. The MyLinkedList class itself, which contains links to both ends, the size of the list, and
a host of methods.

2. The Node class, which is likely to be a private nested class. A node contains the data
and links to the previous and next nodes, along with appropriate constructors.

3. The LinkedListIterator class, which abstracts the notion of a position and is a private
inner class, implementing the Iterator interface. It provides implementations of next,
hasNext, and remove.

Because the iterator classes store a reference to the “current node,” and the end marker
is a valid position, it makes sense to create an extra node at the end of the list to represent
the end marker. Further, we can create an extra node at the front of the list, logically
representing the beginning marker. These extra nodes are sometimes known as sentinel
nodes; specifically, the node at the front is sometimes known as a header node, and the
node at the end is sometimes known as a tail node.

www.manaraa.com

76 Chapter 3 Lists, Stacks, and Queues

head tail

a b

Figure 3.22 A doubly linked list with header and tail nodes

head tail

Figure 3.23 An empty doubly linked list with header and tail nodes

The advantage of using these extra nodes is that they greatly simplify the coding by
removing a host of special cases. For instance, if we do not use a header node, then remov-
ing the first node becomes a special case, because we must reset the list’s link to the first
node during the remove, and also because the remove algorithm in general needs to access
the node prior to the node being removed (and without a header node, the first node
does not have a node prior to it). Figure 3.22 shows a doubly linked list with header and
tail nodes. Figure 3.23 shows an empty list. Figure 3.24 shows the outline and partial
implementation of the MyLinkedList class.

We can see at line 3 the beginning of the declaration of the private nested Node class.
Figure 3.25 shows the Node class, consisting of the stored item, links to the previous and
next Node, and a constructor. All the data members are public. Recall that in a class, the
data members are normally private. However, members in a nested class are visible even in
the outer class. Since the Node class is private, the visibility of the data members in the Node
class is irrelevant; the MyLinkedList methods can see all Node data members, and classes
outside of MyLinkedList cannot see the Node class at all.

Back in Figure 3.24, lines 46 to 49 contain the data members for MyLinkedList, namely
the reference to the header and tail nodes. We also keep track of the size in a data mem-
ber, so that the size method can be implemented in constant time. At line 47, we have
one additional data field that is used to help the iterator detect changes in the collection.
modCount represents the number of changes to the linked list since construction. Each call
to add or remove will update modCount. The idea is that when an iterator is created, it will
store the modCount of the collection. Each call to an iterator method (next or remove) will
check the stored modCount in the iterator with the current modCount in the linked list and
will throw a ConcurrentModificationException if these two counts don’t match.

The rest of the MyLinkedList class consists of the constructor, the implementation of
the iterator, and a host of methods. Many of the methods are one-liners.

www.manaraa.com

1 public class MyLinkedList<AnyType> implements Iterable<AnyType>
2 {
3 private static class Node<AnyType>
4 { /* Figure 3.25 */ }
5
6 public MyLinkedList()
7 { doClear(); }
8
9 public void clear()

10 { /* Figure 3.26 */ }
11 public int size()
12 { return theSize; }
13 public boolean isEmpty()
14 { return size() == 0; }
15
16 public boolean add(AnyType x)
17 { add(size(), x); return true; }
18 public void add(int idx, AnyType x)
19 { addBefore(getNode(idx, 0, size()), x); }
20 public AnyType get(int idx)
21 { return getNode(idx).data; }
22 public AnyType set(int idx, AnyType newVal)
23 {
24 Node<AnyType> p = getNode(idx);
25 AnyType oldVal = p.data;
26 p.data = newVal;
27 return oldVal;
28 }
29 public AnyType remove(int idx)
30 { return remove(getNode(idx)); }
31
32 private void addBefore(Node<AnyType> p, AnyType x)
33 { /* Figure 3.28 */ }
34 private AnyType remove(Node<AnyType> p)
35 { /* Figure 3.30 */ }
36 private Node<AnyType> getNode(int idx)
37 { /* Figure 3.31 */ }
38 private Node<AnyType> getNode(int idx, int lower, int upper)
39 { /* Figure 3.31 */ }
40
41 public java.util.Iterator<AnyType> iterator()
42 { return new LinkedListIterator(); }
43 private class LinkedListIterator implements java.util.Iterator<AnyType>
44 { /* Figure 3.32 */ }
45
46 private int theSize;
47 private int modCount = 0;
48 private Node<AnyType> beginMarker;
49 private Node<AnyType> endMarker;
50 }

Figure 3.24 MyLinkedList class

www.manaraa.com

78 Chapter 3 Lists, Stacks, and Queues

1 private static class Node<AnyType>
2 {
3 public Node(AnyType d, Node<AnyType> p, Node<AnyType> n)
4 { data = d; prev = p; next = n; }
5
6 public AnyType data;
7 public Node<AnyType> prev;
8 public Node<AnyType> next;
9 }

Figure 3.25 Nested Node class for MyLinkedList class

1 public void clear()
2 { doClear(); }
3
4 private void doClear()
5 {
6 beginMarker = new Node<AnyType>(null, null, null);
7 endMarker = new Node<AnyType>(null, beginMarker, null);
8 beginMarker.next = endMarker;
9

10 theSize = 0;
11 modCount++;
12 }

Figure 3.26 clear routine for MyLinkedList class, which invokes private doClear

The doClear method in Figure 3.26 is invoked by the constructor. It creates and
connects the header and tail nodes and then sets the size to 0.

In Figure 3.24, at line 43 we see the beginning of the declaration of the pri-
vate inner LinkedListIterator class. We’ll discuss those details when we see the actual
implementations later.

Figure 3.27 illustrates how a new node containing x is spliced in between a node
referenced by p and p.prev. The assignment to the node links can be described as follows:

Node newNode = new Node(x, p.prev, p); // Steps 1 and 2
p.prev.next = newNode; // Step 3
p.prev = newNode; // Step 4

Steps 3 and 4 can be combined, yielding only two lines:

Node newNode = new Node(x, p.prev, p); // Steps 1 and 2
p.prev = p.prev.next = newNode; // Steps 3 and 4

But then these two lines can also be combined, yielding:

p.prev = p.prev.next = new Node(x, p.prev, p);

www.manaraa.com

3.5 Implementation of LinkedList 79

prev

x

3

1

2
4

p

... ...

Figure 3.27 Insertion in a doubly linked list by getting new node and then changing
pointers in the order indicated

This makes the addBefore routine in Figure 3.28 short.
Figure 3.29 shows the logic of removing a node. If p references the node being

removed, only two links change before the node is disconnected and eligible to be
reclaimed by the Virtual Machine:

p.prev.next = p.next;
p.next.prev = p.prev;

1 /**
2 * Adds an item to this collection, at specified position p.
3 * Items at or after that position are slid one position higher.
4 * @param p Node to add before.
5 * @param x any object.
6 * @throws IndexOutOfBoundsException if idx is not between 0 and size(),.
7 */
8 private void addBefore(Node<AnyType> p, AnyType x)
9 {

10 Node<AnyType> newNode = new Node<>(x, p.prev, p);
11 newNode.prev.next = newNode;
12 p.prev = newNode;
13 theSize++;
14 modCount++;
15 }

Figure 3.28 add routine for MyLinkedList class

p

.

Figure 3.29 Removing node specified by p from a doubly linked list

www.manaraa.com

80 Chapter 3 Lists, Stacks, and Queues

1 /**
2 * Removes the object contained in Node p.
3 * @param p the Node containing the object.
4 * @return the item was removed from the collection.
5 */
6 private AnyType remove(Node<AnyType> p)
7 {
8 p.next.prev = p.prev;
9 p.prev.next = p.next;

10 theSize--;
11 modCount++;
12
13 return p.data;
14 }

Figure 3.30 remove routine for MyLinkedList class

Figure 3.30 shows the basic private remove routine that contains the two lines of code
shown above.

Figure 3.31 has the previously mentioned private getNode methods. If the index repre-
sents a node in the first half of the list, then at lines 29 to 34 we step through the linked
list, in the forward direction. Otherwise, we go backward, starting at the end, as shown in
lines 37 to 39.

The LinkedListIterator, shown in Figure 3.32, has logic that is similar to the
ArrayListIterator but incorporates significant error checking. The iterator maintains a cur-
rent position, shown at line 3. current represents the node containing the item that is to
be returned by a call to next. Observe that when current is positioned at the endMarker, a
call to next is illegal.

In order to detect a situation in which the collection has been modified during the
iteration, at line 4 the iterator stores in the data field expectedModCount the modCount of the
linked list at the time the iterator is constructed. At line 5, the Boolean data field okToRemove
is true if a next has been performed, without a subsequent remove. Thus okToRemove is
initially false, set to true in next, and set to false in remove.

hasNext is fairly routine. As in java.util.LinkedList’s iterator, it does not check for
modification of the linked list.

The next method advances current (line 18) after getting the value in the node (line
17) that is to be returned (line 20). okToRemove is updated at line 19.

Finally, the iterator’s remove method is shown at lines 23 to 33. It is mostly error check-
ing (which is why we avoided the error checks in the ArrayListIterator). The actual remove
at line 30 mimics the logic in the ArrayListIterator. But here, current remains unchanged,
because the node that current is viewing is unaffected by the removal of the prior node (in
the ArrayListIterator, items shifted, requiring an update of current).

www.manaraa.com

3.5 Implementation of LinkedList 81

1 /**
2 * Gets the Node at position idx, which must range from 0 to size() - 1.
3 * @param idx index to search at.
4 * @return internal node corresponding to idx.
5 * @throws IndexOutOfBoundsException if idx is not
6 * between 0 and size() - 1, inclusive.
7 */
8 private Node<AnyType> getNode(int idx)
9 {

10 return getNode(idx, 0, size() - 1);
11 }
12
13 /**
14 * Gets the Node at position idx, which must range from lower to upper.
15 * @param idx index to search at.
16 * @param lower lowest valid index.
17 * @param upper highest valid index.
18 * @return internal node corresponding to idx.
19 * @throws IndexOutOfBoundsException if idx is not
20 * between lower and upper, inclusive.
21 */
22 private Node<AnyType> getNode(int idx, int lower, int upper)
23 {
24 Node<AnyType> p;
25
26 if(idx < lower || idx > upper)
27 throw new IndexOutOfBoundsException();
28
29 if(idx < size() / 2)
30 {
31 p = beginMarker.next;
32 for(int i = 0; i < idx; i++)
33 p = p.next;
34 }
35 else
36 {
37 p = endMarker;
38 for(int i = size(); i > idx; i--)
39 p = p.prev;
40 }
41
42 return p;
43 }

Figure 3.31 Private getNode routine for MyLinkedList class

www.manaraa.com

82 Chapter 3 Lists, Stacks, and Queues

1 private class LinkedListIterator implements java.util.Iterator<AnyType>
2 {
3 private Node<AnyType> current = beginMarker.next;
4 private int expectedModCount = modCount;
5 private boolean okToRemove = false;
6
7 public boolean hasNext()
8 { return current != endMarker; }
9

10 public AnyType next()
11 {
12 if(modCount != expectedModCount)
13 throw new java.util.ConcurrentModificationException();
14 if(!hasNext())
15 throw new java.util.NoSuchElementException();
16
17 AnyType nextItem = current.data;
18 current = current.next;
19 okToRemove = true;
20 return nextItem;
21 }
22
23 public void remove()
24 {
25 if(modCount != expectedModCount)
26 throw new java.util.ConcurrentModificationException();
27 if(!okToRemove)
28 throw new IllegalStateException();
29
30 MyLinkedList.false.remove(current.prev);
31 expectedModCount++;
32 okToRemove = false;
33 }
34 }

Figure 3.32 Inner Iterator class for MyList class

3.6 The Stack ADT

3.6.1 Stack Model
A stack is a list with the restriction that insertions and deletions can be performed in only
one position, namely, the end of the list, called the top. The fundamental operations on a
stack are push, which is equivalent to an insert, and pop, which deletes the most recently

www.manaraa.com

3.6 The Stack ADT 83

push
Stack

pop

top

Figure 3.33 Stack model: input to a stack is by push, output is by pop and top

6

3

1

4

2
top

Figure 3.34 Stack model: Only the top element is accessible

inserted element. The most recently inserted element can be examined prior to performing
a pop by use of the top routine. A pop or top on an empty stack is generally considered an
error in the stack ADT. On the other hand, running out of space when performing a push is
an implementation limit but not an ADT error.

Stacks are sometimes known as LIFO (last in, first out) lists. The model depicted in
Figure 3.33 signifies only that pushes are input operations and pops and tops are output.
The usual operations to make empty stacks and test for emptiness are part of the repertoire,
but essentially all that you can do to a stack is push and pop.

Figure 3.34 shows an abstract stack after several operations. The general model is that
there is some element that is at the top of the stack, and it is the only element that is visible.

3.6.2 Implementation of Stacks
Since a stack is a list, any list implementation will do. Clearly ArrayList and LinkedList sup-
port stack operations; 99% of the time they are the most reasonable choice. Occasionally
it can be faster to design a special-purpose implementation (for instance, if the items being
placed on the stack are a primitive type). Because stack operations are constant-time oper-
ations, this is unlikely to yield any discernable improvement except under very unique
circumstances. For these special times, we will give two popular implementations. One

www.manaraa.com

84 Chapter 3 Lists, Stacks, and Queues

uses a linked structure and the other uses an array, and both simplify the logic in ArrayList
and LinkedList, so we do not provide code.

Linked List Implementation of Stacks
The first implementation of a stack uses a singly linked list. We perform a push by inserting
at the front of the list. We perform a pop by deleting the element at the front of the list.
A top operation merely examines the element at the front of the list, returning its value.
Sometimes the pop and top operations are combined into one.

Array Implementation of Stacks
An alternative implementation avoids links and is probably the more popular solution.
Mimicking the ArrayList add operation, the implementation is trivial. Associated with each
stack is theArray and topOfStack, which is −1 for an empty stack (this is how an empty
stack is initialized). To push some element x onto the stack, we increment topOfStack and
then set theArray[topOfStack] = x. To pop, we set the return value to theArray[topOfStack]
and then decrement topOfStack.

Notice that these operations are performed in not only constant time, but very fast con-
stant time. On some machines, pushes and pops (of integers) can be written in one machine
instruction, operating on a register with auto-increment and auto-decrement addressing.
The fact that most modern machines have stack operations as part of the instruction
set enforces the idea that the stack is probably the most fundamental data structure in
computer science, after the array.

3.6.3 Applications
It should come as no surprise that if we restrict the operations allowed on a list, those oper-
ations can be performed very quickly. The big surprise, however, is that the small number
of operations left are so powerful and important. We give three of the many applications
of stacks. The third application gives a deep insight into how programs are organized.

Balancing Symbols
Compilers check your programs for syntax errors, but frequently a lack of one symbol
(such as a missing brace or comment starter) will cause the compiler to spill out a hundred
lines of diagnostics without identifying the real error. (Fortunately, most Java compilers are
pretty good about this. But not all languages and compilers are as responsible.)

A useful tool in this situation is a program that checks whether everything is balanced.
Thus, every right brace, bracket, and parenthesis must correspond to its left counterpart.
The sequence [()] is legal, but [(]) is wrong. Obviously, it is not worthwhile writing a
huge program for this, but it turns out that it is easy to check these things. For simplicity,
we will just check for balancing of parentheses, brackets, and braces and ignore any other
character that appears.

The simple algorithm uses a stack and is as follows:

Make an empty stack. Read characters until end of file. If the character is an opening
symbol, push it onto the stack. If it is a closing symbol, then if the stack is empty report

www.manaraa.com

3.6 The Stack ADT 85

an error. Otherwise, pop the stack. If the symbol popped is not the corresponding
opening symbol, then report an error. At end of file, if the stack is not empty report an
error.

You should be able to convince yourself that this algorithm works. It is clearly linear
and actually makes only one pass through the input. It is thus online and quite fast. Extra
work can be done to attempt to decide what to do when an error is reported—such as
identifying the likely cause.

Postfix Expressions
Suppose we have a pocket calculator and would like to compute the cost of a shopping
trip. To do so, we add a list of numbers and multiply the result by 1.06; this computes the
purchase price of some items with local sales tax added. If the items are 4.99, 5.99, and
6.99, then a natural way to enter this would be the sequence

4.99 + 5.99 + 6.99 ∗ 1.06 =
Depending on the calculator, this produces either the intended answer, 19.05, or the sci-
entific answer, 18.39. Most simple four-function calculators will give the first answer, but
many advanced calculators know that multiplication has higher precedence than addition.

On the other hand, some items are taxable and some are not, so if only the first and
last items were actually taxable, then the sequence

4.99 ∗ 1.06 + 5.99 + 6.99 ∗ 1.06 =
would give the correct answer (18.69) on a scientific calculator and the wrong answer
(19.37) on a simple calculator. A scientific calculator generally comes with parentheses, so
we can always get the right answer by parenthesizing, but with a simple calculator we need
to remember intermediate results.

A typical evaluation sequence for this example might be to multiply 4.99 and 1.06,
saving this answer as A1. We then add 5.99 and A1, saving the result in A1. We multiply
6.99 and 1.06, saving the answer in A2, and finish by adding A1 and A2, leaving the final
answer in A1. We can write this sequence of operations as follows:

4.99 1.06 ∗ 5.99 + 6.99 1.06 ∗ +
This notation is known as postfix or reverse Polish notation and is evaluated exactly as
we have described above. The easiest way to do this is to use a stack. When a number is
seen, it is pushed onto the stack; when an operator is seen, the operator is applied to the
two numbers (symbols) that are popped from the stack, and the result is pushed onto the
stack. For instance, the postfix expression

6 5 2 3 + 8 ∗ + 3 + ∗
is evaluated as follows: The first four symbols are placed on the stack. The resulting
stack is

www.manaraa.com

86 Chapter 3 Lists, Stacks, and Queues

3
2
5
6

topOfStack →

Next a ‘+’ is read, so 3 and 2 are popped from the stack and their sum, 5, is pushed.

5
5

6

topOfStack →

Next 8 is pushed.

5
5
8

6

topOfStack →

Now a ‘∗’ is seen, so 8 and 5 are popped and 5 ∗ 8 = 40 is pushed.

40
5
6

topOfStack →

Next a ‘+’ is seen, so 40 and 5 are popped and 5 + 40 = 45 is pushed.

45
6

topOfStack →

www.manaraa.com

3.6 The Stack ADT 87

Now, 3 is pushed.

45
6

3topOfStack →

Next ‘+’ pops 3 and 45 and pushes 45 + 3 = 48.

48
6

topOfStack →

Finally, a ‘∗’ is seen and 48 and 6 are popped; the result, 6 ∗ 48 = 288, is pushed.

288topOfStack →

The time to evaluate a postfix expression is O(N), because processing each element in
the input consists of stack operations and thus takes constant time. The algorithm to do
so is very simple. Notice that when an expression is given in postfix notation, there is no
need to know any precedence rules; this is an obvious advantage.

Infix to Postfix Conversion
Not only can a stack be used to evaluate a postfix expression, but we can also use a stack
to convert an expression in standard form (otherwise known as infix) into postfix. We
will concentrate on a small version of the general problem by allowing only the operators
+, *, (,), and insisting on the usual precedence rules. We will further assume that the
expression is legal. Suppose we want to convert the infix expression

a + b * c + (d * e + f) * g

into postfix. A correct answer is a b c * + d e * f + g * +.
When an operand is read, it is immediately placed onto the output. Operators are not

immediately output, so they must be saved somewhere. The correct thing to do is to place
operators that have been seen, but not placed on the output, onto the stack. We will also
stack left parentheses when they are encountered. We start with an initially empty stack.

www.manaraa.com

88 Chapter 3 Lists, Stacks, and Queues

If we see a right parenthesis, then we pop the stack, writing symbols until we encounter
a (corresponding) left parenthesis, which is popped but not output.

If we see any other symbol (+, *, (), then we pop entries from the stack until we find
an entry of lower priority. One exception is that we never remove a (from the stack except
when processing a). For the purposes of this operation, + has lowest priority and (highest.
When the popping is done, we push the operator onto the stack.

Finally, if we read the end of input, we pop the stack until it is empty, writing symbols
onto the output.

The idea of this algorithm is that when an operator is seen, it is placed on the stack.
The stack represents pending operators. However, some of the operators on the stack that
have high precedence are now known to be completed and should be popped, as they will
no longer be pending. Thus prior to placing the operator on the stack, operators that are
on the stack and are to be completed prior to the current operator, are popped. This is
illustrated in the following table:

Stack When Third
Expression Operator Is Processed Action

a*b-c+d - - is completed; + is pushed
a/b+c*d + Nothing is completed; * is pushed
a-b*c/d - * * is completed; / is pushed
a-b*c+d - * * and - are completed; + is pushed

Parentheses simply add an additional complication. We can view a left parenthesis
as a high-precedence operator when it is an input symbol (so that pending operators
remain pending), and a low-precedence operator when it is on the stack (so that it is
not accidentally removed by an operator). Right parentheses are treated as the special case.

To see how this algorithm performs, we will convert the long infix expression above
into its postfix form. First, the symbol a is read, so it is passed through to the output. Then
+ is read and pushed onto the stack. Next b is read and passed through to the output. The
state of affairs at this juncture is as follows:

a b
OutputStack

+

Next a * is read. The top entry on the operator stack has lower precedence than *, so
nothing is output and * is put on the stack. Next, c is read and output. Thus far, we have

a b c
OutputStack

+
*

www.manaraa.com

3.6 The Stack ADT 89

The next symbol is a +. Checking the stack, we find that we will pop a * and place it on
the output; pop the other +, which is not of lower but equal priority, on the stack; and then
push the +.

a b c * +
OutputStack

+

The next symbol read is a (, which, being of highest precedence, is placed on the stack.
Then d is read and output.

a b c * + d
OutputStack

+

(

We continue by reading a *. Since open parentheses do not get removed except when a
closed parenthesis is being processed, there is no output. Next, e is read and output.

a b c * + d e
OutputStack

+
(
*

The next symbol read is a +. We pop and output * and then push +. Then we read and
output f.

a b c * + d e * f
OutputStack

+
(

+

Now we read a), so the stack is emptied back to the (. We output a +.

a b c * + d e * f +
OutputStack

+

We read a * next; it is pushed onto the stack. Then g is read and output.

www.manaraa.com

90 Chapter 3 Lists, Stacks, and Queues

a b c * + d e * f + g
OutputStack

+
*

The input is now empty, so we pop and output symbols from the stack until it is empty.

a b c * + d e * f + g * +
OutputStack

As before, this conversion requires only O(N) time and works in one pass through the
input. We can add subtraction and division to this repertoire by assigning subtraction and
addition equal priority and multiplication and division equal priority. A subtle point is that
the expression a-b-c will be converted to ab-c- and not abc--. Our algorithm does the right
thing, because these operators associate from left to right. This is not necessarily the case

in general, since exponentiation associates right to left: 223 = 28 = 256, not 43 = 64. We
leave as an exercise the problem of adding exponentiation to the repertoire of operators.

Method Calls
The algorithm to check balanced symbols suggests a way to implement method calls in
compiled procedural and object-oriented languages.1 The problem here is that when a call
is made to a new method, all the variables local to the calling routine need to be saved
by the system, since otherwise the new method will overwrite the memory used by the
calling routine’s variables. Furthermore, the current location in the routine must be saved
so that the new method knows where to go after it is done. The variables have generally
been assigned by the compiler to machine registers, and there are certain to be conflicts
(usually all methods get some variables assigned to register #1), especially if recursion is
involved. The reason that this problem is similar to balancing symbols is that a method call
and method return are essentially the same as an open parenthesis and closed parenthesis,
so the same ideas should work.

When there is a method call, all the important information that needs to be saved, such
as register values (corresponding to variable names) and the return address (which can be
obtained from the program counter, which is typically in a register), is saved “on a piece
of paper” in an abstract way and put at the top of a pile. Then the control is transferred
to the new method, which is free to replace the registers with its values. If it makes other
method calls, it follows the same procedure. When the method wants to return, it looks
at the “paper” at the top of the pile and restores all the registers. It then makes the return
jump.

1 Since Java is interpreted, rather than compiled, some details in this section may not apply to Java, but the
general concepts still do in Java and many other languages.

www.manaraa.com

3.6 The Stack ADT 91

1 /**
2 * Print container from itr.
3 */
4 public static <AnyType> void printList(Iterator<AnyType> itr)
5 {
6 if(!itr.hasNext())
7 return;
8
9 System.out.println(itr.next());

10 printList(itr);
11 }

Figure 3.35 A bad use of recursion: printing a linked list

Clearly, all of this work can be done using a stack, and that is exactly what happens in
virtually every programming language that implements recursion. The information saved
is called either an activation record or stack frame. Typically, a slight adjustment is made:
The current environment is represented at the top of the stack. Thus, a return gives the
previous environment (without copying). The stack in a real computer frequently grows
from the high end of your memory partition downward, and on many non-Java systems
there is no checking for overflow. There is always the possibility that you will run out of
stack space by having too many simultaneously active methods. Needless to say, running
out of stack space is always a fatal error.

In languages and systems that do not check for stack overflow, programs crash without
an explicit explanation. In Java, an exception is thrown.

In normal events, you should not run out of stack space; doing so is usually an indica-
tion of runaway recursion (forgetting a base case). On the other hand, some perfectly legal
and seemingly innocuous programs can cause you to run out of stack space. The routine in
Figure 3.35, which prints out a collection, is perfectly legal and actually correct. It properly
handles the base case of an empty collection, and the recursion is fine. This program can be
proven correct. Unfortunately, if the collection contains 20,000 elements to print, there will
be a stack of 20,000 activation records representing the nested calls of line 10. Activation
records are typically large because of all the information they contain, so this program is
likely to run out of stack space. (If 20,000 elements are not enough to make the program
crash, replace the number with a larger one.)

This program is an example of an extremely bad use of recursion known as tail
recursion. Tail recursion refers to a recursive call at the last line. Tail recursion can be
mechanically eliminated by enclosing the body in a while loop and replacing the recursive
call with one assignment per method argument. This simulates the recursive call because
nothing needs to be saved; after the recursive call finishes, there is really no need to know
the saved values. Because of this, we can just go to the top of the method with the val-
ues that would have been used in a recursive call. The method in Figure 3.36 shows the
mechanically improved version. Removal of tail recursion is so simple that some compilers
do it automatically. Even so, it is best not to find out that yours does not.

www.manaraa.com

92 Chapter 3 Lists, Stacks, and Queues

1 /**
2 * Print container from itr.
3 */
4 public static <AnyType> void printList(Iterator<AnyType> itr)
5 {
6 while(true)
7 {
8 if(!itr.hasNext())
9 return;

10
11 System.out.println(itr.next());
12 }
13 }

Figure 3.36 Printing a list without recursion; a compiler might do this

Recursion can always be completely removed (compilers do so in converting to assem-
bly language), but doing so can be quite tedious. The general strategy requires using a
stack and is worthwhile only if you can manage to put the bare minimum on the stack. We
will not dwell on this further, except to point out that although nonrecursive programs are
certainly generally faster than equivalent recursive programs, the speed advantage rarely
justifies the lack of clarity that results from removing the recursion.

3.7 The Queue ADT
Like stacks, queues are lists. With a queue, however, insertion is done at one end, whereas
deletion is performed at the other end.

3.7.1 Queue Model
The basic operations on a queue are enqueue, which inserts an element at the end of the list
(called the rear), and dequeue, which deletes (and returns) the element at the start of the
list (known as the front). Figure 3.37 shows the abstract model of a queue.

3.7.2 Array Implementation of Queues
As with stacks, any list implementation is legal for queues. Like stacks, both the linked list
and array implementations give fast O(1) running times for every operation. The linked
list implementation is straightforward and left as an exercise. We will now discuss an array
implementation of queues.

For each queue data structure, we keep an array, theArray, and the positions front and
back, which represent the ends of the queue. We also keep track of the number of elements

www.manaraa.com

3.7 The Queue ADT 93

 enqueue
 Queue

 dequeue

Figure 3.37 Model of a queue

that are actually in the queue, currentSize. The following figure shows a queue in some
intermediate state.

front back

15 2 7

↑↑

The operations should be clear. To enqueue an element x, we increment currentSize
and back, then set theArray[back]=x. To dequeue an element, we set the return value to
theArray[front], decrement currentSize, and then increment front. Other strategies are
possible (this is discussed later). We will comment on checking for errors presently.

There is one potential problem with this implementation. After 10 enqueues, the queue
appears to be full, since back is now at the last array index, and the next enqueue would
be in a nonexistent position. However, there might only be a few elements in the queue,
because several elements may have already been dequeued. Queues, like stacks, frequently
stay small even in the presence of a lot of operations.

The simple solution is that whenever front or back gets to the end of the array, it is
wrapped around to the beginning. The following figures show the queue during some
operations. This is known as a circular array implementation.

front back

2 4

Initial State

↑ ↑

frontback

21 4

After enqueue(1)

↑ ↑

www.manaraa.com

94 Chapter 3 Lists, Stacks, and Queues

frontback

21 3 4

After enqueue(3)

↑ ↑

frontback

21 3 4

After dequeue, Which Returns 2

↑ ↑

front back

21 3 4

After dequeue, Which Returns 4

↑ ↑

back
front

21 3 4

After dequeue, Which Returns 1

↑

frontback

21 3 4

After dequeue, Which Returns 3
and Makes the Queue Empty

↑ ↑

The extra code required to implement the wraparound is minimal (although it probably
doubles the running time). If incrementing either back or front causes it to go past the array,
the value is reset to the first position in the array.

Some programmers use different ways of representing the front and back of a queue.
For instance, some do not use an entry to keep track of the size, because they rely on the
base case that when the queue is empty, back = front-1. The size is computed implic-
itly by comparing back and front. This is a very tricky way to go, because there are some
special cases, so be very careful if you need to modify code written this way. If the cur-
rentSize is not maintained as an explicit data field, then the queue is full when there are
theArray.length-1 elements, since only theArray.length different sizes can be differenti-
ated, and one of these is 0. Pick any style you like and make sure that all your routines

www.manaraa.com

3.7 The Queue ADT 95

are consistent. Since there are a few options for implementation, it is probably worth a
comment or two in the code, if you don’t use the currentSize field.

In applications where you are sure that the number of enqueues is not larger than the
capacity of the queue, the wraparound is not necessary. As with stacks, dequeues are rarely
performed unless the calling routines are certain that the queue is not empty. Thus error
checks are frequently skipped for this operation, except in critical code. This is generally
not justifiable, because the time savings that you are likely to achieve are minimal.

3.7.3 Applications of Queues
There are many algorithms that use queues to give efficient running times. Several of these
are found in graph theory, and we will discuss them in Chapter 9. For now, we will give
some simple examples of queue usage.

When jobs are submitted to a printer, they are arranged in order of arrival. Thus,
essentially, jobs sent to a line printer are placed on a queue.2

Virtually every real-life line is (supposed to be) a queue. For instance, lines at ticket
counters are queues, because service is first-come first-served.

Another example concerns computer networks. There are many network setups of
personal computers in which the disk is attached to one machine, known as the file server.
Users on other machines are given access to files on a first-come first-served basis, so the
data structure is a queue.

Further examples include the following:

� Calls to large companies are generally placed on a queue when all operators are busy.
� In large universities, where resources are limited, students must sign a waiting list

if all terminals are occupied. The student who has been at a terminal the longest is
forced off first, and the student who has been waiting the longest is the next user to be
allowed on.

A whole branch of mathematics, known as queuing theory, deals with computing,
probabilistically, how long users expect to wait on a line, how long the line gets, and other
such questions. The answer depends on how frequently users arrive to the line and how
long it takes to process a user once the user is served. Both of these parameters are given as
probability distribution functions. In simple cases, an answer can be computed analytically.
An example of an easy case would be a phone line with one operator. If the operator is busy,
callers are placed on a waiting line (up to some maximum limit). This problem is important
for businesses, because studies have shown that people are quick to hang up the phone.

If there are k operators, then this problem is much more difficult to solve. Problems
that are difficult to solve analytically are often solved by a simulation. In our case, we
would need to use a queue to perform the simulation. If k is large, we also need other data
structures to do this efficiently. We shall see how to do this simulation in Chapter 6. We

2 We say essentially because jobs can be killed. This amounts to a deletion from the middle of the queue,
which is a violation of the strict definition.

www.manaraa.com

96 Chapter 3 Lists, Stacks, and Queues

could then run the simulation for several values of k and choose the minimum k that gives
a reasonable waiting time.

Additional uses for queues abound, and as with stacks, it is staggering that such a
simple data structure can be so important.

Summary

This chapter describes the concept of ADTs and illustrates the concept with three of the
most common abstract data types. The primary objective is to separate the implementation
of the abstract data types from their function. The program must know what the operations
do, but it is actually better off not knowing how it is done.

Lists, stacks, and queues are perhaps the three fundamental data structures in all of
computer science, and their use is documented through a host of examples. In particular,
we saw how stacks are used to keep track of method calls and how recursion is actually
implemented. This is important to understand, not just because it makes procedural lan-
guages possible, but because knowing how recursion is implemented removes a good deal
of the mystery that surrounds its use. Although recursion is very powerful, it is not an
entirely free operation; misuse and abuse of recursion can result in programs crashing.

Exercises

3.1 You are given a list, L, and another list, P, containing integers sorted in ascending
order. The operation printLots(L,P) will print the elements in L that are in positions
specified by P. For instance, if P = 1, 3, 4, 6, the elements in positions 1, 3, 4, and 6
in L are printed. Write the procedure printLots(L,P). You may use only the public
Collections API container operations. What is the running time of your procedure?

3.2 Swap two adjacent elements by adjusting only the links (and not the data) using:
a. Singly linked lists.
b. Doubly linked lists.

3.3 Implement the contains routine for MyLinkedList.

3.4 Given two sorted lists, L1 and L2, write a procedure to compute L1 ∩ L2 using only
the basic list operations.

3.5 Given two sorted lists, L1 and L2, write a procedure to compute L1 ∪ L2 using only
the basic list operations.

3.6 The Josephus problem is the following game: N people, numbered 1 to N, are sitting
in a circle. Starting at person 1, a hot potato is passed. After M passes, the person
holding the hot potato is eliminated, the circle closes ranks, and the game continues
with the person who was sitting after the eliminated person picking up the hot
potato. The last remaining person wins. Thus, if M = 0 and N = 5, players are
eliminated in order, and player 5 wins. If M = 1 and N = 5, the order of elimination
is 2, 4, 1, 5.

www.manaraa.com

Exercises 97

a. Write a program to solve the Josephus problem for general values of M and N.
Try to make your program as efficient as possible. Make sure you dispose of
cells.

b. What is the running time of your program?

3.7 What is the running time of the following code?

public static List<Integer> makeList(int N)
{

ArrayList<Integer> lst = new ArrayList<>();

for(int i = 0; i < N; i++)
{

lst.add(i);
lst.trimToSize();

}
}

3.8 The following routine removes the first half of the list passed as a parameter:

public static void removeFirstHalf(List<?> lst)
{

int theSize = lst.size() / 2;

for(int i = 0; i < theSize; i++)
lst.remove(0);

}

a. Why is theSize saved prior to entering the for loop?
b. What is the running time of removeFirstHalf if lst is an ArrayList?
c. What is the running time of removeFirstHalf if lst is a LinkedList?
d. Does using an iterator make removeHalf faster for either type of List?

3.9 Provide an implementation of an addAll method for the MyArrayList class. Method
addAll adds all items in the specified collection given by items to the end of the
MyArrayList. Also provide the running time of your implementation. The method
signature for you to use is slightly different than the one in the Java Collections API,
and is as follows:

public void addAll(Iterable<? extends AnyType> items)

3.10 Provide an implementation of a removeAll method for the MyLinkedList class.
Method removeAll removes all items in the specified collection given by items
from the MyLinkedList. Also provide the running time of your implementation.
The method signature for you to use is slightly different than the one in the Java
Collections API, and is as follows:

public void removeAll(Iterable<? extends AnyType> items)

www.manaraa.com

98 Chapter 3 Lists, Stacks, and Queues

3.11 Assume that a singly linked list is implemented with a header node, but no tail
node, and that it maintains only a reference to the header node. Write a class that
includes methods to
a. return the size of the linked list
b. print the linked list
c. test if a value x is contained in the linked list
d. add a value x if it is not already contained in the linked list
e. remove a value x if it is contained in the linked list

3.12 Repeat Exercise 3.11, maintaining the singly linked list in sorted order.

3.13 Add support for a ListIterator to the MyArrayList class. The ListIterator inter-
face in java.util has more methods than are shown in Section 3.3.5. Notice that
you will write a listIterator method to return a newly constructed ListIterator,
and further, that the existing iterator method can return a newly constructed
ListIterator. Thus you will change ArrayListIterator so that it implements
ListIterator instead of Iterator. Throw an UnsupportedOperationException for
methods not listed in Section 3.3.5.

3.14 Add support for a ListIterator to the MyLinkedList class, as was done in
Exercise 3.13.

3.15 Add a splice operation to the LinkedList class. The method declaration

public void splice(Iterator<T> itr, MyLinkedList<? extends T> lst)

removes all the items from lst (making lst empty), placing them prior to itr in
MyLinkedList this. lst and this must be different lists. Your routine must run in
constant time.

3.16 An alternative to providing a ListIterator is to provide a method with signature

Iterator<AnyType> reverseIterator()

that returns an Iterator, initialized to the last item, and for which next and hasNext
are implemented to be consistent with the iterator advancing toward the front of
the list, rather than the back. Then you could print a MyArrayList L in reverse by
using the code

Iterator<AnyType> ritr = L.reverseIterator();
while(ritr.hasNext())

System.out.println(ritr.next());

Implement an ArrayListReverseIterator class, with this logic, and have reverseIt-
erator return a newly constructed ArrayListReverseIterator.

3.17 Modify the MyArrayList class to provide stringent iterator checking by using the
techniques seen in Section 3.5 for MyLinkedList.

3.18 For MyLinkedList, implement addFirst, addLast, removeFirst, removeLast, getFirst,
and getLast by making calls to the private add, remove, and getNode routines,
respectively.

www.manaraa.com

Exercises 99

3.19 Rewrite the MyLinkedList class without using header and tail nodes and describe
the differences between the class and the class provided in Section 3.5.

3.20 An alternative to the deletion strategy we have given is to use lazy deletion. To
delete an element, we merely mark it deleted (using an extra bit field). The number
of deleted and nondeleted elements in the list is kept as part of the data structure. If
there are as many deleted elements as nondeleted elements, we traverse the entire
list, performing the standard deletion algorithm on all marked nodes.
a. List the advantages and disadvantages of lazy deletion.
b. Write routines to implement the standard linked list operations using lazy

deletion.

3.21 Write a program to check for balancing symbols in the following languages:
a. Pascal (begin/end, (), [], {}).
b. Java (/* */, (), [], {}).

�c. Explain how to print out an error message that is likely to reflect the probable
cause.

3.22 Write a program to evaluate a postfix expression.

3.23 a. Write a program to convert an infix expression that includes (,), +, -, *, and /
to postfix.

b. Add the exponentiation operator to your repertoire.
c. Write a program to convert a postfix expression to infix.

3.24 Write routines to implement two stacks using only one array. Your stack routines
should not declare an overflow unless every slot in the array is used.

3.25 �a. Propose a data structure that supports the stack push and pop operations and a
third operation findMin, which returns the smallest element in the data structure,
all in O(1) worst-case time.

�b. Prove that if we add the fourth operation deleteMin which finds and removes the
smallest element, then at least one of the operations must take �(log N) time.
(This requires reading Chapter 7.)

�3.26 Show how to implement three stacks in one array.

3.27 If the recursive routine in Section 2.4 used to compute Fibonacci numbers is run
for N = 50, is stack space likely to run out? Why or why not?

3.28 A deque is a data structure consisting of a list of items, on which the following
operations are possible:

push(x): Insert item x on the front end of the deque.
pop(): Remove the front item from the deque and return it.
inject(x): Insert item x on the rear end of the deque.
eject(): Remove the rear item from the deque and return it.

Write routines to support the deque that take O(1) time per operation.

3.29 Write an algorithm for printing a singly linked list in reverse, using only constant
extra space. This instruction implies that you cannot use recursion, but you may
assume that your algorithm is a list member function.

www.manaraa.com

100 Chapter 3 Lists, Stacks, and Queues

3.30 a. Write an array implementation of self-adjusting lists. In a self-adjusting list, all
insertions are performed at the front. A self-adjusting list adds a find operation,
and when an element is accessed by a find, it is moved to the front of the list
without changing the relative order of the other items.

b. Write a linked list implementation of self-adjusting lists.
�c. Suppose each element has a fixed probability, pi, of being accessed. Show that

the elements with highest access probability are expected to be close to the front.

3.31 Efficiently implement a stack class using a singly linked list, with no header or tail
nodes.

3.32 Efficiently implement a queue class using a singly linked list, with no header or tail
nodes.

3.33 Efficiently implement a queue class using a circular array.

3.34 A linked list contains a cycle if, starting from some node p, following a sufficient
number of next links brings us back to node p. p does not have to be the first node
in the list. Assume that you are given a linked list that contains N nodes. However,
the value of N is unknown.
a. Design an O(N) algorithm to determine if the list contains a cycle. You may use

O(N) extra space.
�b. Repeat part (a), but use only O(1) extra space. (Hint: Use two iterators that are

initially at the start of the list, but advance at different speeds.)

3.35 One way to implement a queue is to use a circular linked list. In a circular linked
list, the last node’s next link links to the first node. Assume the list does not contain
a header and that we can maintain, at most, one iterator corresponding to a node in
the list. For which of the following representations can all basic queue operations
be performed in constant worst-case time? Justify your answers.
a. Maintain an iterator that corresponds to the first item in the list.
b. Maintain an iterator that corresponds to the last item in the list.

3.36 Suppose we have a reference to a node in a singly linked list that is guaranteed not
to be the last node in the list. We do not have references to any other nodes (except
by following links). Describe an O(1) algorithm that logically removes the value
stored in such a node from the linked list, maintaining the integrity of the linked
list. (Hint: Involve the next node.)

3.37 Suppose that a singly linked list is implemented with both a header and a tail node.
Describe constant-time algorithms to
a. Insert item x before position p (given by an iterator).
b. Remove the item stored at position p (given by an iterator).

www.manaraa.com

C H A P T E R 4

Trees

For large amounts of input, the linear access time of linked lists is prohibitive. In this
chapter we look at a simple data structure for which the running time of most opera-
tions is O(log N) on average. We also sketch a conceptually simple modification to this
data structure that guarantees the above time bound in the worst case and discuss a sec-
ond modification that essentially gives an O(log N) running time per operation for a long
sequence of instructions.

The data structure that we are referring to is known as a binary search tree. The binary
search tree is the basis for the implementation of two library collections classes, TreeSet and
TreeMap, which are used in many applications. Trees in general are very useful abstractions
in computer science, so we will discuss their use in other, more general applications. In
this chapter, we will

� See how trees are used to implement the file system of several popular operating
systems.

� See how trees can be used to evaluate arithmetic expressions.
� Show how to use trees to support searching operations in O(log N) average time, and

how to refine these ideas to obtain O(log N) worst-case bounds. We will also see how
to implement these operations when the data are stored on a disk.

� Discuss and use the TreeSet and TreeMap classes.

4.1 Preliminaries
A tree can be defined in several ways. One natural way to define a tree is recursively. A
tree is a collection of nodes. The collection can be empty; otherwise, a tree consists of a
distinguished node r, called the root, and zero or more nonempty (sub)trees T1, T2, . . . , Tk,
each of whose roots are connected by a directed edge from r.

The root of each subtree is said to be a child of r, and r is the parent of each subtree
root. Figure 4.1 shows a typical tree using the recursive definition.

From the recursive definition, we find that a tree is a collection of N nodes, one of
which is the root, and N − 1 edges. That there are N − 1 edges follows from the fact that
each edge connects some node to its parent, and every node except the root has one parent
(see Figure 4.2). 101

www.manaraa.com

102 Chapter 4 Trees

root

. . .
T1 T10

T2 T4
T3

Figure 4.1 Generic tree

A

B C D E F G

H I J K L M N

P Q

Figure 4.2 A tree

In the tree of Figure 4.2, the root is A. Node F has A as a parent and K, L, and M as
children. Each node may have an arbitrary number of children, possibly zero. Nodes with
no children are known as leaves; the leaves in the tree above are B, C, H, I, P, Q, K, L, M, and
N. Nodes with the same parent are siblings; thus K, L, and M are all siblings. Grandparent
and grandchild relations can be defined in a similar manner.

A path from node n1 to nk is defined as a sequence of nodes n1, n2, . . . , nk such that ni

is the parent of ni+1 for 1 ≤ i < k. The length of this path is the number of edges on the
path, namely k − 1. There is a path of length zero from every node to itself. Notice that in
a tree there is exactly one path from the root to each node.

For any node ni, the depth of ni is the length of the unique path from the root to ni.
Thus, the root is at depth 0. The height of ni is the length of the longest path from ni to a
leaf. Thus all leaves are at height 0. The height of a tree is equal to the height of the root.
For the tree in Figure 4.2, E is at depth 1 and height 2; F is at depth 1 and height 1; the
height of the tree is 3. The depth of a tree is equal to the depth of the deepest leaf; this is
always equal to the height of the tree.

If there is a path from n1 to n2, then n1 is an ancestor of n2 and n2 is a descendant of
n1. If n1 �= n2, then n1 is a proper ancestor of n2 and n2 is a proper descendant of n1.

4.1.1 Implementation of Trees
One way to implement a tree would be to have in each node, besides its data, a link to each
child of the node. However, since the number of children per node can vary so greatly and
is not known in advance, it might be infeasible to make the children direct links in the data

www.manaraa.com

4.1 Preliminaries 103

class TreeNode
{

Object element;
TreeNode firstChild;
TreeNode nextSibling;

}

Figure 4.3 Node declarations for trees

A

B C D E F G

H I J K L M N

P Q

Figure 4.4 First child/next sibling representation of the tree shown in Figure 4.2

structure, because there would be too much wasted space. The solution is simple: Keep
the children of each node in a linked list of tree nodes. The declaration in Figure 4.3 is
typical.

Figure 4.4 shows how a tree might be represented in this implementation. Arrows that
point downward are firstChild links. Horizontal arrows are nextSibling links. Null links
are not drawn, because there are too many.

In the tree of Figure 4.4, node E has both a link to a sibling (F) and a link to a child
(I), while some nodes have neither.

4.1.2 Tree Traversals with an Application
There are many applications for trees. One of the popular uses is the directory structure in
many common operating systems, including UNIX and DOS. Figure 4.5 is a typical directory
in the UNIX file system.

The root of this directory is /usr. (The asterisk next to the name indicates that
/usr is itself a directory.) /usr has three children, mark, alex, and bill, which are them-
selves directories. Thus, /usr contains three directories and no regular files. The filename
/usr/mark/book/ch1.r is obtained by following the leftmost child three times. Each / after the
first indicates an edge; the result is the full pathname. This hierarchical file system is very
popular, because it allows users to organize their data logically. Furthermore, two files in
different directories can share the same name, because they must have different paths from
the root and thus have different pathnames. A directory in the UNIX file system is just a file
with a list of all its children, so the directories are structured almost exactly in accordance

www.manaraa.com

104 Chapter 4 Trees

ch1.r ch2.r ch3.r

book*

mark*

course* junk

cop3530*

fall* fall* fall*spr* sum*

syl.r syl.r syl.r

/usr*

alex* bill*

 junk work* course*

cop3212*

grades prog1.r prog2.r gradesprog1.rprog2.r

Figure 4.5 UNIX directory

private void listAll(int depth)
{

1 printName(depth); // Print the name of the object
2 if(isDirectory())
3 for each file c in this directory (for each child)
4 c.listAll(depth + 1);

}

public void listAll()
{

listAll(0);
}

Figure 4.6 Pseudocode to list a directory in a hierarchical file system

with the type declaration above.1 Indeed, on some versions of UNIX, if the normal com-
mand to print a file is applied to a directory, then the names of the files in the directory can
be seen in the output (along with other non-ASCII information).

Suppose we would like to list the names of all of the files in the directory. Our output
format will be that files that are depth di will have their names indented by di tabs. Our
algorithm is given in Figure 4.6 as pseudocode.2

The heart of the algorithm is the recursive method listAll. This routine needs to be
started with a depth of 0, to signify no indenting for the root. This depth is an internal
bookkeeping variable and is hardly a parameter that a calling routine should be expected
to know about. Thus the driver routine is used to interface the recursive routine to the
outside world.

1 Each directory in the UNIX file system also has one entry that points to itself and another entry that points
to the parent of the directory. Thus, technically, the UNIX file system is not a tree, but is treelike.

2 The Java code to implement this is provided in the file FileSystem.java online. It uses Java features that have
not been discussed in the text.

www.manaraa.com

4.1 Preliminaries 105

/usr
mark

book
ch1.r
ch2.r
ch3.r

course
cop3530

fall
syl.r

spr
syl.r

sum
syl.r

junk
alex

junk
bill

work
course

cop3212
fall

grades
prog1.r
prog2.r

fall
prog2.r
prog1.r
grades

Figure 4.7 The (preorder) directory listing

The logic of the algorithm is simple to follow. The name of the file object is printed out
with the appropriate number of tabs. If the entry is a directory, then we process all children
recursively, one by one. These children are one level deeper and thus need to be indented
an extra space. The output is in Figure 4.7.

This traversal strategy is known as a preorder traversal. In a preorder traversal, work
at a node is performed before (pre) its children are processed. When this program is run,
it is clear that line 1 is executed exactly once per node, since each name is output once.
Since line 1 is executed at most once per node, line 2 must also be executed once per
node. Furthermore, line 4 can be executed at most once for each child of each node. But
the number of children is exactly one less than the number of nodes. Finally, the for loop
iterates once per execution of line 4, plus once each time the loop ends. Thus, the total
amount of work is constant per node. If there are N file names to be output, then the
running time is O(N).

www.manaraa.com

106 Chapter 4 Trees

ch1.r(3) ch2.r(2) ch3.r(4)

book*(1)

mark*(1)

course*(1) junk (6)

cop3530*(1)

fall*(1) spr*(1) sum*(1)

syl.r(1) syl.r(5) syl.r(2)

/usr*(1)

alex*(1) bill*(1)

junk (8) work*(1) course*(1)

cop3212*(1)

fall*(1) fall*(1)

grades(3) prog1.r(4) prog2.r(1) grades(9)prog1.r(7)prog2.r(2)

Figure 4.8 UNIX directory with file sizes obtained via postorder traversal

public int size()
{

1 int totalSize = sizeOfThisFile();

2 if(isDirectory())
3 for each file c in this directory (for each child)
4 totalSize += c.size();

5 return totalSize;
}

Figure 4.9 Pseudocode to calculate the size of a directory

Another common method of traversing a tree is the postorder traversal. In a postorder
traversal, the work at a node is performed after (post) its children are evaluated. As an
example, Figure 4.8 represents the same directory structure as before, with the numbers in
parentheses representing the number of disk blocks taken up by each file.

Since the directories are themselves files, they have sizes too. Suppose we would like to
calculate the total number of blocks used by all the files in the tree. The most natural way
to do this would be to find the number of blocks contained in the subdirectories /usr/mark
(30), /usr/alex (9), and /usr/bill (32). The total number of blocks is then the total in the
subdirectories (71) plus the one block used by /usr, for a total of 72. The pseudocode
method size in Figure 4.9 implements this strategy.

If the current object is not a directory, then size merely returns the number of blocks
it uses. Otherwise, the number of blocks used by the directory is added to the number of
blocks (recursively) found in all the children. To see the difference between the postorder
traversal strategy and the preorder traversal strategy, Figure 4.10 shows how the size of
each directory or file is produced by the algorithm.

www.manaraa.com

4.2 Binary Trees 107

ch1.r 3
ch2.r 2
ch3.r 4

book 10
syl.r 1

fall 2
syl.r 5

spr 6
syl.r 2

sum 3
cop3530 12

course 13
junk 6

mark 30
junk 8

alex 9
work 1

grades 3
prog1.r 4
prog2.r 1

fall 9
prog2.r 2
prog1.r 7
grades 9

fall 19
cop3212 29

course 30
bill 32

/usr 72

Figure 4.10 Trace of the size function

4.2 Binary Trees
A binary tree is a tree in which no node can have more than two children.

Figure 4.11 shows that a binary tree consists of a root and two subtrees, TL and TR,
both of which could possibly be empty.

A property of a binary tree that is sometimes important is that the depth of an average
binary tree is considerably smaller than N. An analysis shows that the average depth is
O(

√
N), and that for a special type of binary tree, namely the binary search tree, the average

value of the depth is O(log N). Unfortunately, the depth can be as large as N − 1, as the
example in Figure 4.12 shows.

www.manaraa.com

108 Chapter 4 Trees

root

TL TR

Figure 4.11 Generic binary tree

A

B

C

D

E

Figure 4.12 Worst-case binary tree

4.2.1 Implementation
Because a binary tree node has at most two children, we can keep direct links to them. The
declaration of tree nodes is similar in structure to that for doubly linked lists in that a node
is a structure consisting of the element information plus two references (left and right) to
other nodes (see Figure 4.13).

We could draw the binary trees using the rectangular boxes that are customary for
linked lists, but trees are generally drawn as circles connected by lines, because they are

class BinaryNode
{

// Friendly data; accessible by other package routines
Object element; // The data in the node
BinaryNode left; // Left child
BinaryNode right; // Right child

}

Figure 4.13 Binary tree node class

www.manaraa.com

4.2 Binary Trees 109

actually graphs. We also do not explicitly draw null links when referring to trees, because
every binary tree with N nodes would require N + 1 null links.

Binary trees have many important uses not associated with searching. One of the
principal uses of binary trees is in the area of compiler design, which we will now explore.

4.2.2 An Example: Expression Trees
Figure 4.14 shows an example of an expression tree. The leaves of an expression tree are
operands, such as constants or variable names, and the other nodes contain operators.
This particular tree happens to be binary, because all the operators are binary, and although
this is the simplest case, it is possible for nodes to have more than two children. It is also
possible for a node to have only one child, as is the case with the unary minus operator.
We can evaluate an expression tree, T, by applying the operator at the root to the values
obtained by recursively evaluating the left and right subtrees. In our example, the left
subtree evaluates to a + (b * c) and the right subtree evaluates to ((d * e) + f) * g. The
entire tree therefore represents (a + (b * c)) + (((d * e) + f) * g).

We can produce an (overly parenthesized) infix expression by recursively producing a
parenthesized left expression, then printing out the operator at the root, and finally recur-
sively producing a parenthesized right expression. This general strategy (left, node, right)
is known as an inorder traversal; it is easy to remember because of the type of expression
it produces.

An alternate traversal strategy is to recursively print out the left subtree, the right sub-
tree, and then the operator. If we apply this strategy to our tree above, the output is a b c

* + d e * f + g * +, which is easily seen to be the postfix representation of Section 3.6.3.
This traversal strategy is generally known as a postorder traversal. We have seen this
traversal strategy earlier in Section 4.1.

A third traversal strategy is to print out the operator first and then recursively print out
the left and right subtrees. The resulting expression, + + a * b c * + * d e f g, is the less
useful prefix notation and the traversal strategy is a preorder traversal, which we have also
seen earlier in Section 4.1. We will return to these traversal strategies later in the chapter.

a

+

b

*

c

+

d

*

e

+

f

*

g

Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

www.manaraa.com

110 Chapter 4 Trees

Constructing an Expression Tree
We now give an algorithm to convert a postfix expression into an expression tree. Since we
already have an algorithm to convert infix to postfix, we can generate expression trees from
the two common types of input. The method we describe strongly resembles the postfix
evaluation algorithm of Section 3.6.3. We read our expression one symbol at a time. If the
symbol is an operand, we create a one-node tree and push it onto a stack. If the symbol
is an operator, we pop two trees T1 and T2 from the stack (T1 is popped first) and form
a new tree whose root is the operator and whose left and right children are T2 and T1,
respectively. This new tree is then pushed onto the stack.

As an example, suppose the input is

a b + c d e + * *

The first two symbols are operands, so we create one-node trees and push them onto
a stack.3

a b

Next, a + is read, so two trees are popped, a new tree is formed, and it is pushed onto the
stack.

+

a b

Next, c, d, and e are read, and for each a one-node tree is created and the corresponding
tree is pushed onto the stack.

3 For convenience, we will have the stack grow from left to right in the diagrams.

www.manaraa.com

4.2 Binary Trees 111

+

a b

c d e

Now a + is read, so two trees are merged.

+

a b

c +

d e

Continuing, a * is read, so we pop two trees and form a new tree with a * as root.

+

a b

*

c +

d e

Finally, the last symbol is read, two trees are merged, and the final tree is left on the stack.

www.manaraa.com

112 Chapter 4 Trees

*

+

a b

*

c +

d e

4.3 The Search Tree ADT—Binary Search
Trees

An important application of binary trees is their use in searching. Let us assume that each
node in the tree stores an item. In our examples, we will assume for simplicity that these
are integers, although arbitrarily complex items are easily handled in Java. We will also
assume that all the items are distinct and deal with duplicates later.

The property that makes a binary tree into a binary search tree is that for every node,
X, in the tree, the values of all the items in its left subtree are smaller than the item in X,
and the values of all the items in its right subtree are larger than the item in X. Notice that
this implies that all the elements in the tree can be ordered in some consistent manner. In
Figure 4.15, the tree on the left is a binary search tree, but the tree on the right is not. The
tree on the right has a node with item 7 in the left subtree of a node with item 6 (which
happens to be the root).

We now give brief descriptions of the operations that are usually performed on binary
search trees. Note that because of the recursive definition of trees, it is common to write
these routines recursively. Because the average depth of a binary search tree turns out to be
O(log N), we generally do not need to worry about running out of stack space.

The binary search tree requires that all the items can be ordered. To write a generic
class, we need to provide an interface type that represents this property. This interface
is Comparable, as described in Chapter 1. The interface tells us that two items in the
tree can always be compared using a compareTo method. From this, we can determine
all other possible relationships. Specifically, we do not use the equals method. Instead, two
items are equal if and only if the compareTo method returns 0. An alternative, described
in Section 4.3.1, is to allow a function object. Figure 4.16 also shows the BinaryNode class
that, like the node class in the linked list class, is a nested class.

www.manaraa.com

4.3 The Search Tree ADT—Binary Search Trees 113

6

2 8

1 4

3

6

2 8

1 4

3 7

Figure 4.15 Two binary trees (only the left tree is a search tree)

1 private static class BinaryNode<AnyType>
2 {
3 // Constructors
4 BinaryNode(AnyType theElement)
5 { this(theElement, null, null); }
6
7 BinaryNode(AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)
8 { element = theElement; left = lt; right = rt; }
9

10 AnyType element; // The data in the node
11 BinaryNode<AnyType> left; // Left child
12 BinaryNode<AnyType> right; // Right child
13 }

Figure 4.16 The BinaryNode class

Figure 4.17 shows the BinarySearchTree class skeleton. The single data field is a refer-
ence to the root node; this reference is null for empty trees. The public methods use the
general technique of calling private recursive methods.

We can now describe some of the private methods.

4.3.1 contains
This operation requires returning true if there is a node in tree T that has item X, or false if
there is no such node. The structure of the tree makes this simple. If T is empty, then we can
just return false. Otherwise, if the item stored at T is X, we can return true. Otherwise, we
make a recursive call on a subtree of T, either left or right, depending on the relationship
of X to the item stored in T. The code in Figure 4.18 is an implementation of this strategy.

Notice the order of the tests. It is crucial that the test for an empty tree be performed
first, since otherwise, we would generate a NullPointerException attempting to access a data
field through a null reference. The remaining tests are arranged with the least likely case

www.manaraa.com

1 public class BinarySearchTree<AnyType extends Comparable<? super AnyType>>
2 {
3 private static class BinaryNode<AnyType>
4 { /* Figure 4.16 */ }
5
6 private BinaryNode<AnyType> root;
7
8 public BinarySearchTree()
9 { root = null; }

10
11 public void makeEmpty()
12 { root = null; }
13 public boolean isEmpty()
14 { return root == null; }
15
16 public boolean contains(AnyType x)
17 { return contains(x, root); }
18 public AnyType findMin()
19 { if(isEmpty()) throw new UnderflowException();
20 return findMin(root).element;
21 }
22 public AnyType findMax()
23 { if(isEmpty()) throw new UnderflowException();
24 return findMax(root).element;
25 }
26 public void insert(AnyType x)
27 { root = insert(x, root); }
28 public void remove(AnyType x)
29 { root = remove(x, root); }
30 public void printTree()
31 { /* Figure 4.56 */ }
32
33 private boolean contains(AnyType x, BinaryNode<AnyType> t)
34 { /* Figure 4.18 */ }
35 private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
36 { /* Figure 4.20 */ }
37 private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
38 { /* Figure 4.20 */ }
39
40 private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
41 { /* Figure 4.22 */ }
42 private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
43 { /* Figure 4.25 */ }
44 private void printTree(BinaryNode<AnyType> t)
45 { /* Figure 4.56 */ }
46 }

Figure 4.17 Binary search tree class skeleton

www.manaraa.com

4.3 The Search Tree ADT—Binary Search Trees 115

1 /**
2 * Internal method to find an item in a subtree.
3 * @param x is item to search for.
4 * @param t the node that roots the subtree.
5 * @return true if the item is found; false otherwise.
6 */
7 private boolean contains(AnyType x, BinaryNode<AnyType> t)
8 {
9 if(t == null)

10 return false;
11
12 int compareResult = x.compareTo(t.element);
13
14 if(compareResult < 0)
15 return contains(x, t.left);
16 else if(compareResult > 0)
17 return contains(x, t.right);
18 else
19 return true; // Match
20 }

Figure 4.18 contains operation for binary search trees

last. Also note that both recursive calls are actually tail recursions and can be easily removed
with a while loop. The use of tail recursion is justifiable here because the simplicity of
algorithmic expression compensates for the decrease in speed, and the amount of stack
space used is expected to be only O(log N). Figure 4.19 shows the trivial changes required
to use a function object rather than requiring that the items be Comparable. This mimics the
idioms in Section 1.6.

4.3.2 findMin and findMax
These private routines return a reference to the node containing the smallest and largest
elements in the tree, respectively. To perform a findMin, start at the root and go left as long
as there is a left child. The stopping point is the smallest element. The findMax routine is
the same, except that branching is to the right child.

This is so easy that many programmers do not bother using recursion. We will code
the routines both ways by doing findMin recursively and findMax nonrecursively (see
Figure 4.20).

Notice how we carefully handle the degenerate case of an empty tree. Although this is
always important to do, it is especially crucial in recursive programs. Also notice that it is
safe to change t in findMax, since we are only working with a copy of a reference. Always
be extremely careful, however, because a statement such as t.right = t.right.right will
make changes.

www.manaraa.com

116 Chapter 4 Trees

1 public class BinarySearchTree<AnyType>

2 {

3 private BinaryNode<AnyType> root;

4 private Comparator<? super AnyType> cmp;

5

6 public BinarySearchTree()

7 { this(null); }

8

9 public BinarySearchTree(Comparator<? super AnyType> c)

10 { root = null; cmp = c; }

11

12 private int myCompare(AnyType lhs, AnyType rhs)

13 {

14 if(cmp != null)

15 return cmp.compare(lhs, rhs);

16 else

17 return ((Comparable)lhs).compareTo(rhs);

18 }

19

20 private boolean contains(AnyType x, BinaryNode<AnyType> t)

21 {

22 if(t == null)

23 return false;

24

25 int compareResult = myCompare(x, t.element);

26

27 if(compareResult < 0)

28 return contains(x, t.left);

29 else if(compareResult > 0)

30 return contains(x, t.right);

31 else

32 return true; // Match

33 }

34

35 // Remainder of class is similar with calls to compareTo replaced by myCompare

36 }

Figure 4.19 Illustrates use of a function object to implement binary search tree

4.3.3 insert
The insertion routine is conceptually simple. To insert X into tree T, proceed down the
tree as you would with a contains. If X is found, do nothing (or “update” something).
Otherwise, insert X at the last spot on the path traversed. Figure 4.21 shows what happens.

www.manaraa.com

4.3 The Search Tree ADT—Binary Search Trees 117

1 /**
2 * Internal method to find the smallest item in a subtree.
3 * @param t the node that roots the subtree.
4 * @return node containing the smallest item.
5 */
6 private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
7 {
8 if(t == null)
9 return null;

10 else if(t.left == null)
11 return t;
12 return findMin(t.left);
13 }
14
15 /**
16 * Internal method to find the largest item in a subtree.
17 * @param t the node that roots the subtree.
18 * @return node containing the largest item.
19 */
20 private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
21 {
22 if(t != null)
23 while(t.right != null)
24 t = t.right;
25
26 return t;
27 }

Figure 4.20 Recursive implementation of findMin and nonrecursive implementation of
findMax for binary search trees

To insert 5, we traverse the tree as though a contains were occurring. At the node with
item 4, we need to go right, but there is no subtree, so 5 is not in the tree, and this is the
correct spot.

Duplicates can be handled by keeping an extra field in the node record indicating the
frequency of occurrence. This adds some extra space to the entire tree but is better than
putting duplicates in the tree (which tends to make the tree very deep). Of course, this
strategy does not work if the key that guides the compareTo method is only part of a larger
structure. If that is the case, then we can keep all of the structures that have the same key
in an auxiliary data structure, such as a list or another search tree.

Figure 4.22 shows the code for the insertion routine. Since t references the root of the
tree, and the root changes on the first insertion, insert is written as a method that returns
a reference to the root of the new tree. Lines 15 and 17 recursively insert and attach x into
the appropriate subtree.

www.manaraa.com

118 Chapter 4 Trees

6

2 8

1 4

3

6

2 8

1 4

3 5

Figure 4.21 Binary search trees before and after inserting 5

1 /**
2 * Internal method to insert into a subtree.
3 * @param x the item to insert.
4 * @param t the node that roots the subtree.
5 * @return the new root of the subtree.
6 */
7 private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
8 {
9 if(t == null)

10 return new BinaryNode<>(x, null, null);
11
12 int compareResult = x.compareTo(t.element);
13
14 if(compareResult < 0)
15 t.left = insert(x, t.left);
16 else if(compareResult > 0)
17 t.right = insert(x, t.right);
18 else
19 ; // Duplicate; do nothing
20 return t;
21 }

Figure 4.22 Insertion into a binary search tree

4.3.4 remove
As is common with many data structures, the hardest operation is deletion. Once we have
found the node to be deleted, we need to consider several possibilities.

If the node is a leaf, it can be deleted immediately. If the node has one child, the node
can be deleted after its parent adjusts a link to bypass the node (we will draw the link
directions explicitly for clarity). See Figure 4.23.

www.manaraa.com

4.3 The Search Tree ADT—Binary Search Trees 119

6

2 8

1 4

3

6

2 8

1 4

3

Figure 4.23 Deletion of a node (4) with one child, before and after

6

2 8

1 5

3

 4

6

3 8

1 5

3

4

Figure 4.24 Deletion of a node (2) with two children, before and after

The complicated case deals with a node with two children. The general strategy is to
replace the data of this node with the smallest data of the right subtree (which is easily
found) and recursively delete that node (which is now empty). Because the smallest node
in the right subtree cannot have a left child, the second remove is an easy one. Figure 4.24
shows an initial tree and the result of a deletion. The node to be deleted is the left child of
the root; the key value is 2. It is replaced with the smallest data in its right subtree (3), and
then that node is deleted as before.

The code in Figure 4.25 performs deletion. It is inefficient, because it makes two passes
down the tree to find and delete the smallest node in the right subtree when this is appro-
priate. It is easy to remove this inefficiency by writing a special removeMin method, and we
have left it in only for simplicity.

If the number of deletions is expected to be small, then a popular strategy to use is
lazy deletion: When an element is to be deleted, it is left in the tree and merely marked

www.manaraa.com

120 Chapter 4 Trees

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the subtree.
5 * @return the new root of the subtree.
6 */
7 private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
8 {
9 if(t == null)

10 return t; // Item not found; do nothing
11
12 int compareResult = x.compareTo(t.element);
13
14 if(compareResult < 0)
15 t.left = remove(x, t.left);
16 else if(compareResult > 0)
17 t.right = remove(x, t.right);
18 else if(t.left != null && t.right != null) // Two children
19 {
20 t.element = findMin(t.right).element;
21 t.right = remove(t.element, t.right);
22 }
23 else
24 t = (t.left != null) ? t.left : t.right;
25 return t;
26 }

Figure 4.25 Deletion routine for binary search trees

as being deleted. This is especially popular if duplicate items are present, because then the
field that keeps count of the frequency of appearance can be decremented. If the number
of real nodes in the tree is the same as the number of “deleted” nodes, then the depth of
the tree is only expected to go up by a small constant (why?), so there is a very small time
penalty associated with lazy deletion. Also, if a deleted item is reinserted, the overhead of
allocating a new cell is avoided.

4.3.5 Average-Case Analysis
Intuitively, we expect that all of the operations of the previous section should take O(log N)
time, because in constant time we descend a level in the tree, thus operating on a tree that
is now roughly half as large. Indeed, the running time of all the operations is O(d), where
d is the depth of the node containing the accessed item (in the case of remove this may be
the replacement node in the two-child case).

We prove in this section that the average depth over all nodes in a tree is O(log N) on
the assumption that all insertion sequences are equally likely.

www.manaraa.com

4.3 The Search Tree ADT—Binary Search Trees 121

The sum of the depths of all nodes in a tree is known as the internal path length.
We will now calculate the average internal path length of a binary search tree, where the
average is taken over all possible insertion sequences into binary search trees.

Let D(N) be the internal path length for some tree T of N nodes. D(1) = 0. An N-node
tree consists of an i-node left subtree and an (N − i − 1)-node right subtree, plus a root at
depth zero for 0 ≤ i < N. D(i) is the internal path length of the left subtree with respect to
its root. In the main tree, all these nodes are one level deeper. The same holds for the right
subtree. Thus, we get the recurrence

D(N) = D(i) + D(N − i − 1) + N − 1

If all subtree sizes are equally likely, which is true for binary search trees (since the subtree
size depends only on the relative rank of the first element inserted into the tree), but not
binary trees, then the average value of both D(i) and D(N − i−1) is (1/N)

∑N−1
j=0 D(j). This

yields

D(N) = 2

N

⎡
⎣N−1∑

j=0

D(j)

⎤
⎦ + N − 1

This recurrence will be encountered and solved in Chapter 7, obtaining an average value
of D(N) = O(N log N). Thus, the expected depth of any node is O(log N). As an example,
the randomly generated 500-node tree shown in Figure 4.26 has nodes at expected depth
9.98.

It is tempting to say immediately that this result implies that the average running time
of all the operations discussed in the previous section is O(log N), but this is not entirely

Figure 4.26 A randomly generated binary search tree

www.manaraa.com

122 Chapter 4 Trees

Figure 4.27 Binary search tree after �(N2) insert/remove pairs

true. The reason for this is that because of deletions, it is not clear that all binary search
trees are equally likely. In particular, the deletion algorithm described above favors making
the left subtrees deeper than the right, because we are always replacing a deleted node
with a node from the right subtree. The exact effect of this strategy is still unknown, but
it seems only to be a theoretical novelty. It has been shown that if we alternate insertions
and deletions �(N2) times, then the trees will have an expected depth of �(

√
N). After

a quarter-million random insert/remove pairs, the tree that was somewhat right-heavy in
Figure 4.26 looks decidedly unbalanced (average depth equals 12.51). See Figure 4.27.

We could try to eliminate the problem by randomly choosing between the smallest
element in the right subtree and the largest in the left when replacing the deleted element.
This apparently eliminates the bias and should keep the trees balanced, but nobody has
actually proved this. In any event, this phenomenon appears to be mostly a theoretical
novelty, because the effect does not show up at all for small trees, and stranger still, if
o(N2) insert/remove pairs are used, then the tree seems to gain balance!

The main point of this discussion is that deciding what “average” means is gener-
ally extremely difficult and can require assumptions that may or may not be valid. In the
absence of deletions, or when lazy deletion is used, we can conclude that the average
running times of the operations above are O(log N). Except for strange cases like the one
discussed above, this result is very consistent with observed behavior.

If the input comes into a tree presorted, then a series of inserts will take quadratic
time and give a very expensive implementation of a linked list, since the tree will consist
only of nodes with no left children. One solution to the problem is to insist on an extra
structural condition called balance: No node is allowed to get too deep.

There are quite a few general algorithms to implement balanced trees. Most are quite
a bit more complicated than a standard binary search tree, and all take longer on average
for updates. They do, however, provide protection against the embarrassingly simple cases.
Below, we will sketch one of the oldest forms of balanced search trees, the AVL tree.

www.manaraa.com

4.4 AVL Trees 123

A second, newer method is to forgo the balance condition and allow the tree to be
arbitrarily deep, but after every operation, a restructuring rule is applied that tends to
make future operations efficient. These types of data structures are generally classified as
self-adjusting. In the case of a binary search tree, we can no longer guarantee an O(log N)
bound on any single operation but can show that any sequence of M operations takes total
time O(M log N) in the worst case. This is generally sufficient protection against a bad worst
case. The data structure we will discuss is known as a splay tree; its analysis is fairly intricate
and is discussed in Chapter 11.

4.4 AVL Trees
An AVL (Adelson-Velskii and Landis) tree is a binary search tree with a balance condition.
The balance condition must be easy to maintain, and it ensures that the depth of the tree
is O(log N). The simplest idea is to require that the left and right subtrees have the same
height. As Figure 4.28 shows, this idea does not force the tree to be shallow.

Another balance condition would insist that every node must have left and right sub-
trees of the same height. If the height of an empty subtree is defined to be −1 (as is
usual), then only perfectly balanced trees of 2k − 1 nodes would satisfy this criterion.
Thus, although this guarantees trees of small depth, the balance condition is too rigid to
be useful and needs to be relaxed.

An AVL tree is identical to a binary search tree, except that for every node in the tree,
the height of the left and right subtrees can differ by at most 1. (The height of an empty
tree is defined to be −1.) In Figure 4.29 the tree on the left is an AVL tree, but the tree on
the right is not. Height information is kept for each node (in the node structure). It can
be shown that the height of an AVL tree is at most roughly 1.44 log(N + 2) − 1.328, but
in practice it is only slightly more than log N. As an example, the AVL tree of height 9 with
the fewest nodes (143) is shown in Figure 4.30. This tree has as a left subtree an AVL tree
of height 7 of minimum size. The right subtree is an AVL tree of height 8 of minimum size.
This tells us that the minimum number of nodes, S(h), in an AVL tree of height h is given
by S(h) = S(h − 1) + S(h − 2) + 1. For h = 0, S(h) = 1. For h = 1, S(h) = 2. The function

Figure 4.28 A bad binary tree. Requiring balance at the root is not enough

www.manaraa.com

124 Chapter 4 Trees

5

2 8

1 4

3

7

7

2 8

1 4

3 5

Figure 4.29 Two binary search trees. Only the left tree is AVL

Figure 4.30 Smallest AVL tree of height 9

S(h) is closely related to the Fibonacci numbers, from which the bound claimed above on
the height of an AVL tree follows.

Thus, all the tree operations can be performed in O(log N) time, except possibly inser-
tion (we will assume lazy deletion). When we do an insertion, we need to update all the
balancing information for the nodes on the path back to the root, but the reason that inser-
tion is potentially difficult is that inserting a node could violate the AVL tree property. (For
instance, inserting 6 into the AVL tree in Figure 4.29 would destroy the balance condition

www.manaraa.com

4.4 AVL Trees 125

at the node with key 8.) If this is the case, then the property has to be restored before the
insertion step is considered over. It turns out that this can always be done with a simple
modification to the tree, known as a rotation.

After an insertion, only nodes that are on the path from the insertion point to the root
might have their balance altered because only those nodes have their subtrees altered. As
we follow the path up to the root and update the balancing information, we may find a
node whose new balance violates the AVL condition. We will show how to rebalance the
tree at the first (i.e., deepest) such node, and we will prove that this rebalancing guarantees
that the entire tree satisfies the AVL property.

Let us call the node that must be rebalanced α. Since any node has at most two chil-
dren, and a height imbalance requires that α’s two subtrees’ height differ by two, it is easy
to see that a violation might occur in four cases:

1. An insertion into the left subtree of the left child of α.

2. An insertion into the right subtree of the left child of α.

3. An insertion into the left subtree of the right child of α.

4. An insertion into the right subtree of the right child of α.

Cases 1 and 4 are mirror image symmetries with respect to α, as are cases 2 and 3.
Consequently, as a matter of theory, there are two basic cases. From a programming
perspective, of course, there are still four cases.

The first case, in which the insertion occurs on the “outside” (i.e., left–left or right–
right), is fixed by a single rotation of the tree. The second case, in which the insertion
occurs on the “inside” (i.e., left–right or right–left) is handled by the slightly more complex
double rotation. These are fundamental operations on the tree that we’ll see used several
times in balanced-tree algorithms. The remainder of this section describes these rotations,
proves that they suffice to maintain balance, and gives a casual implementation of the AVL

tree. Chapter 12 describes other balanced-tree methods with an eye toward a more careful
implementation.

4.4.1 Single Rotation
Figure 4.31 shows the single rotation that fixes case 1. The before picture is on the left,
and the after is on the right. Let us analyze carefully what is going on. Node k2 violates
the AVL balance property because its left subtree is two levels deeper than its right subtree
(the dashed lines in the middle of the diagram mark the levels). The situation depicted
is the only possible case 1 scenario that allows k2 to satisfy the AVL property before an
insertion but violate it afterwards. Subtree X has grown to an extra level, causing it to be
exactly two levels deeper than Z. Y cannot be at the same level as the new X because then
k2 would have been out of balance before the insertion, and Y cannot be at the same level as
Z because then k1 would be the first node on the path toward the root that was in violation
of the AVL balancing condition.

To ideally rebalance the tree, we would like to move X up a level and Z down a level.
Note that this is actually more than the AVL property would require. To do this, we rearrange

www.manaraa.com

126 Chapter 4 Trees

k 2

k 1
Z

Y

X

k 1

k 2

X
ZY

Figure 4.31 Single rotation to fix case 1

nodes into an equivalent tree as shown in the second part of Figure 4.31. Here is an abstract
scenario: Visualize the tree as being flexible, grab the child node k1, close your eyes, and
shake it, letting gravity take hold. The result is that k1 will be the new root. The binary
search tree property tells us that in the original tree k2 > k1, so k2 becomes the right
child of k1 in the new tree. X and Z remain as the left child of k1 and right child of k2,
respectively. Subtree Y, which holds items that are between k1 and k2 in the original tree,
can be placed as k2’s left child in the new tree and satisfy all the ordering requirements.

As a result of this work, which requires only a few link changes, we have another binary
search tree that is an AVL tree. This happens because X moves up one level, Y stays at the
same level, and Z moves down one level. k2 and k1 not only satisfy the AVL requirements,
but they also have subtrees that are exactly the same height. Furthermore, the new height
of the entire subtree is exactly the same as the height of the original subtree prior to the
insertion that caused X to grow. Thus no further updating of heights on the path to the
root is needed, and consequently no further rotations are needed. Figure 4.32 shows that
after the insertion of 6 into the original AVL tree on the left, node 8 becomes unbalanced.
Thus, we do a single rotation between 7 and 8, obtaining the tree on the right.

As we mentioned earlier, case 4 represents a symmetric case. Figure 4.33 shows how a
single rotation is applied. Let us work through a rather long example. Suppose we start with
an initially empty AVL tree and insert the items 3, 2, 1, and then 4 through 7 in sequential

5

2 8

1 4

3

7

6

5

2 7

1 4

3

6 8

Figure 4.32 AVL property destroyed by insertion of 6, then fixed by a single rotation

www.manaraa.com

4.4 AVL Trees 127

k 2

k 1

ZYX

k 1

k 2
X

Z

Y

Figure 4.33 Single rotation fixes case 4

order. The first problem occurs when it is time to insert 1 because the AVL property is
violated at the root. We perform a single rotation between the root and its left child to fix
the problem. Here are the before and after trees:

3 2

2 31

1 before after

A dashed line joins the two nodes that are the subject of the rotation. Next we insert 4,
which causes no problems, but the insertion of 5 creates a violation at node 3 that is fixed
by a single rotation. Besides the local change caused by the rotation, the programmer must
remember that the rest of the tree has to be informed of this change. Here this means that
2’s right child must be reset to link to 4 instead of 3. Forgetting to do so is easy and would
destroy the tree (4 would be inaccessible).

2

1 3

4

5

2

1 4

3 5

before after

Next we insert 6. This causes a balance problem at the root, since its left subtree is of
height 0 and its right subtree would be height 2. Therefore, we perform a single rotation at
the root between 2 and 4.

www.manaraa.com

128 Chapter 4 Trees

2

1 4

3 5

6

4

2 5

1 3 6

before after

The rotation is performed by making 2 a child of 4 and 4’s original left subtree the new right
subtree of 2. Every item in this subtree must lie between 2 and 4, so this transformation
makes sense. The next item we insert is 7, which causes another rotation:

4

2 5

1 3 6

7

4

2 6

1 3 5 7

before after

4.4.2 Double Rotation
The algorithm described above has one problem: As Figure 4.34 shows, it does not work
for cases 2 or 3. The problem is that subtree Y is too deep, and a single rotation does not
make it any less deep. The double rotation that solves the problem is shown in Figure 4.35.

The fact that subtree Y in Figure 4.34 has had an item inserted into it guarantees that it
is nonempty. Thus, we may assume that it has a root and two subtrees. Consequently, the
tree may be viewed as four subtrees connected by three nodes. As the diagram suggests,

k2

k1
Z

Y
X

k1

k2

Z
Y

X

Figure 4.34 Single rotation fails to fix case 2

www.manaraa.com

4.4 AVL Trees 129

D

CB

k2

k1k1
k2

k3

k3

AA D
B C

Figure 4.35 Left–right double rotation to fix case 2

k1

k3
k2A

B C

k2

k1 k3

AD D
B C

Figure 4.36 Right–left double rotation to fix case 3

exactly one of tree B or C is two levels deeper than D (unless all are empty), but we cannot
be sure which one. It turns out not to matter; in Figure 4.35, both B and C are drawn at
1 1

2 levels below D.
To rebalance, we see that we cannot leave k3 as the root, and a rotation between k3 and

k1 was shown in Figure 4.34 to not work, so the only alternative is to place k2 as the new
root. This forces k1 to be k2’s left child and k3 to be its right child, and it also completely
determines the resulting locations of the four subtrees. It is easy to see that the resulting
tree satisfies the AVL tree property, and as was the case with the single rotation, it restores
the height to what it was before the insertion, thus guaranteeing that all rebalancing and
height updating is complete. Figure 4.36 shows that the symmetric case 3 can also be fixed
by a double rotation. In both cases the effect is the same as rotating between α’s child and
grandchild, and then between α and its new child.

We will continue our previous example by inserting 10 through 16 in reverse order,
followed by 8 and then 9. Inserting 16 is easy, since it does not destroy the balance property,
but inserting 15 causes a height imbalance at node 7. This is case 3, which is solved by a
right–left double rotation. In our example, the right–left double rotation will involve 7, 16,
and 15. In this case, k1 is the node with item 7, k3 is the node with item 16, and k2 is the
node with item 15. Subtrees A, B, C, and D are empty.

www.manaraa.com

130 Chapter 4 Trees

4

2 6

1 3 5 7

15

4

2 6

1 3 5 15

7 1616

k1

k3

k2

k1

k2

k3
before after

Next we insert 14, which also requires a double rotation. Here the double rotation that
will restore the tree is again a right–left double rotation that will involve 6, 15, and 7. In
this case, k1 is the node with item 6, k2 is the node with item 7, and k3 is the node with
item 15. Subtree A is the tree rooted at the node with item 5; subtree B is the empty subtree
that was originally the left child of the node with item 7, subtree C is the tree rooted at the
node with item 14, and finally, subtree D is the tree rooted at the node with item 16.

4 4

2 26

1 3 5 15

7 5 14 1616

14

7

1 3 6 15
k1

k2

k3

before after

k1

k3

k2

If 13 is now inserted, there is an imbalance at the root. Since 13 is not between 4 and 7,
we know that the single rotation will work.

4

2 7

1 3 6 15

5 14 16

13

7

4 15

2 6 14 16

1 3 5 13

before after

www.manaraa.com

4.4 AVL Trees 131

Insertion of 12 will also require a single rotation:

7

4 15

2 6 14 16

1 3 5 13

12

7

4 15

2 6 13 16

1 3 5 12 14

before after

To insert 11, a single rotation needs to be performed, and the same is true for the
subsequent insertion of 10. We insert 8 without a rotation creating an almost perfectly
balanced tree:

7

4 13

2 6 11 15

1 3 5 10 12 14 16

8

before

Finally, we will insert 9 to show the symmetric case of the double rotation. Notice
that 9 causes the node containing 10 to become unbalanced. Since 9 is between 10 and 8

www.manaraa.com

132 Chapter 4 Trees

(which is 10’s child on the path to 9), a double rotation needs to be performed, yielding
the following tree:

7

4 13

2 6 11 15

1 3 5 9 12 14 16

8 10

after

Let us summarize what happens. The programming details are fairly straightforward
except that there are several cases. To insert a new node with item X into an AVL tree T,
we recursively insert X into the appropriate subtree of T (let us call this TLR). If the height
of TLR does not change, then we are done. Otherwise, if a height imbalance appears in T,
we do the appropriate single or double rotation depending on X and the items in T and
TLR, update the heights (making the connection from the rest of the tree above), and are
done. Since one rotation always suffices, a carefully coded nonrecursive version generally
turns out to be faster than the recursive version, but on modern compilers the difference is
not as significant as in the past. However, nonrecursive versions are quite difficult to code
correctly, whereas a casual recursive implementation is easily readable.

Another efficiency issue concerns storage of the height information. Since all that is
really required is the difference in height, which is guaranteed to be small, we could get
by with two bits (to represent +1, 0, −1) if we really try. Doing so will avoid repetitive
calculation of balance factors but results in some loss of clarity. The resulting code is some-
what more complicated than if the height were stored at each node. If a recursive routine
is written, then speed is probably not the main consideration. In this case, the slight speed
advantage obtained by storing balance factors hardly seems worth the loss of clarity and
relative simplicity. Furthermore, since most machines will align this to at least an 8-bit
boundary anyway, there is not likely to be any difference in the amount of space used. An
eight-bit byte will allow us to store absolute heights of up to 127. Since the tree is balanced,
it is inconceivable that this would be insufficient (see the exercises).

With all this, we are ready to write the AVL routines. We show some of the code here;
the rest is online. First, we need the AvlNode class. This is given in Figure 4.37. We also

www.manaraa.com

4.4 AVL Trees 133

1 private static class AvlNode<AnyType>
2 {
3 // Constructors
4 AvlNode(AnyType theElement)
5 { this(theElement, null, null); }
6
7 AvlNode(AnyType theElement, AvlNode<AnyType> lt, AvlNode<AnyType> rt)
8 { element = theElement; left = lt; right = rt; height = 0; }
9

10 AnyType element; // The data in the node
11 AvlNode<AnyType> left; // Left child
12 AvlNode<AnyType> right; // Right child
13 int height; // Height
14 }

Figure 4.37 Node declaration for AVL trees

1 /**
2 * Return the height of node t, or -1, if null.
3 */
4 private int height(AvlNode<AnyType> t)
5 {
6 return t == null ? -1 : t.height;
7 }

Figure 4.38 Method to compute height of an AVL node

need a quick method to return the height of a node. This method is necessary to handle
the annoying case of a null reference. This is shown in Figure 4.38. The basic insertion
routine is easy to write (see Figure 4.39): It adds only a single line at the end that invokes
a balancing method. The balancing method applies a single or double rotation if needed,
updates the height, and returns the resulting tree.

For the trees in Figure 4.40, rotateWithLeftChild converts the tree on the left to the
tree on the right, returning a reference to the new root. rotateWithRightChild is symmetric.
The code is shown in Figure 4.41.

Similarly, the double rotation pictured in Figure 4.42 can be implemented by the code
shown in Figure 4.43.

Since deletion in a binary search tree is somewhat more complicated than insertion,
one can assume that deletion in an AVL tree is also more complicated. In a perfect world, one
would hope that the deletion routine in Figure 4.25 could easily be modified by changing
the last line to return after calling the balance method, as was done for insertion. This
would yield the code in Figure 4.44. This change works! A deletion could cause one side
of the tree to become two levels shallower than the other side. The case-by-case analysis
is similar to the imbalances that are caused by insertion, but not exactly the same. For

www.manaraa.com

1 /**
2 * Internal method to insert into a subtree.
3 * @param x the item to insert.
4 * @param t the node that roots the subtree.
5 * @return the new root of the subtree.
6 */
7 private AvlNode<AnyType> insert(AnyType x, AvlNode<AnyType> t)
8 {
9 if(t == null)

10 return new AvlNode<>(x, null, null);
11
12 int compareResult = x.compareTo(t.element);
13
14 if(compareResult < 0)
15 t.left = insert(x, t.left);
16 else if(compareResult > 0)
17 t.right = insert(x, t.right);
18 else
19 ; // Duplicate; do nothing
20 return balance(t);
21 }
22
23 private static final int ALLOWED_IMBALANCE = 1;
24
25 // Assume t is either balanced or within one of being balanced
26 private AvlNode<AnyType> balance(AvlNode<AnyType> t)
27 {
28 if(t == null)
29 return t;
30
31 if(height(t.left) - height(t.right) > ALLOWED_IMBALANCE)
32 if(height(t.left.left) >= height(t.left.right))
33 t = rotateWithLeftChild(t);
34 else
35 t = doubleWithLeftChild(t);
36 else
37 if(height(t.right) - height(t.left) > ALLOWED_IMBALANCE)
38 if(height(t.right.right) >= height(t.right.left))
39 t = rotateWithRightChild(t);
40 else
41 t = doubleWithRightChild(t);
42
43 t.height = Math.max(height(t.left), height(t.right)) + 1;
44 return t;
45 }

Figure 4.39 Insertion into an AVL tree

www.manaraa.com

4.4 AVL Trees 135

k 2

Z
k 1

X Y

k 1

k 2

Y

X

Z

Figure 4.40 Single rotation

1 /**
2 * Rotate binary tree node with left child.
3 * For AVL trees, this is a single rotation for case 1.
4 * Update heights, then return new root.
5 */
6 private AvlNode<AnyType> rotateWithLeftChild(AvlNode<AnyType> k2)
7 {
8 AvlNode<AnyType> k1 = k2.left;
9 k2.left = k1.right;

10 k1.right = k2;
11 k2.height = Math.max(height(k2.left), height(k2.right)) + 1;
12 k1.height = Math.max(height(k1.left), k2.height) + 1;
13 return k1;
14 }

Figure 4.41 Routine to perform single rotation

k 3

D
k 1

k 2
A

CB

k 2

k 1 k 3

A B C D

Figure 4.42 Double rotation

instance, case 1 in Figure 4.31, which would now reflect a deletion from tree Z (rather
than an insertion into X), must be augmented with the possiblity that tree Y could be as
deep as tree X. Even so, it is easy to see that the rotation rebalances this case and the
symmetric case 4 in Figure 4.33. Thus the code for balance in Figure 4.39 lines 32 and
38 uses >= instead of > specifically to ensure that single rotations are done in these cases,
rather than double rotations. We leave verification of the remaining cases as an exercise.

www.manaraa.com

136 Chapter 4 Trees

1 /**
2 * Double rotate binary tree node: first left child
3 * with its right child; then node k3 with new left child.
4 * For AVL trees, this is a double rotation for case 2.
5 * Update heights, then return new root.
6 */
7 private AvlNode<AnyType> doubleWithLeftChild(AvlNode<AnyType> k3)
8 {
9 k3.left = rotateWithRightChild(k3.left);

10 return rotateWithLeftChild(k3);
11 }

Figure 4.43 Routine to perform double rotation

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the subtree.
5 * @return the new root of the subtree.
6 */
7 private AvlNode<AnyType> remove(AnyType x, AvlNode<AnyType> t)
8 {
9 if(t == null)

10 return t; // Item not found; do nothing
11
12 int compareResult = x.compareTo(t.element);
13
14 if(compareResult < 0)
15 t.left = remove(x, t.left);
16 else if(compareResult > 0)
17 t.right = remove(x, t.right);
18 else if(t.left != null && t.right != null) // Two children
19 {
20 t.element = findMin(t.right).element;
21 t.right = remove(t.element, t.right);
22 }
23 else
24 t = (t.left != null) ? t.left : t.right;
25 return balance(t);
26 }

Figure 4.44 Deletion in an AVL tree

www.manaraa.com

4.5 Splay Trees 137

4.5 Splay Trees
We now describe a relatively simple data structure, known as a splay tree, that guarantees
that any M consecutive tree operations starting from an empty tree take at most O(M log N)
time. Although this guarantee does not preclude the possibility that any single operation
might take θ (N) time, and thus the bound is not as strong as an O(log N) worst-case bound
per operation, the net effect is the same: There are no bad input sequences. Generally, when
a sequence of M operations has total worst-case running time of O(Mf(N)), we say that the
amortized running time is O(f(N)). Thus, a splay tree has an O(log N) amortized cost per
operation. Over a long sequence of operations, some may take more, some less.

Splay trees are based on the fact that the O(N) worst-case time per operation for
binary search trees is not bad, as long as it occurs relatively infrequently. Any one
access, even if it takes θ (N), is still likely to be extremely fast. The problem with binary
search trees is that it is possible, and not uncommon, for a whole sequence of bad
accesses to take place. The cumulative running time then becomes noticeable. A search
tree data structure with O(N) worst-case time, but a guarantee of at most O(M log N)
for any M consecutive operations, is certainly satisfactory, because there are no bad
sequences.

If any particular operation is allowed to have an O(N) worst-case time bound, and
we still want an O(log N) amortized time bound, then it is clear that whenever a node is
accessed, it must be moved. Otherwise, once we find a deep node, we could keep perform-
ing accesses on it. If the node does not change location, and each access costs θ (N), then a
sequence of M accesses will cost θ (M · N).

The basic idea of the splay tree is that after a node is accessed, it is pushed to the root
by a series of AVL tree rotations. Notice that if a node is deep, there are many nodes on
the path that are also relatively deep, and by restructuring we can make future accesses
cheaper on all these nodes. Thus, if the node is unduly deep, then we want this restructur-
ing to have the side effect of balancing the tree (to some extent). Besides giving a good time
bound in theory, this method is likely to have practical utility, because in many appli-
cations, when a node is accessed, it is likely to be accessed again in the near future.
Studies have shown that this happens much more often than one would expect. Splay
trees also do not require the maintenance of height or balance information, thus saving
space and simplifying the code to some extent (especially when careful implementations
are written).

4.5.1 A Simple Idea (That Does Not Work)
One way of performing the restructuring described above is to perform single rotations,
bottom up. This means that we rotate every node on the access path with its parent. As an
example, consider what happens after an access (a find) on k1 in the following tree.

www.manaraa.com

138 Chapter 4 Trees

k 3

D
k 2

k 1
A

CB

k 4

E

k 5

F

The access path is dashed. First, we would perform a single rotation between k1 and its
parent, obtaining the following tree.

k 3

D
k 1

k 2
C

BA

k 4

E

k 5

F

Then, we rotate between k1 and k3, obtaining the next tree.

k 3

DC

k 1

k 2

BA

k 4

E

k 5

F

Then two more rotations are performed until we reach the root.

www.manaraa.com

4.5 Splay Trees 139

k 3

DC

k 1

k 2

BA

k 4

k 5

E

F

k 3

DC

k 1

k 2

BA
k 4

E

k 5

F

These rotations have the effect of pushing k1 all the way to the root, so that future
accesses on k1 are easy (for a while). Unfortunately, it has pushed another node (k3) almost
as deep as k1 used to be. An access on that node will then push another node deep, and
so on. Although this strategy makes future accesses of k1 cheaper, it has not significantly
improved the situation for the other nodes on the (original) access path. It turns out that
it is possible to prove that using this strategy, there is a sequence of M operations requiring
�(M · N) time, so this idea is not quite good enough. The simplest way to show this is to
consider the tree formed by inserting keys 1, 2, 3, . . . , N into an initially empty tree (work
this example out). This gives a tree consisting of only left children. This is not necessarily
bad, though, since the time to build this tree is O(N) total. The bad part is that accessing
the node with key 1 takes N − 1 units of time. After the rotations are complete, an access
of the node with key 2 takes N − 2 units of time. The total for accessing all the keys in
order is

∑N−1
i=1 i − �(N2). After they are accessed, the tree reverts to its original state, and

we can repeat the sequence.

4.5.2 Splaying
The splaying strategy is similar to the rotation idea above, except that we are a little more
selective about how rotations are performed. We will still rotate bottom up along the access

www.manaraa.com

140 Chapter 4 Trees

G

D
P

X
A

CB

X

P G

A B C D

Figure 4.45 Zig-zag

X

BA

P

C

G

D

X

A

B
G

C D

P

Figure 4.46 Zig-zig

path. Let X be a (nonroot) node on the access path at which we are rotating. If the parent
of X is the root of the tree, we merely rotate X and the root. This is the last rotation along
the access path. Otherwise, X has both a parent (P) and a grandparent (G), and there are
two cases, plus symmetries, to consider. The first case is the zig-zag case (see Figure 4.45).
Here, X is a right child and P is a left child (or vice versa). If this is the case, we perform a
double rotation, exactly like an AVL double rotation. Otherwise, we have a zig-zig case: X
and P are both left children (or, in the symmetric case, both right children). In that case,
we transform the tree on the left of Figure 4.46 to the tree on the right.

As an example, consider the tree from the last example, with a contains on k1:

k 2

k 1
A

k 4

k 3
E

D

k 5

F

CB

The first splay step is at k1 and is clearly a zig-zag, so we perform a standard AVL double
rotation using k1, k2, and k3. The resulting tree follows.

www.manaraa.com

4.5 Splay Trees 141

k 3

D

k 2

k 1

A CB

k 4

E

k 5

F

The next splay step at k1 is a zig-zig, so we do the zig-zig rotation with k1, k4, and k5,
obtaining the final tree.

k 3

D

k 2

k 1

A

C

B

k 4

k 5

E F

Although it is hard to see from small examples, splaying not only moves the accessed
node to the root but also has the effect of roughly halving the depth of most nodes on the
access path (some shallow nodes are pushed down at most two levels).

To see the difference that splaying makes over simple rotation, consider again the effect
of inserting items 1, 2, 3, . . . , N into an initially empty tree. This takes a total of O(N), as
before, and yields the same tree as simple rotations. Figure 4.47 shows the result of splaying

1

2

3

4

5

6

7 7

6

5

4

1

2

3

7

6

1

4

2 5

3

1

6

4 7

2 5

3

Figure 4.47 Result of splaying at node 1

www.manaraa.com

142 Chapter 4 Trees

at the node with item 1. The difference is that after an access of the node with item 1, which
takes N−1 units, the access on the node with item 2 will only take about N/2 units instead
of N − 2 units; there are no nodes quite as deep as before.

An access on the node with item 2 will bring nodes to within N/4 of the root, and this
is repeated until the depth becomes roughly log N (an example with N = 7 is too small to
see the effect well). Figures 4.48 to 4.56 show the result of accessing items 1 through 9 in

1

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

Figure 4.48 Result of splaying at node 1 a tree of all left children

2

1 32

28

24

20

16

12

8

4

3 6

5 7

10

9 11

14

13 15

18

17 19

22

21 23

26

25 27

30

29 31

Figure 4.49 Result of splaying the previous tree at node 2

www.manaraa.com

4.5 Splay Trees 143

3

2

1

28

20

12

4

8

6

5 7

10

9 11

16

14

13 15

18

17 19

24

22

21 23

26

25 27

32

30

29 31

Figure 4.50 Result of splaying the previous tree at node 3

4

3

2

1

28

12

8

6

5 7

10

9 11

20

16

14

13 15

18

17 19

24

22

21 23

26

25 27

32

30

29 31

Figure 4.51 Result of splaying the previous tree at node 4

5

4

3

2

1

12

6

8

7 10

9 11

28

20

16

14

13 15

18

17 19

24

22

21 23

26

25 27

32

30

29 31

Figure 4.52 Result of splaying the previous tree at node 5

a 32-node tree that originally contains only left children. Thus we do not get the same bad
behavior from splay trees that is prevalent in the simple rotation strategy. (Actually, this
turns out to be a very good case. A rather complicated proof shows that for this example,
the N accesses take a total of O(N) time.)

These figures highlight the fundamental and crucial property of splay trees. When
access paths are long, thus leading to a longer-than-normal search time, the rotations tend
to be good for future operations. When accesses are cheap, the rotations are not as good and
can be bad. The extreme case is the initial tree formed by the insertions. All the insertions
were constant-time operations leading to a bad initial tree. At that point in time, we had
a very bad tree, but we were running ahead of schedule and had the compensation of less
total running time. Then a couple of really horrible accesses left a nearly balanced tree,

www.manaraa.com

144 Chapter 4 Trees

6

5

4

3

2

1

12

8

7 10

9 11

28

20

16

14

13 15

18

17 19

24

22

21 23

26

25 27

32

30

29 31

Figure 4.53 Result of splaying the previous tree at node 6

7

6

5

4

3

2

1

8

12

10

9 11

28

20

16

14

13 15

18

17 19

24

22

21 23

26

25 27

32

30

29 31

Figure 4.54 Result of splaying the previous tree at node 7

8

7

6

5

4

3

2

1

12

10

9 11

28

20

16

14

13 15

18

17 19

24

22

21 23

26

25 27

32

30

29 31

Figure 4.55 Result of splaying the previous tree at node 8

but the cost was that we had to give back some of the time that had been saved. The
main theorem, which we will prove in Chapter 11, is that we never fall behind a pace of
O(log N) per operation: We are always on schedule, even though there are occasionally bad
operations.

We can perform deletion by accessing the node to be deleted. This puts the node at the
root. If it is deleted, we get two subtrees TL and TR (left and right). If we find the largest
element in TL (which is easy), then this element is rotated to the root of TL, and TL will
now have a root with no right child. We can finish the deletion by making TR the right
child.

www.manaraa.com

4.6 Tree Traversals (Revisited) 145

9

8

7

6

5

4

3

2

1

10

12

11 28

20

16

14

13 15

18

17 19

24

22

21 23

26

25 27

32

30

29 31

Figure 4.56 Result of splaying the previous tree at node 9

The analysis of splay trees is difficult, because it must take into account the
ever-changing structure of the tree. On the other hand, splay trees are much simpler to
program than AVL trees, since there are fewer cases to consider and no balance informa-
tion to maintain. Some empirical evidence suggests that this translates into faster code in
practice, although the case for this is far from complete. Finally, we point out that there are
several variations of splay trees that can perform even better in practice. One variation is
completely coded in Chapter 12.

4.6 Tree Traversals (Revisited)
Because of the ordering information in a binary search tree, it is simple to list all the items
in sorted order. The recursive method in Figure 4.57 does the real work.

Convince yourself that this method works. As we have seen before, this kind of routine
when applied to trees is known as an inorder traversal (which makes sense, since it lists
the items in order). The general strategy of an inorder traversal is to process the left subtree
first, then perform processing at the current node, and finally process the right subtree.
The interesting part about this algorithm, aside from its simplicity, is that the total running
time is O(N). This is because there is constant work being performed at every node in the
tree. Each node is visited once, and the work performed at each node is testing against
null, setting up two method calls, and doing a println. Since there is constant work per
node and N nodes, the running time is O(N).

Sometimes we need to process both subtrees first before we can process a node. For
instance, to compute the height of a node, we need to know the height of the subtrees
first. The code in Figure 4.58 computes this. Since it is always a good idea to check the
special cases—and crucial when recursion is involved—notice that the routine will declare
the height of a leaf to be zero, which is correct. This general order of traversal, which we
have also seen before, is known as a postorder traversal. Again, the total running time is
O(N), because constant work is performed at each node.

www.manaraa.com

146 Chapter 4 Trees

1 /**
2 * Print the tree contents in sorted order.
3 */
4 public void printTree()
5 {
6 if(isEmpty())
7 System.out.println("Empty tree");
8 else
9 printTree(root);

10 }
11
12 /**
13 * Internal method to print a subtree in sorted order.
14 * @param t the node that roots the subtree.
15 */
16 private void printTree(BinaryNode<AnyType> t)
17 {
18 if(t != null)
19 {
20 printTree(t.left);
21 System.out.println(t.element);
22 printTree(t.right);
23 }
24 }

Figure 4.57 Routine to print a binary search tree in order

1 /**
2 * Internal method to compute height of a subtree.
3 * @param t the node that roots the subtree.
4 */
5 private int height(BinaryNode<AnyType> t)
6 {
7 if(t == null)
8 return -1;
9 else

10 return 1 + Math.max(height(t.left), height(t.right));
11 }

Figure 4.58 Routine to compute the height of a tree using a postorder traversal

The third popular traversal scheme that we have seen is preorder traversal. Here, the
node is processed before the children. This could be useful, for example, if you wanted to
label each node with its depth.

www.manaraa.com

4.7 B-Trees 147

The common idea in all these routines is that you handle the null case first, and then
the rest. Notice the lack of extraneous variables. These routines pass only the reference to
the node that roots the subtree and do not declare or pass any extra variables. The more
compact the code, the less likely that a silly bug will turn up. A fourth, less often used,
traversal (which we have not seen yet) is level-order traversal. In a level-order traversal,
all nodes at depth d are processed before any node at depth d + 1. Level-order traversal
differs from the other traversals in that it is not done recursively; a queue is used, instead
of the implied stack of recursion.

4.7 B-Trees
Thus far, we have assumed that we can store an entire data structure in the main memory
of a computer. Suppose, however, that we have more data than can fit in main memory,
meaning that we must have the data structure reside on disk. When this happens, the rules
of the game change because the Big-Oh model is no longer meaningful.

The problem is that a Big-Oh analysis assumes that all operations are equal. However,
this is not true, especially when disk I/O is involved. Modern computers execute billions
of instructions per second. That is pretty fast, mainly because the speed depends largely
on electrical properties. On the other hand, a disk is mechanical. Its speed depends largely
on the time it takes to spin the disk and to move a disk head. Many disks spin at 7,200
RPM. Thus in 1 min, it makes 7,200 revolutions; hence, one revolution occurs in 1/120 of
a second, or 8.3 ms. On average, we might expect that we have to spin a disk halfway to
find what we are looking for, but this is compensated by the time to move the disk head, so
we get an access time of 8.3 ms. (This is a very charitable estimate; 9–11 ms access times
are more common.) Consequently, we can do approximately 120 disk accesses per second.
This sounds pretty good, until we compare it with the processor speed. What we have is
billions of instructions equal to 120 disk accesses. Of course, everything here is a rough
calculation, but the relative speeds are pretty clear: Disk accesses are incredibly expensive.
Furthermore, processor speeds are increasing at a much faster rate than disk speeds (it is
disk sizes that are increasing quite quickly). So we are willing to do lots of calculations just
to save a disk access. In almost all cases, it is the number of disk accesses that will dominate
the running time. Thus, if we halve the number of disk accesses, the running time will also
halve.

Here is how the typical search tree performs on disk. Suppose we want to access the
driving records for citizens in the State of Florida. We assume that we have 10 million
items, that each key is 32 bytes (representing a name), and that a record is 256 bytes. We
assume this does not fit in main memory and that we are 1 of 20 users on a system (so
we have 1/20 of the resources). Thus, in 1 sec, we can execute billions of instructions or
perform six disk accesses.

The unbalanced binary search tree is a disaster. In the worst case, it has linear depth
and thus could require 10 million disk accesses. On average, a successful search would
require 1.38 log N disk accesses, and since log 10000000 ≈ 24, an average search would
require 32 disk accesses, or 5 sec. In a typical randomly constructed tree, we would expect

www.manaraa.com

148 Chapter 4 Trees

Figure 4.59 5-ary tree of 31 nodes has only three levels

that a few nodes are three times deeper; these would require about 100 disk accesses, or 16
sec. An AVL tree is somewhat better. The worst case of 1.44 log N is unlikely to occur, and
the typical case is very close to log N. Thus an AVL tree would use about 25 disk accesses
on average, requiring 4 sec.

We want to reduce the number of disk accesses to a very small constant, such as
three or four; and we are willing to write complicated code to do this because machine
instructions are essentially free, as long as we are not ridiculously unreasonable. It should
probably be clear that a binary search tree will not work, since the typical AVL tree is close
to optimal height. We cannot go below log N using a binary search tree. The solution is
intuitively simple: If we have more branching, we have less height. Thus, while a perfect
binary tree of 31 nodes has five levels, a 5-ary tree of 31 nodes has only three levels,
as shown in Figure 4.59. An MMM-ary search tree allows M-way branching. As branching
increases, the depth decreases. Whereas a complete binary tree has height that is roughly
log2 N, a complete M-ary tree has height that is roughly logM N.

We can create an M-ary search tree in much the same way as a binary search tree. In a
binary search tree, we need one key to decide which of two branches to take. In an M-ary
search tree, we need M − 1 keys to decide which branch to take. To make this scheme
efficient in the worst case, we need to ensure that the M-ary search tree is balanced in some
way. Otherwise, like a binary search tree, it could degenerate into a linked list. Actually,
we want an even more restrictive balancing condition. That is, we do not want an M-ary
search tree to degenerate to even a binary search tree, because then we would be stuck
with log N accesses.

One way to implement this is to use a B-tree. The basic B-tree4 is described here. Many
variations and improvements are possible, and an implementation is somewhat complex
because there are quite a few cases. However, it is easy to see that, in principle, a B-tree
guarantees only a few disk accesses.

A B-tree of order M is an M-ary tree with the following properties:5

1. The data items are stored at leaves.

2. The nonleaf nodes store up to M − 1 keys to guide the searching; key i represents the
smallest key in subtree i + 1.

3. The root is either a leaf or has between two and M children.

4 What is described is popularly known as a B+ tree.
5 Rules 3 and 5 must be relaxed for the first L insertions.

www.manaraa.com

4.7 B-Trees 149

4. All nonleaf nodes (except the root) have between �M/2� and M children.

5. All leaves are at the same depth and have between �L/2� and L data items, for some L
(the determination of L is described shortly).

An example of a B-tree of order 5 is shown in Figure 4.60. Notice that all nonleaf nodes
have between three and five children (and thus between two and four keys); the root could
possibly have only two children. Here, we have L = 5. (It happens that L and M are the
same in this example, but this is not necessary.) Since L is 5, each leaf has between three
and five data items. Requiring nodes to be half full guarantees that the B-tree does not
degenerate into a simple binary tree. Although there are various definitions of B-trees that
change this structure, mostly in minor ways, this definition is one of the popular forms.

Each node represents a disk block, so we choose M and L on the basis of the size of the
items that are being stored. As an example, suppose one block holds 8,192 bytes. In our
Florida example, each key uses 32 bytes. In a B-tree of order M, we would have M−1 keys,
for a total of 32M − 32 bytes, plus M branches. Since each branch is essentially a number
of another disk block, we can assume that a branch is 4 bytes. Thus the branches use 4M
bytes. The total memory requirement for a nonleaf node is thus 36M−32. The largest value
of M for which this is no more than 8,192 is 228. Thus we would choose M = 228. Since
each data record is 256 bytes, we would be able to fit 32 records in a block. Thus we would
choose L = 32. We are guaranteed that each leaf has between 16 and 32 data records and
that each internal node (except the root) branches in at least 114 ways. Since there are 10
million records, there are at most 625,000 leaves. Consequently, in the worst case, leaves
would be on level 4. In more concrete terms, the worst-case number of accesses is given
by approximately logM/2 N, give or take 1 (for example, the root and the next level could
be cached in main memory, so that, over the long run, disk accesses would be needed only
for level 3 and deeper).

The remaining issue is how to add and remove items from the B-tree; the ideas involved
are sketched next. Note that many of the themes seen before recur.

We begin by examining insertion. Suppose we want to insert 57 into the B-tree in
Figure 4.60. A search down the tree reveals that it is not already in the tree. We can then
add it to the leaf as a fifth item. Note that we may have to reorganize all the data in the leaf

41 66 87

72 78 83 92 9748 51 548 18 26 35

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95

97
98
99

41
42
44
46

48
49
50

51
52
53

54
56
58
59

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

Figure 4.60 B-tree of order 5

www.manaraa.com

150 Chapter 4 Trees

41 66 87

72 78 83 92 9748 51 548 18 26 35

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95

97
98
99

41
42
44
46

48
49
50

51
52
53

54
56
57
58
59

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

Figure 4.61 B-tree after insertion of 57 into the tree in Figure 4.60

41 66 87

72 78 83 92 9748 51 54 578 18 26 35

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95

97
98
99

41
42
44
46

48
49
50

51
52
53

54
55
56

57
58
59

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

Figure 4.62 Insertion of 55 into the B-tree in Figure 4.61 causes a split into two leaves

to do this. However, the cost of doing this is negligible when compared to that of the disk
access, which in this case also includes a disk write.

Of course, that was relatively painless because the leaf was not already full. Suppose
we now want to insert 55. Figure 4.61 shows a problem: The leaf where 55 wants to go is
already full. The solution is simple, however: Since we now have L+1 items, we split them
into two leaves, both guaranteed to have the minimum number of data records needed. We
form two leaves with three items each. Two disk accesses are required to write these leaves,
and a third disk access is required to update the parent. Note that in the parent, both
keys and branches change, but they do so in a controlled way that is easily calculated.
The resulting B-tree is shown in Figure 4.62. Although splitting nodes is time-consuming
because it requires at least two additional disk writes, it is a relatively rare occurrence. If L
is 32, for example, then when a node is split, two leaves with 16 and 17 items, respectively,
are created. For the leaf with 17 items, we can perform 15 more insertions without another
split. Put another way, for every split, there are roughly L/2 nonsplits.

The node splitting in the previous example worked because the parent did not have its
full complement of children. But what would happen if it did? Suppose, for example, that
we were to insert 40 into the B-tree in Figure 4.62. We would then have to split the leaf
containing the keys 35 through 39, and now 40, into two leaves. But doing this would give

www.manaraa.com

4.7 B-Trees 151

26 41 66

48 51 54

87

57 72 78 83 92 9735 388 18

41
42
44
46

48
49
50

51
52
53

54
55
56

57
58
59

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95

97
98
99

26
28
30
31
32

35
36
37

38
39
40

2
4
6

8
10
12
14
16

18
20
22
24

Figure 4.63 Insertion of 40 into the B-tree in Figure 4.62 causes a split into two leaves
and then a split of the parent node

the parent six children, and it is allowed only five. Hence, the solution is to split the parent.
The result of this is shown in Figure 4.63. When the parent is split, we must update the
values of the keys and also the parent’s parent, thus incurring an additional two disk writes
(so this insertion costs five disk writes). However, once again, the keys change in a very
controlled manner, although the code is certainly not simple because of a host of cases.

When a nonleaf node is split, as is the case here, its parent gains a child. What if the
parent already has reached its limit of children? In that case, we continue splitting nodes
up the tree until either we find a parent that does not need to be split or we reach the root.
If we split the root, then we have two roots. Obviously, this is unacceptable, but we can
create a new root that has the split roots as its two children. This is why the root is granted
the special two-child minimum exemption. It also is the only way that a B-tree gains height.
Needless to say, splitting all the way up to the root is an exceptionally rare event, because
a tree with four levels indicates that the root has been split three times throughout the
entire sequence of insertions (assuming no deletions have occurred). In fact, splitting of
any nonleaf node is also quite rare.

There are other ways to handle the overflowing of children. One technique is to put
a child up for adoption should a neighbor have room. To insert 29 into the B-tree in
Figure 4.63, for example, we could make room by moving 32 to the next leaf. This tech-
nique requires a modification of the parent because the keys are affected. However, it tends
to keep nodes fuller and thus saves space in the long run.

We can perform deletion by finding the item that needs to be removed and then remov-
ing it. The problem is that if the leaf it was in had the minimum number of data items,
then it is now below the minimum. We can rectify this situation by adopting a neighboring
item, if the neighbor is not itself at its minimum. If it is, then we can combine with the
neighbor to form a full leaf. Unfortunately, this means that the parent has lost a child. If
this loss causes the parent to fall below its minimum, then it follows the same strategy. This
process could percolate all the way up to the root. The root cannot have just one child (and
even if this were allowed, it would be silly). If a root is left with one child as a result of
the adoption process, then we remove the root and make its child the new root of the tree.
This is the only way for a B-tree to lose height. For example, suppose we want to remove
99 from the B-tree in Figure 4.63. Since the leaf has only two items, and its neighbor is
already at its minimum of three, we combine the items into a new leaf of five items. As a

www.manaraa.com

152 Chapter 4 Trees

26 41 66

48 51 54

83

57 72 78 87 9235 388 18

41
42
44
46

48
49
50

51
52
53

54
55
56

57
58
59

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95
97
98

26
28
30
31
32

35
36
37

38
39
40

2
4
6

8
10
12
14
16

18
20
22
24

Figure 4.64 B-tree after the deletion of 99 from the B-tree in Figure 4.63

result, the parent has only two children. However, it can adopt from a neighbor because
the neighbor has four children. As a result, both have three children. The result is shown
in Figure 4.64.

4.8 Sets and Maps in the Standard Library
The List containers discussed in Chapter 3, namely ArrayList and LinkedList, are ineffi-
cient for searching. Consequently, the Collections API provides two additional containers,
Set and Map, that provide efficient implementations for basic operations such as insertion,
deletion, and searching.

4.8.1 Sets
The Set interface represents a Collection that does not allow duplicates. A special kind of
Set, given by the SortedSet interface, guarantees that the items are maintained in sorted
order. Because a Set IS-A Collection, the idioms used to access items in a List, which are
inherited from Collection, also work for a Set. The print method described in Figure 3.6
will work if passed a Set.

The unique operations required by the Set are the abilities to insert, remove, and per-
form a basic search (efficiently). For a Set, the add method returns true if the add succeeds
and false if it fails because the item being added is already present. The implementation
of Set that maintains items in sorted order is a TreeSet. Basic operations in a TreeSet take
logarithmic worst-case time.

By default, ordering assumes that the items in the TreeSet implement the Comparable
interface. An alternative ordering can be specified by instantiating the TreeSet with a
Comparator. For instance, we can create a TreeSet that stores String objects, ignoring case
distinctions by using the CaseInsensitiveCompare function object coded in Figure 1.18. In
the following code, the Set s has size 1.

Set<String> s = new TreeSet<>(new CaseInsensitiveCompare());
s.add("Hello"); s.add("HeLLo");
System.out.println("The size is: " + s.size());

www.manaraa.com

4.8 Sets and Maps in the Standard Library 153

4.8.2 Maps
A Map is an interface that represents a collection of entries that consists of keys and their
values. Keys must be unique, but several keys can map to the same values. Thus values
need not be unique. In a SortedMap, the keys in the map are maintained in logically sorted
order. An implementation of SortedMap is the TreeMap. The basic operations for a Map include
methods such as isEmpty, clear, size, and most importantly, the following:

boolean containsKey(KeyType key)
ValueType get(KeyType key)
ValueType put(KeyType key, ValueType value)

get returns the value associated with key in the Map, or null if key is not present. If there are
no null values in the Map, the value returned by get can be used to determine if key is in
the Map. However, if there are null values, you have to use containsKey. Method put places
a key/value pair into the Map, returning either null or the old value associated with key.

Iterating through a Map is trickier than a Collection because the Map does not provide an
iterator. Instead, three methods are provided that return the view of a Map as a Collection.
Since the views are themselves Collections, the views can be iterated. The three methods
are:

Set<KeyType> keySet()
Collection<ValueType> values()
Set<Map.Entry<KeyType,ValueType>> entrySet()

Methods keySet and values return simple collections (the keys contain no duplicates, thus
the keys are returned in a Set). The entrySet is returned as a Set of entries (there are no
duplicate entries, since the keys are unique). Each entry is represented by the nested inter-
face Map.Entry. For an object of type Map.Entry, the available methods include accessing
the key, the value, and changing the value:

KeyType getKey()
ValueType getValue()
ValueType setValue(ValueType newValue)

4.8.3 Implementation of TreeSet and TreeMap
Java requires that TreeSet and TreeMap support the basic add, remove, and contains oper-
ations in logarithmic worst-case time. Consequently, the underlying implementation is a
balanced binary search tree. Typically, an AVL tree is not used; instead, top-down red-black
trees, which are discussed in Section 12.2, are often used.

An important issue in implementing TreeSet and TreeMap is providing support for the
iterator classes. Of course, internally, the iterator maintains a link to the “current” node

www.manaraa.com

154 Chapter 4 Trees

in the iteration. The hard part is efficiently advancing to the next node. There are several
possible solutions, some of which are listed here:

1. When the iterator is constructed, have each iterator store as its data an array containing
the TreeSet items. This is lame, because we might as well use toArray and have no need
for an iterator.

2. Have the iterator maintain a stack storing nodes on the path to the current node. With
this information, one can deduce the next node in the iteration, which is either the
node in the current node’s right subtree that contains the minimum item, or the nearest
ancestor that contains the current node in its left subtree. This makes the iterator
somewhat large, and makes the iterator code clumsy.

3. Have each node in the search tree store its parent in addition to the children. The
iterator is not as large, but there is now extra memory required in each node, and the
code to iterate is still clumsy.

4. Have each node maintain extra links: one to the next smaller, and one to the next larger
node. This takes space, but the iteration is very simple to do, and it is easy to maintain
these links.

5. Maintain the extra links only for nodes that have null left or right links, by using extra
Boolean variables to allow the routines to tell if a left link is being used as a standard
binary search tree left link or a link to the next smaller node, and similarly for the right
link (Exercise 4.50). This idea is called a threaded tree, and is used in many balanced
binary search tree implementations.

4.8.4 An Example That Uses Several Maps
Many words are similar to other words. For instance, by changing the first letter, the word
wine can become dine, fine, line, mine, nine, pine, or vine. By changing the third letter, wine
can become wide, wife, wipe, or wire, among others. By changing the fourth letter, wine can
become wind, wing, wink, or wins, among others. This gives 15 different words that can
be obtained by changing only one letter in wine. In fact, there are over 20 different words,
some more obscure. We would like to write a program to find all words that can be changed
into at least 15 other words by a single one-character substitution. We assume that we have
a dictionary consisting of approximately 89,000 different words of varying lengths. Most
words are between 6 and 11 characters. The distribution includes 8,205 six-letter words,
11,989 seven-letter words, 13,672 eight-letter words, 13,014 nine-letter words, 11,297
ten-letter words, and 8,617 eleven-letter words. (In reality, the most changeable words are
three-, four- and five-letter words, but the longer words are the time-consuming ones to
check.)

The most straightforward strategy is to use a Map in which the keys are words and the
values are lists containing the words that can be changed from the key with a one-character
substitution. The routine in Figure 4.65 shows how the Map that is eventually produced (we
have yet to write code for that part) can be used to print the required answers. The code
obtains the entry set and uses the enhanced for loop to step through the entry set and view
entries that are pairs consisting of a word and a list of words.

www.manaraa.com

4.8 Sets and Maps in the Standard Library 155

1 public static void printHighChangeables(Map<String,List<String>> adjWords,
2 int minWords)
3 {
4 for(Map.Entry<String,List<String>> entry : adjWords.entrySet())
5 {
6 List<String> words = entry.getValue();
7
8 if(words.size() >= minWords)
9 {

10 System.out.print(entry.getKey() + " (");
11 System.out.print(words.size() + "):");
12 for(String w : words)
13 System.out.print(" " + w);
14 System.out.println();
15 }
16 }
17 }

Figure 4.65 Given a map containing words as keys and a list of words that differ in only
one character as values, output words that have minWords or more words obtainable by a
one-character substitution

1 // Returns true if word1 and word2 are the same length
2 // and differ in only one character.
3 private static boolean oneCharOff(String word1, String word2)
4 {
5 if(word1.length() != word2.length())
6 return false;
7
8 int diffs = 0;
9

10 for(int i = 0; i < word1.length(); i++)
11 if(word1.charAt(i) != word2.charAt(i))
12 if(++diffs > 1)
13 return false;
14
15 return diffs == 1;
16 }

Figure 4.66 Routine to check if two words differ in only one character

The main issue is how to construct the Map from an array that contains the 89,000
words. The routine in Figure 4.66 is a straightforward function to test if two words are
identical except for a one-character substitution. We can use the routine to provide the
simplest algorithm for the Map construction, which is a brute-force test of all pairs of words.
This algorithm is shown in Figure 4.67.

www.manaraa.com

156 Chapter 4 Trees

To step through the collection of words, we could use an iterator, but because we are
stepping through it with a nested loop (i.e., several times), we dump the collection into an
array using toArray (lines 9 and 11). Among other things, this avoids repeated calls to cast
from Object to String, which occur behind the scenes if generics are used. Instead, we are
simply indexing a String[].

1 // Computes a map in which the keys are words and values are Lists of words
2 // that differ in only one character from the corresponding key.
3 // Uses a quadratic algorithm (with appropriate Map).
4 public static Map<String,List<String>>
5 computeAdjacentWords(List<String> theWords)
6 {
7 Map<String,List<String>> adjWords = new TreeMap<>();
8
9 String [] words = new String[theWords.size()];

10
11 theWords.toArray(words);
12 for(int i = 0; i < words.length; i++)
13 for(int j = i + 1; j < words.length; j++)
14 if(oneCharOff(words[i], words[j]))
15 {
16 update(adjWords, words[i], words[j]);
17 update(adjWords, words[j], words[i]);
18 }
19
20 return adjWords;
21 }
22
23 private static <KeyType> void update(Map<KeyType,List<String>> m,
24 KeyType key, String value)
25 {
26 List<String> lst = m.get(key);
27 if(lst == null)
28 {
29 lst = new ArrayList<>();
30 m.put(key, lst);
31 }
32
33 lst.add(value);
34 }

Figure 4.67 Function to compute a map containing words as keys and a list of words that
differ in only one character as values. This version runs in 75 seconds on an 89,000-word
dictionary

www.manaraa.com

4.8 Sets and Maps in the Standard Library 157

If we find a pair of words that differ in only one character, we can update the Map at
lines 16 and 17. In the private update method, at line 26 we see if there is already a list of
words associated with the key. If we have previously seen key, because lst is not null, then
it is in the Map, and we need only add the new word to the List in the Map, and we do this
by calling add at line 33. If we have never seen key before, then lines 29 and 30 place it in
the Map, with a List of size 0, so the add updates the List to be size 1. All in all, this is a
standard idiom for maintaining a Map, in which the value is a collection.

The problem with this algorithm is that it is slow, and takes 75 seconds on our com-
puter. An obvious improvement is to avoid comparing words of different lengths. We can
do this by grouping words by their length, and then running the previous algorithm on
each of the separate groups.

To do this, we can use a second map! Here the key is an integer representing a word
length, and the value is a collection of all the words of that length. We can use a List to
store each collection, and the same idiom applies. The code is shown in Figure 4.68. Line
9 shows the declaration for the second Map, lines 12 and 13 populate the Map, and then an
extra loop is used to iterate over each group of words. Compared to the first algorithm,
the second algorithm is only marginally more difficult to code and runs in 16 seconds, or
about five times as fast.

Our third algorithm is more complex, and uses additional maps! As before, we group
the words by word length, and then work on each group separately. To see how this algo-
rithm works, suppose we are working on words of length 4. Then first we want to find
word pairs such as wine and nine that are identical except for the first letter. One way to
do this, for each word of length 4, is to remove the first character, leaving a three-character
word representative. Form a Map in which the key is the representative, and the value is a
List of all words that have that representative. For instance, in considering the first char-
acter of the four-letter word group, representative "ine" corresponds to "dine", "fine",
"wine", "nine", "mine", "vine", "pine", "line". Representative "oot" corresponds to "boot",
"foot", "hoot", "loot", "soot", "zoot". Each individual List that is a value in this latest Map
forms a clique of words in which any word can be changed to any other word by a one-
character substitution, so after this latest Map is constructed, it is easy to traverse it and add
entries to the original Map that is being computed. We would then proceed to the second
character of the four-letter word group, with a new Map. And then the third character, and
finally the fourth character.

The general outline is:

for each group g, containing words of length len
for each position p (ranging from 0 to len-1)
{

Make an empty Map<String,List<String> > repsToWords
for each word w
{

Obtain w’s representative by removing position p
Update repsToWords

}
Use cliques in repsToWords to update adjWords map

}

www.manaraa.com

158 Chapter 4 Trees

Figure 4.69 contains an implementation of this algorithm. The running time improves
to one second. It is interesting to note that although the use of the additional Maps makes
the algorithm faster, and the syntax is relatively clean, the code makes no use of the fact
that the keys of the Map are maintained in sorted order.

As such, it is possible that a data structure that supports the Map operations but does
not guarantee sorted order can perform better, since it is being asked to do less. Chapter 5
explores this possibility and discusses the ideas behind the alternative Map implementation,
known as a HashMap. A HashMap reduces the running time of the implementation from one
second to roughly 0.8 seconds.

1 // Computes a map in which the keys are words and values are Lists of words
2 // that differ in only one character from the corresponding key.
3 // Uses a quadratic algorithm (with appropriate Map), but speeds things by
4 // maintaining an additional map that groups words by their length.
5 public static Map<String,List<String>>
6 computeAdjacentWords(List<String> theWords)
7 {
8 Map<String,List<String>> adjWords = new TreeMap<>();
9 Map<Integer,List<String>> wordsByLength = new TreeMap<>();

10
11 // Group the words by their length
12 for(String w : theWords)
13 update(wordsByLength, w.length(), w);
14
15 // Work on each group separately
16 for(List<String> groupsWords : wordsByLength.values())
17 {
18 String [] words = new String[groupsWords.size()];
19
20 groupsWords.toArray(words);
21 for(int i = 0; i < words.length; i++)
22 for(int j = i + 1; j < words.length; j++)
23 if(oneCharOff(words[i], words[j]))
24 {
25 update(adjWords, words[i], words[j]);
26 update(adjWords, words[j], words[i]);
27 }
28 }
29
30 return adjWords;
31 }

Figure 4.68 Function to compute a map containing words as keys and a list of words
that differ in only one character as values. Splits words into groups by word length. This
version runs in 16 seconds on an 89,000-word dictionary

www.manaraa.com

1 // Computes a map in which the keys are words and values are Lists of words
2 // that differ in only one character from the corresponding key.
3 // Uses an efficient algorithm that is O(N log N) with a TreeMap.
4 public static Map<String,List<String>>
5 computeAdjacentWords(List<String> words)
6 {
7 Map<String,List<String>> adjWords = new TreeMap<>();
8 Map<Integer,List<String>> wordsByLength = new TreeMap<>();
9

10 // Group the words by their length
11 for(String w : words)
12 update(wordsByLength, w.length(), w);
13
14 // Work on each group separately
15 for(Map.Entry<Integer,List<String>> entry : wordsByLength.entrySet())
16 {
17 List<String> groupsWords = entry.getValue();
18 int groupNum = entry.getKey();
19
20 // Work on each position in each group
21 for(int i = 0; i < groupNum; i++)
22 {
23 // Remove one character in specified position, computing
24 // representative. Words with same representative are
25 // adjacent, so first populate a map ...
26 Map<String,List<String>> repToWord = new TreeMap<>();
27
28 for(String str : groupsWords)
29 {
30 String rep = str.substring(0, i) + str.substring(i + 1);
31 update(repToWord, rep, str);
32 }
33
34 // and then look for map values with more than one string
35 for(List<String> wordClique : repToWord.values())
36 if(wordClique.size() >= 2)
37 for(String s1 : wordClique)
38 for(String s2 : wordClique)
39 if(s1 != s2)
40 update(adjWords, s1, s2);
41 }
42 }
43
44 return adjWords;
45 }

Figure 4.69 Function to compute a map containing words as keys and a list of words
that differ in only one character as values. Runs in 1 second on an 89,000-word dictionary

www.manaraa.com

160 Chapter 4 Trees

Summary

We have seen uses of trees in operating systems, compiler design, and searching.
Expression trees are a small example of a more general structure known as a parse tree,
which is a central data structure in compiler design. Parse trees are not binary but are rela-
tively simple extensions of expression trees (although the algorithms to build them are not
quite so simple).

Search trees are of great importance in algorithm design. They support almost all the
useful operations, and the logarithmic average cost is very small. Nonrecursive implemen-
tations of search trees are somewhat faster, but the recursive versions are sleeker, more
elegant, and easier to understand and debug. The problem with search trees is that their
performance depends heavily on the input being random. If this is not the case, the run-
ning time increases significantly, to the point where search trees become expensive linked
lists.

We saw several ways to deal with this problem. AVL trees work by insisting that all
nodes’ left and right subtrees differ in heights by at most one. This ensures that the tree
cannot get too deep. The operations that do not change the tree, as insertion does, can
all use the standard binary search tree code. Operations that change the tree must restore
the tree. This can be somewhat complicated, especially in the case of deletion. We showed
how to restore the tree after insertions in O(log N) time.

We also examined the splay tree. Nodes in splay trees can get arbitrarily deep, but after
every access the tree is adjusted in a somewhat mysterious manner. The net effect is that
any sequence of M operations takes O(M log N) time, which is the same as a balanced tree
would take.

B-trees are balanced M-way (as opposed to 2-way or binary) trees, which are well
suited for disks; a special case is the 2–3 tree (M = 3), which is another way to implement
balanced search trees.

In practice, the running time of all the balanced tree schemes, while slightly faster
for searching, is worse (by a constant factor) for insertions and deletions than the simple
binary search tree, but this is generally acceptable in view of the protection being given
against easily obtained worst-case input. Chapter 12 discusses some additional search tree
data structures and provides detailed implementations.

A final note: By inserting elements into a search tree and then performing an inorder
traversal, we obtain the elements in sorted order. This gives an O(N log N) algorithm to
sort, which is a worst-case bound if any sophisticated search tree is used. We shall see
better ways in Chapter 7, but none that have a lower time bound.

Exercises

Questions 4.1 to 4.3 refer to the tree in Figure 4.70.

4.1 For the tree in Figure 4.70:
a. Which node is the root?
b. Which nodes are leaves?

www.manaraa.com

Exercises 161

4.2 For each node in the tree of Figure 4.70:
a. Name the parent node.
b. List the children.
c. List the siblings.
d. Compute the depth.
e. Compute the height.

4.3 What is the depth of the tree in Figure 4.70?

4.4 Show that in a binary tree of N nodes, there are N + 1 null links representing
children.

4.5 Show that the maximum number of nodes in a binary tree of height h is 2h+1 − 1.

4.6 A full node is a node with two children. Prove that the number of full nodes plus
one is equal to the number of leaves in a nonempty binary tree.

4.7 Suppose a binary tree has leaves l1, l2, . . . , lM at depths d1, d2, . . . , dM, respectively.
Prove that

∑M
i=1 2−di ≤ 1 and determine when the equality is true.

4.8 Give the prefix, infix, and postfix expressions corresponding to the tree in
Figure 4.71.

4.9 a. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, 7 into an initially empty binary
search tree.

b. Show the result of deleting the root.

4.10 Write a program that lists all files in a directory and their sizes. Mimic the routine
in the online code.

4.11 Write an implementation of the TreeSet class, with associated iterators using a
binary search tree. Add to each node a link to the parent node.

4.12 Write an implementation of the TreeMap class by storing a data member of type
TreeSet<Map.Entry<KeyType,ValueType>>.

A

B

D

G H

E

I J

L M

C

F

K

Figure 4.70 Tree for Exercises 4.1 to 4.3

www.manaraa.com

162 Chapter 4 Trees

a

*

b

*

+

c d

-

e

Figure 4.71 Tree for Exercise 4.8

4.13 Write an implementation of the TreeSet class, with associated iterators, using a
binary search tree. Add to each node a link to the next smallest and next largest
node. To make your code simpler, add a header and tail node which are not part of
the binary search tree, but help make the linked list part of the code simpler.

4.14 Suppose you want to perform an experiment to verify the problems that can be
caused by random insert/remove pairs. Here is a strategy that is not perfectly ran-
dom, but close enough. You build a tree with N elements by inserting N elements
chosen at random from the range 1 to M = αN. You then perform N2 pairs of inser-
tions followed by deletions. Assume the existence of a routine, randomInteger(a, b),
which returns a uniform random integer between a and b inclusive.
a. Explain how to generate a random integer between 1 and M that is not already

in the tree (so a random insertion can be performed). In terms of N and α, what
is the running time of this operation?

b. Explain how to generate a random integer between 1 and M that is already in
the tree (so a random deletion can be performed). What is the running time of
this operation?

c. What is a good choice of α? Why?

4.15 Write a program to evaluate empirically the following strategies for removing nodes
with two children:
a. Replace with the largest node, X, in TL and recursively remove X.
b. Alternately replace with the largest node in TL and the smallest node in TR, and

recursively remove the appropriate node.
c. Replace with either the largest node in TL or the smallest node in TR (recursively

removing the appropriate node), making the choice randomly.

Which strategy seems to give the most balance? Which takes the least CPU time to
process the entire sequence?

4.16 Redo the binary search tree class to implement lazy deletion. Note carefully that
this affects all of the routines. Especially challenging are findMin and findMax, which
must now be done recursively.

www.manaraa.com

Exercises 163

��4.17 Prove that the depth of a random binary search tree (depth of the deepest node) is
O(log N), on average.

4.18 �a. Give a precise expression for the minimum number of nodes in an AVL tree of
height h.

b. What is the minimum number of nodes in an AVL tree of height 15?

4.19 Show the result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty AVL tree.
�4.20 Keys 1, 2, . . . , 2k − 1 are inserted in order into an initially empty AVL tree. Prove

that the resulting tree is perfectly balanced.

4.21 Write the remaining procedures to implement AVL single and double rotations.

4.22 Design a linear-time algorithm that verifies that the height information in an AVL

tree is correctly maintained and that the balance property is in order.

4.23 Write a nonrecursive method to insert into an AVL tree.

4.24 Show that the deletion algorithm in Figure 4.44 is correct, and explain what
happens if > is used instead of >= at lines 32 and 38 in Figure 4.39.

4.25 a. How many bits are required per node to store the height of a node in an N-node
AVL tree?

b. What is the smallest AVL tree that overflows an 8-bit height counter?

4.26 Write the methods to perform the double rotation without the inefficiency of doing
two single rotations.

4.27 Show the result of accessing the keys 3, 9, 1, 5 in order in the splay tree in
Figure 4.72.

4.28 Show the result of deleting the element with key 6 in the resulting splay tree for the
previous exercise.

4.29 a. Show that if all nodes in a splay tree are accessed in sequential order, the
resulting tree consists of a chain of left children.

4

2 6

1 3 5 8

10

11

12

13

7 9

Figure 4.72 Tree for Exercise 4.27

www.manaraa.com

164 Chapter 4 Trees

��b. Show that if all nodes in a splay tree are accessed in sequential order, then the
total access time is O(N), regardless of the initial tree.

4.30 Write a program to perform random operations on splay trees. Count the total
number of rotations performed over the sequence. How does the running time
compare to AVL trees and unbalanced binary search trees?

4.31 Write efficient methods that take only a reference to the root of a binary tree, T, and
compute:
a. The number of nodes in T.
b. The number of leaves in T.
c. The number of full nodes in T.
What is the running time of your routines?

4.32 Design a recursive linear-time algorithm that tests whether a binary tree satisfies the
search tree order property at every node.

4.33 Write a recursive method that takes a reference to the root node of a tree T and
returns a reference to the root node of the tree that results from removing all leaves
from T.

4.34 Write a method to generate an N-node random binary search tree with distinct keys
1 through N. What is the running time of your routine?

4.35 Write a method to generate the AVL tree of height h with fewest nodes. What is the
running time of your method?

4.36 Write a method to generate a perfectly balanced binary search tree of height h with
keys 1 through 2h+1 − 1. What is the running time of your method?

4.37 Write a method that takes as input a binary search tree, T, and two keys k1 and k2,
which are ordered so that k1 ≤ k2, and prints all elements X in the tree such that
k1 ≤ Key(X) ≤ k2. Do not assume any information about the type of keys except
that they can be ordered (consistently). Your program should run in O(K + log N)
average time, where K is the number of keys printed. Bound the running time of
your algorithm.

4.38 The larger binary trees in this chapter were generated automatically by a program.
This was done by assigning an (x, y) coordinate to each tree node, drawing a circle
around each coordinate (this is hard to see in some pictures), and connecting each
node to its parent. Assume you have a binary search tree stored in memory (perhaps
generated by one of the routines above) and that each node has two extra fields to
store the coordinates.
a. The x coordinate can be computed by assigning the inorder traversal number.

Write a routine to do this for each node in the tree.
b. The y coordinate can be computed by using the negative of the depth of the

node. Write a routine to do this for each node in the tree.
c. In terms of some imaginary unit, what will the dimensions of the picture be?

How can you adjust the units so that the tree is always roughly two-thirds as
high as it is wide?

www.manaraa.com

Exercises 165

d. Prove that using this system no lines cross, and that for any node, X, all elements
in X’s left subtree appear to the left of X and all elements in X’s right subtree
appear to the right of X.

4.39 Write a general-purpose tree-drawing program that will convert a tree into the
following graph-assembler instructions:
a. Circle(X, Y)
b. DrawLine(i, j)
The first instruction draws a circle at (X, Y), and the second instruction connects
the ith circle to the jth circle (circles are numbered in the order drawn). You should
either make this a program and define some sort of input language or make this
a method that can be called from any program. What is the running time of your
routine?

4.40 (This exercise assumes familiarity with the Java Swing Library.) Write a program
that reads graph-assembler instructions and generates Java code that draws into a
canvas. (Note that you have to scale the stored coordinates into pixels.)

4.41 Write a routine to list out the nodes of a binary tree in level-order. List the root, then
nodes at depth 1, followed by nodes at depth 2, and so on. You must do this in
linear time. Prove your time bound.

4.42 �a. Write a routine to perform insertion into a B-tree.
�b. Write a routine to perform deletion from a B-tree. When an item is deleted, is it

necessary to update information in the internal nodes?
�c. Modify your insertion routine so that if an attempt is made to add into a node

that already has M entries, a search is performed for a sibling with less than M
children before the node is split.

4.43 A B∗-tree of order M is a B-tree in which each interior node has between 2M/3 and
M children. Describe a method to perform insertion into a B∗-tree.

4.44 Show how the tree in Figure 4.73 is represented using a child/sibling link
implementation.

4.45 Write a procedure to traverse a tree stored with child/sibling links.

A

B C

O P Q R

G

D E F N

H I J K L M

Figure 4.73 Tree for Exercise 4.44

www.manaraa.com

166 Chapter 4 Trees

A A

B BC C

G G DD E E

F H FH

Figure 4.74 Two isomorphic trees

4.46 Two binary trees are similar if they are both empty or both nonempty and have
similar left and right subtrees. Write a method to decide whether two binary trees
are similar. What is the running time of your method?

4.47 Two trees, T1 and T2, are isomorphic if T1 can be transformed into T2 by swapping
left and right children of (some of the) nodes in T1. For instance, the two trees in
Figure 4.74 are isomorphic because they are the same if the children of A, B, and
G, but not the other nodes, are swapped.
a. Give a polynomial time algorithm to decide if two trees are isomorphic.

�b. What is the running time of your program (there is a linear solution)?

4.48 �a. Show that via AVL single rotations, any binary search tree T1 can be transformed
into another search tree T2 (with the same items).

�b. Give an algorithm to perform this transformation using O(N log N) rotations on
average.

��c. Show that this transformation can be done with O(N) rotations, worst case.

4.49 Suppose we want to add the operation findKth to our repertoire. The operation
findKth(k) returns the kth smallest item in the tree. Assume all items are distinct.
Explain how to modify the binary search tree to support this operation in O(log N)
average time, without sacrificing the time bounds of any other operation.

4.50 Since a binary search tree with N nodes has N + 1 null references, half the space
allocated in a binary search tree for link information is wasted. Suppose that if a
node has a null left child, we make its left child link to its inorder predecessor, and
if a node has a null right child, we make its right child link to its inorder successor.
This is known as a threaded tree, and the extra links are called threads.
a. How can we distinguish threads from real children links?
b. Write routines to perform insertion and deletion into a tree threaded in the

manner described above.
c. What is the advantage of using threaded trees?

4.51 Let f(N) be the average number of full nodes in a binary search tree.
a. Determine the values of f(0) and f(1).
b. Show that for N > 1

f(N) = N − 2

N
+ 1

N

N−1∑
i=0

(f(i) + f(N − i − 1))

www.manaraa.com

References 167

IX: {Series |(} {2}
IX: {Series!geometric|(} {4}
IX: {Euler’s constant} {4}
IX: {Series!geometric|)} {4}
IX: {Series!arithmetic|(} {4}
IX: {Series!arithmetic|)} {5}
IX: {Series!harmonic|(} {5}
IX: {Euler’s constant} {5}
IX: {Series!harmonic|)} {5}
IX: {Series|)} {5}

Figure 4.75 Sample input for Exercise 4.53

Euler’s constant: 4, 5
Series: 2-5

arithmetic: 4-5
geometric: 4
harmonic: 5

Figure 4.76 Sample output for Exercise 4.53

c. Show (by induction) that f(N) = (N − 2)/3 is a solution to the equation in part
(b), with the initial conditions in part (a).

d. Use the results of Exercise 4.6 to determine the average number of leaves in an
N node binary search tree.

4.52 Write a program that reads a Java source code file and outputs a list of all identi-
fiers (that is, variable names but not keywords, not found in comments or string
constants) in alphabetical order. Each identifier should be output with a list of line
numbers on which it occurs.

4.53 Generate an index for a book. The input file consists of a set of index entries. Each
line consists of the string IX:, followed by an index entry name enclosed in braces,
followed by a page number that is enclosed in braces. Each ! in an index entry
name represents a sub-level. A (|represents the start of a range, and a |) represents
the end of the range. Occasionally, this range will be the same page. In that case,
output only a single page number. Otherwise, do not collapse or expand ranges on
your own. As an example, Figure 4.75 shows sample input, and Figure 4.76 shows
the corresponding output.

References

More information on binary search trees, and in particular the mathematical properties of
trees, can be found in the two books by Knuth, [22] and [23].

Several papers deal with the lack of balance caused by biased deletion algorithms in
binary search trees. Hibbard’s paper [19] proposed the original deletion algorithm and

www.manaraa.com

168 Chapter 4 Trees

established that one deletion preserves the randomness of the trees. A complete analysis has
been performed only for trees with three nodes [20] and four nodes [5]. Eppinger’s paper
[14] provided early empirical evidence of nonrandomness, and the papers by Culberson
and Munro [10], [11] provided some analytical evidence (but not a complete proof for the
general case of intermixed insertions and deletions).

AVL trees were proposed by Adelson-Velskii and Landis [1]. Simulation results for AVL

trees, and variants in which the height imbalance is allowed to be at most k for various val-
ues of k, are presented in [21]. Analysis of the average search cost in AVL trees is incomplete,
but some results are contained in [24].

[3] and [8] considered self-adjusting trees like the type in Section 4.5.1. Splay trees are
described in [28].

B-trees first appeared in [6]. The implementation described in the original paper allows
data to be stored in internal nodes as well as leaves. The data structure we have described
is sometimes known as a B+-tree. A survey of the different types of B-trees is presented in
[9]. Empirical results of the various schemes are reported in [17]. Analysis of 2–3 trees and
B-trees can be found in [4], [13], and [32].

Exercise 4.17 is deceptively difficult. A solution can be found in [15]. Exercise 4.29
is from [31]. Information on B*-trees, described in Exercise 4.47, can be found in [12].
Exercise 4.47 is from [2]. A solution to Exercise 4.48 using 2N − 6 rotations is given in
[29]. Using threads, à la Exercise 4.50, was first proposed in [27]. k-d trees, which handle
multidimensional data, were first proposed in [7] and are discussed in Chapter 12.

Other popular balanced search trees are red-black trees [18] and weight-balanced trees
[26]. More balanced-tree schemes can be found in the books [16], [25], and [30].

1. G. M. Adelson-Velskii and E. M. Landis, “An Algorithm for the Organization of
Information,” Soviet. Mat. Doklady, 3 (1962), 1259–1263.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

3. B. Allen and J. I. Munro, “Self Organizing Search Trees,” Journal of the ACM, 25 (1978),
526–535.

4. R. A. Baeza-Yates, “Expected Behaviour of B+-trees under Random Insertions,” Acta
Informatica, 26 (1989), 439–471.

5. R. A. Baeza-Yates, “A Trivial Algorithm Whose Analysis Isn’t: A Continuation,” BIT, 29
(1989), 88–113.

6. R. Bayer and E. M. McCreight, “Organization and Maintenance of Large Ordered Indices,”
Acta Informatica, 1 (1972), 173–189.

7. J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,”
Communications of the ACM, 18 (1975), 509–517.

8. J. R. Bitner, “Heuristics that Dynamically Organize Data Structures,” SIAM Journal on
Computing, 8 (1979), 82–110.

9. D. Comer, “The Ubiquitous B-tree,” Computing Surveys, 11 (1979), 121–137.
10. J. Culberson and J. I. Munro, “Explaining the Behavior of Binary Search Trees under

Prolonged Updates: A Model and Simulations,” Computer Journal, 32 (1989), 68–75.
11. J. Culberson and J. I. Munro, “Analysis of the Standard Deletion Algorithms in Exact Fit

Domain Binary Search Trees,” Algorithmica, 5 (1990), 295–311.

www.manaraa.com

References 169

12. K. Culik, T. Ottman, and D. Wood, “Dense Multiway Trees,” ACM Transactions on Database
Systems, 6 (1981), 486–512.

13. B. Eisenbath, N. Ziviana, G. H. Gonnet, K. Melhorn, and D. Wood, “The Theory of Fringe
Analysis and Its Application to 2–3 Trees and B-trees,” Information and Control, 55 (1982),
125–174.

14. J. L. Eppinger, “An Empirical Study of Insertion and Deletion in Binary Search Trees,”
Communications of the ACM, 26 (1983), 663–669.

15. P. Flajolet and A. Odlyzko, “The Average Height of Binary Trees and Other Simple Trees,”
Journal of Computer and System Sciences, 25 (1982), 171–213.

16. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2d ed.,
Addison-Wesley, Reading, Mass., 1991.

17. E. Gudes and S. Tsur, “Experiments with B-tree Reorganization,” Proceedings of ACM
SIGMOD Symposium on Management of Data (1980), 200–206.

18. L. J. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced Trees,” Proceedings
of the Nineteenth Annual IEEE Symposium on Foundations of Computer Science (1978), 8–21.

19. T. H. Hibbard, “Some Combinatorial Properties of Certain Trees with Applications to
Searching and Sorting,” Journal of the ACM, 9 (1962), 13–28.

20. A. T. Jonassen and D. E. Knuth, “A Trivial Algorithm Whose Analysis Isn’t,” Journal of
Computer and System Sciences, 16 (1978), 301–322.

21. P. L. Karlton, S. H. Fuller, R. E. Scroggs, and E. B. Kaehler, “Performance of Height Balanced
Trees,” Communications of the ACM, 19 (1976), 23–28.

22. D. E. Knuth, The Art of Computer Programming: Vol. 1: Fundamental Algorithms, 3d ed.,
Addison-Wesley, Reading, Mass., 1997.

23. D. E. Knuth, The Art of Computer Programming: Vol. 3: Sorting and Searching, 2d ed.,
Addison-Wesley, Reading, Mass., 1998.

24. K. Melhorn, “A Partial Analysis of Height-Balanced Trees under Random Insertions and
Deletions,” SIAM Journal of Computing, 11 (1982), 748–760.

25. K. Melhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer-Verlag, Berlin,
1984.

26. J. Nievergelt and E. M. Reingold, “Binary Search Trees of Bounded Balance,” SIAM Journal
on Computing, 2 (1973), 33–43.

27. A. J. Perlis and C. Thornton, “Symbol Manipulation in Threaded Lists,” Communications of
the ACM, 3 (1960), 195–204.

28. D. D. Sleator and R. E. Tarjan, “Self-adjusting Binary Search Trees,” Journal of ACM, 32
(1985), 652–686.

29. D. D. Sleator, R. E. Tarjan, and W. P. Thurston, “Rotation Distance, Triangulations, and
Hyperbolic Geometry,” Journal of AMS (1988), 647–682.

30. H. F. Smith, Data Structures—Form and Function, Harcourt Brace Jovanovich, Orlando, Fla.,
1987.

31. R. E. Tarjan, “Sequential Access in Splay Trees Takes Linear Time,” Combinatorica, 5 (1985),
367–378.

32. A. C. Yao, “On Random 2–3 Trees,” Acta Informatica, 9 (1978), 159–170.

www.manaraa.com

This page intentionally left blank

www.manaraa.com

C H A P T E R 5

Hashing

In Chapter 4, we discussed the search tree ADT, which allowed various operations on a set
of elements. In this chapter, we discuss the hash table ADT, which supports only a subset of
the operations allowed by binary search trees.

The implementation of hash tables is frequently called hashing. Hashing is a tech-
nique used for performing insertions, deletions, and searches in constant average time.
Tree operations that require any ordering information among the elements are not sup-
ported efficiently. Thus, operations such as findMin, findMax, and the printing of the entire
table in sorted order in linear time are not supported.

The central data structure in this chapter is the hash table. We will

� See several methods of implementing the hash table.
� Compare these methods analytically.
� Show numerous applications of hashing.
� Compare hash tables with binary search trees.

5.1 General Idea
The ideal hash table data structure is merely an array of some fixed size, containing the
items. As discussed in Chapter 4, generally a search is performed on some part (that is,
data field) of the item. This is called the key. For instance, an item could consist of a string
(that serves as the key) and additional data fields (for instance, a name that is part of a large
employee structure). We will refer to the table size as TableSize, with the understanding that
this is part of a hash data structure and not merely some variable floating around globally.
The common convention is to have the table run from 0 to TableSize − 1; we will see why
shortly.

Each key is mapped into some number in the range 0 to TableSize − 1 and placed
in the appropriate cell. The mapping is called a hash function, which ideally should be
simple to compute and should ensure that any two distinct keys get different cells. Since
there are a finite number of cells and a virtually inexhaustible supply of keys, this is clearly
impossible, and thus we seek a hash function that distributes the keys evenly among the
cells. Figure 5.1 is typical of a perfect situation. In this example, john hashes to 3, phil
hashes to 4, dave hashes to 6, and mary hashes to 7. 171

www.manaraa.com

172 Chapter 5 Hashing

john 25000

phil 31250

dave 27500

mary 28200

0

1

2

3

4

5

6

7

8

9

Figure 5.1 An ideal hash table

This is the basic idea of hashing. The only remaining problems deal with choosing a
function, deciding what to do when two keys hash to the same value (this is known as a
collision), and deciding on the table size.

5.2 Hash Function
If the input keys are integers, then simply returning Key mod TableSize is generally a rea-
sonable strategy, unless Key happens to have some undesirable properties. In this case, the
choice of hash function needs to be carefully considered. For instance, if the table size
is 10 and the keys all end in zero, then the standard hash function is a bad choice. For
reasons we shall see later, and to avoid situations like the one above, it is often a good idea
to ensure that the table size is prime. When the input keys are random integers, then this
function is not only very simple to compute but also distributes the keys evenly.

Usually, the keys are strings; in this case, the hash function needs to be chosen carefully.
One option is to add up the ASCII (or Unicode) values of the characters in the string.

The routine in Figure 5.2 implements this strategy.
The hash function depicted in Figure 5.2 is simple to implement and computes an

answer quickly. However, if the table size is large, the function does not distribute the keys
well. For instance, suppose that TableSize = 10,007 (10,007 is a prime number). Suppose
all the keys are eight or fewer characters long. Since an ASCII character has an integer value
that is always at most 127, the hash function typically can only assume values between 0
and 1,016, which is 127 ∗ 8. This is clearly not an equitable distribution!

Another hash function is shown in Figure 5.3. This hash function assumes that Key has
at least three characters. The value 27 represents the number of letters in the English alpha-
bet, plus the blank, and 729 is 272. This function examines only the first three characters,

www.manaraa.com

5.2 Hash Function 173

1 public static int hash(String key, int tableSize)
2 {
3 int hashVal = 0;
4
5 for(int i = 0; i < key.length(); i++)
6 hashVal += key.charAt(i);
7
8 return hashVal % tableSize;
9 }

Figure 5.2 A simple hash function

1 public static int hash(String key, int tableSize)
2 {
3 return (key.charAt(0) + 27 * key.charAt(1) +
4 729 * key.charAt(2)) % tableSize;
5 }

Figure 5.3 Another possible hash function—not too good

but if these are random and the table size is 10,007, as before, then we would expect a
reasonably equitable distribution. Unfortunately, English is not random. Although there
are 263 = 17,576 possible combinations of three characters (ignoring blanks), a check
of a reasonably large online dictionary reveals that the number of different combinations
is actually only 2,851. Even if none of these combinations collide, only 28 percent of the
table can actually be hashed to. Thus this function, although easily computable, is also not
appropriate if the hash table is reasonably large.

Figure 5.4 shows a third attempt at a hash function. This hash function involves
all characters in the key and can generally be expected to distribute well (it computes∑KeySize−1

i=0 Key[KeySize − i − 1] · 37i and brings the result into proper range). The code
computes a polynomial function (of 37) by use of Horner’s rule. For instance, another way
of computing hk = k0 + 37k1 + 372k2 is by the formula hk = ((k2) ∗ 37 + k1) ∗ 37 + k0.
Horner’s rule extends this to an nth degree polynomial.

The hash function takes advantage of the fact that overflow is allowed. This may
introduce a negative number; thus the extra test at the end.

The hash function described in Figure 5.4 is not necessarily the best with respect to
table distribution but does have the merit of extreme simplicity and is reasonably fast. If the
keys are very long, the hash function will take too long to compute. A common practice in
this case is not to use all the characters. The length and properties of the keys would then
influence the choice. For instance, the keys could be a complete street address. The hash
function might include a couple of characters from the street address and perhaps a couple
of characters from the city name and ZIP code. Some programmers implement their hash
function by using only the characters in the odd spaces, with the idea that the time saved
computing the hash function will make up for a slightly less evenly distributed function.

www.manaraa.com

174 Chapter 5 Hashing

1 /**
2 * A hash routine for String objects.
3 * @param key the String to hash.
4 * @param tableSize the size of the hash table.
5 * @return the hash value.
6 */
7 public static int hash(String key, int tableSize)
8 {
9 int hashVal = 0;

10
11 for(int i = 0; i < key.length(); i++)
12 hashVal = 37 * hashVal + key.charAt(i);
13
14 hashVal %= tableSize;
15 if(hashVal < 0)
16 hashVal += tableSize;
17
18 return hashVal;
19 }

Figure 5.4 A good hash function

The main programming detail left is collision resolution. If, when an element is
inserted, it hashes to the same value as an already inserted element, then we have a col-
lision and need to resolve it. There are several methods for dealing with this. We will
discuss two of the simplest: separate chaining and open addressing; then we will look at
some more recently discovered alternatives.

5.3 Separate Chaining
The first strategy, commonly known as separate chaining, is to keep a list of all elements
that hash to the same value. We can use the standard library list implementations. If space
is tight, it might be preferable to avoid their use (since those lists are doubly linked and
waste space). We assume, for this section, that the keys are the first 10 perfect squares and
that the hashing function is simply hash(x) = x mod 10. (The table size is not prime but is
used here for simplicity.) Figure 5.5 should make this clear.

To perform a search, we use the hash function to determine which list to traverse. We
then search the appropriate list. To perform an insert, we check the appropriate list to see
whether the element is already in place (if duplicates are expected, an extra field is usually
kept, and this field would be incremented in the event of a match). If the element turns
out to be new, it is inserted at the front of the list, since it is convenient and also because
frequently it happens that recently inserted elements are the most likely to be accessed in
the near future.

The class skeleton required to implement separate chaining is shown in Figure 5.6.
The hash table stores an array of linked lists, which are allocated in the constructor.

www.manaraa.com

5.3 Separate Chaining 175

0

81 1

64 4

25

36 16

49 9

0

1

2

3

4

5

6

7

8

9

Figure 5.5 A separate chaining hash table

1 public class SeparateChainingHashTable<AnyType>
2 {
3 public SeparateChainingHashTable()
4 { /* Figure 5.9 */ }
5 public SeparateChainingHashTable(int size)
6 { /* Figure 5.9 */ }
7
8 public void insert(AnyType x)
9 { /* Figure 5.10 */ }

10 public void remove(AnyType x)
11 { /* Figure 5.10 */ }
12 public boolean contains(AnyType x)
13 { /* Figure 5.10 */ }
14 public void makeEmpty()
15 { /* Figure 5.9 */ }
16
17 private static final int DEFAULT_TABLE_SIZE = 101;
18
19 private List<AnyType> [] theLists;
20 private int currentSize;
21
22 private void rehash()
23 { /* Figure 5.22 */ }
24 private int myhash(AnyType x)
25 { /* Figure 5.7 */ }
26
27 private static int nextPrime(int n)
28 { /* See online code */ }
29 private static boolean isPrime(int n)
30 { /* See online code */ }
31 }

Figure 5.6 Class skeleton for separate chaining hash table

www.manaraa.com

176 Chapter 5 Hashing

1 private int myhash(AnyType x)
2 {
3 int hashVal = x.hashCode();
4
5 hashVal %= theLists.length;
6 if(hashVal < 0)
7 hashVal += theLists.length;
8
9 return hashVal;

10 }

Figure 5.7 myHash method for hash tables

1 public class Employee
2 {
3 public boolean equals(Object rhs)
4 { return rhs instanceof Employee && name.equals(((Employee)rhs).name); }
5
6 public int hashCode()
7 { return name.hashCode(); }
8
9 private String name;

10 private double salary;
11 private int seniority;
12
13 // Additional fields and methods
14 }

Figure 5.8 Example of Employee class that can be in a hash table

Just as the binary search tree works only for objects that are Comparable, the hash tables
in this chapter work only for objects that follow a certain protocol. In Java such objects
must provide an appropriate equals method and a hashCode method that returns an int.
The hash table can then scale this int into a suitable array index via myHash, as shown in
Figure 5.7. Figure 5.8 illustrates an Employee class that can be stored in a hash table. The
Employee class provides an equals method and a hashCode method based on the Employee’s
name. The hashCode for the Employee class works by using the hashCode defined in the
Standard String class. That hashCode is basically the code in Figure 5.4 with lines 14–16
removed.

Figure 5.9 shows the constructors and makeEmpty.
The code to implement contains, insert, and remove is shown in Figure 5.10.

www.manaraa.com

5.3 Separate Chaining 177

1 /**
2 * Construct the hash table.
3 */
4 public SeparateChainingHashTable()
5 {
6 this(DEFAULT_TABLE_SIZE);
7 }
8
9 /**

10 * Construct the hash table.
11 * @param size approximate table size.
12 */
13 public SeparateChainingHashTable(int size)
14 {
15 theLists = new LinkedList[nextPrime(size)];
16 for(int i = 0; i < theLists.length; i++)
17 theLists[i] = new LinkedList<>();
18 }
19
20 /**
21 * Make the hash table logically empty.
22 */
23 public void makeEmpty()
24 {
25 for(int i = 0; i < theLists.length; i++)
26 theLists[i].clear();
27 currentSize = 0;
28 }

Figure 5.9 Constructors and makeEmpty for separate chaining hash table

In the insertion routine, if the item to be inserted is already present, then we do noth-
ing; otherwise, we place it in the list. The element can be placed anywhere in the list; using
add is most convenient in our case.

Any scheme could be used besides linked lists to resolve the collisions; a binary search
tree or even another hash table would work, but we expect that if the table is large and the
hash function is good, all the lists should be short, so basic separate chaining makes no
attempt to try anything complicated.

We define the load factor, λ, of a hash table to be the ratio of the number of elements in
the hash table to the table size. In the example above, λ = 1.0. The average length of a list
is λ. The effort required to perform a search is the constant time required to evaluate the
hash function plus the time to traverse the list. In an unsuccessful search, the number of
nodes to examine is λ on average. A successful search requires that about 1+(λ/2) links be
traversed. To see this, notice that the list that is being searched contains the one node that
stores the match plus zero or more other nodes. The expected number of “other nodes”

www.manaraa.com

178 Chapter 5 Hashing

1 /**
2 * Find an item in the hash table.
3 * @param x the item to search for.
4 * @return true if x is not found.
5 */
6 public boolean contains(AnyType x)
7 {
8 List<AnyType> whichList = theLists[myhash(x)];
9 return whichList.contains(x);

10 }
11
12 /**
13 * Insert into the hash table. If the item is
14 * already present, then do nothing.
15 * @param x the item to insert.
16 */
17 public void insert(AnyType x)
18 {
19 List<AnyType> whichList = theLists[myhash(x)];
20 if(!whichList.contains(x))
21 {
22 whichList.add(x);
23
24 // Rehash; see Section 5.5
25 if(++currentSize > theLists.length)
26 rehash();
27 }
28 }
29
30 /**
31 * Remove from the hash table.
32 * @param x the item to remove.
33 */
34 public void remove(AnyType x)
35 {
36 List<AnyType> whichList = theLists[myhash(x)];
37 if(whichList.contains(x))
38 {
39 whichList.remove(x);
40 currentSize--;
41 }
42 }

Figure 5.10 contains, insert, and remove routines for separate chaining hash table

www.manaraa.com

5.4 Hash Tables Without Linked Lists 179

in a table of N elements and M lists is (N − 1)/M = λ − 1/M, which is essentially λ, since
M is presumed to be large. On average, half the “other nodes” are searched, so combined
with the matching node, we obtain an average search cost of 1 + λ/2 nodes. This analysis
shows that the table size is not really important, but the load factor is. The general rule
for separate chaining hashing is to make the table size about as large as the number of
elements expected (in other words, let λ ≈ 1). In the code in Figure 5.10, if the load
factor exceeds 1, we expand the table size by calling rehash at line 26. rehash is discussed
in Section 5.5. It is also a good idea, as mentioned before, to keep the table size prime to
ensure a good distribution.

5.4 Hash Tables Without Linked Lists
Separate chaining hashing has the disadvantage of using linked lists. This could slow the
algorithm down a bit because of the time required to allocate new cells (especially in other
languages), and also essentially requires the implementation of a second data structure.
An alternative to resolving collisions with linked lists is to try alternative cells until an
empty cell is found. More formally, cells h0(x), h1(x), h2(x), . . . are tried in succession,
where hi(x) = (hash(x)+f(i)) mod TableSize, with f(0) = 0. The function, f , is the collision
resolution strategy. Because all the data go inside the table, a bigger table is needed in such
a scheme than for separate chaining hashing. Generally, the load factor should be below
λ = 0.5 for a hash table that doesn’t use separate chaining. We call such tables probing
hash tables. We now look at three common collision resolution strategies.

5.4.1 Linear Probing
In linear probing, f is a linear function of i, typically f(i) = i. This amounts to trying cells
sequentially (with wraparound) in search of an empty cell. Figure 5.11 shows the result of
inserting keys {89, 18, 49, 58, 69} into a hash table using the same hash function as before
and the collision resolution strategy, f(i) = i.

The first collision occurs when 49 is inserted; it is put in the next available spot, namely,
spot 0, which is open. The key 58 collides with 18, 89, and then 49 before an empty cell
is found three away. The collision for 69 is handled in a similar manner. As long as the
table is big enough, a free cell can always be found, but the time to do so can get quite
large. Worse, even if the table is relatively empty, blocks of occupied cells start forming.
This effect, known as primary clustering, means that any key that hashes into the cluster
will require several attempts to resolve the collision, and then it will add to the cluster.

Although we will not perform the calculations here, it can be shown that the expected
number of probes using linear probing is roughly 1

2 (1 + 1/(1 − λ)2) for insertions and
unsuccessful searches, and 1

2 (1 + 1/(1 − λ)) for successful searches. The calculations
are somewhat involved. It is easy to see from the code that insertions and unsuccessful
searches require the same number of probes. A moment’s thought suggests that, on average,
successful searches should take less time than unsuccessful searches.

The corresponding formulas, if clustering is not a problem, are fairly easy to derive. We
will assume a very large table and that each probe is independent of the previous probes.

www.manaraa.com

180 Chapter 5 Hashing

Empty Table After 89 After 18 After 49 After 58 After 69

0 49 49 49

1 58 58

2 69

3

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

Figure 5.11 Hash table with linear probing, after each insertion

These assumptions are satisfied by a random collision resolution strategy and are reason-
able unless λ is very close to 1. First, we derive the expected number of probes in an
unsuccessful search. This is just the expected number of probes until we find an empty
cell. Since the fraction of empty cells is 1 − λ, the number of cells we expect to probe is
1/(1 − λ). The number of probes for a successful search is equal to the number of probes
required when the particular element was inserted. When an element is inserted, it is done
as a result of an unsuccessful search. Thus, we can use the cost of an unsuccessful search
to compute the average cost of a successful search.

The caveat is that λ changes from 0 to its current value, so that earlier insertions are
cheaper and should bring the average down. For instance, in the table in Figure 5.11,
λ = 0.5, but the cost of accessing 18 is determined when 18 is inserted. At that point,
λ = 0.2. Since 18 was inserted into a relatively empty table, accessing it should be easier
than accessing a recently inserted element such as 69. We can estimate the average by using
an integral to calculate the mean value of the insertion time, obtaining

I(λ) = 1

λ

∫ λ

0

1

1 − x
dx = 1

λ
ln

1

1 − λ

These formulas are clearly better than the corresponding formulas for linear probing.
Clustering is not only a theoretical problem but actually occurs in real implementations.
Figure 5.12 compares the performance of linear probing (dashed curves) with what would
be expected from more random collision resolution. Successful searches are indicated by
an S, and unsuccessful searches and insertions are marked with U and I, respectively.

If λ = 0.75, then the formula above indicates that 8.5 probes are expected for an
insertion in linear probing. If λ = 0.9, then 50 probes are expected, which is unreasonable.
This compares with 4 and 10 probes for the respective load factors if clustering were not
a problem. We see from these formulas that linear probing can be a bad idea if the table is
expected to be more than half full. If λ = 0.5, however, only 2.5 probes are required on
average for insertion, and only 1.5 probes are required, on average, for a successful search.

www.manaraa.com

5.4 Hash Tables Without Linked Lists 181

0.0

3.0

6.0

9.0

12.0

15.0

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

U,I
U,I

S

S

Figure 5.12 Number of probes plotted against load factor for linear probing (dashed) and
random strategy (S is successful search, U is unsuccessful search, and I is insertion)

Empty Table After 89 After 18 After 49 After 58 After 69

0 49 49 49

1

2 58 58

3 69

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

Figure 5.13 Hash table with quadratic probing, after each insertion

5.4.2 Quadratic Probing
Quadratic probing is a collision resolution method that eliminates the primary clustering
problem of linear probing. Quadratic probing is what you would expect—the collision
function is quadratic. The popular choice is f(i) = i2. Figure 5.13 shows the resulting hash
table with this collision function on the same input used in the linear probing example.

When 49 collides with 89, the next position attempted is one cell away. This cell is
empty, so 49 is placed there. Next 58 collides at position 8. Then the cell one away is tried,

www.manaraa.com

182 Chapter 5 Hashing

but another collision occurs. A vacant cell is found at the next cell tried, which is 22 = 4
away. The key 58 is thus placed in cell 2. The same thing happens for 69.

For linear probing it is a bad idea to let the hash table get nearly full, because per-
formance degrades. For quadratic probing, the situation is even more drastic: There is no
guarantee of finding an empty cell once the table gets more than half full, or even before
the table gets half full if the table size is not prime. This is because at most half of the table
can be used as alternative locations to resolve collisions.

Indeed, we prove now that if the table is half empty and the table size is prime, then
we are always guaranteed to be able to insert a new element.

Theorem 5.1.
If quadratic probing is used, and the table size is prime, then a new element can always
be inserted if the table is at least half empty.

Proof.
Let the table size, TableSize, be an (odd) prime greater than 3. We show that the first
�TableSize/2� alternative locations (including the initial location h0(x)) are all distinct.
Two of these locations are h(x)+i2 (mod TableSize) and h(x)+j2 (mod TableSize), where
0 ≤ i, j ≤
TableSize/2�. Suppose, for the sake of contradiction, that these locations
are the same, but i �= j. Then

h(x) + i2 = h(x) + j2 (mod TableSize)

i2 = j2 (mod TableSize)

i2 − j2 = 0 (mod TableSize)

(i − j)(i + j) = 0 (mod TableSize)

Since TableSize is prime, it follows that either (i − j) or (i + j) is equal to 0 (mod
TableSize). Since i and j are distinct, the first option is not possible. Since 0 ≤ i, j ≤

TableSize/2�, the second option is also impossible. Thus, the first �TableSize/2� alter-
native locations are distinct. If at most
TableSize/2� positions are taken, then an empty
spot can always be found.

If the table is even one more than half full, the insertion could fail (although this is
extremely unlikely). Therefore, it is important to keep this in mind. It is also crucial that
the table size be prime.1 If the table size is not prime, the number of alternative locations
can be severely reduced. As an example, if the table size were 16, then the only alternative
locations would be at distances 1, 4, or 9 away.

Standard deletion cannot be performed in a probing hash table, because the cell might
have caused a collision to go past it. For instance, if we remove 89, then virtually all the
remaining contains operations will fail. Thus, probing hash tables require lazy deletion,
although in this case there really is no laziness implied.

1 If the table size is a prime of the form 4k + 3, and the quadratic collision resolution strategy F(i) = ±i2 is
used, then the entire table can be probed. The cost is a slightly more complicated routine.

www.manaraa.com

5.4 Hash Tables Without Linked Lists 183

The class skeleton required to implement probing hash tables is shown in Figure 5.14.
Instead of an array of lists, we have an array of hash table entry cells, which are also shown
in Figure 5.14. Each entry in the array of HashEntry references is either

1. null.

2. Not null, and the entry is active (isActive is true).

3. Not null, and the entry is marked deleted (isActive is false).

Constructing the table (Figure 5.15) consists of allocating space and then setting each
HashEntry reference to null.

contains(x), shown in Figure 5.16 (on page 186), invokes private methods isActive
and findPos. The private method findPos performs the collision resolution. We ensure in
the insert routine that the hash table is at least twice as large as the number of elements in
the table, so quadratic resolution will always work. In the implementation in Figure 5.16,
elements that are marked as deleted count as being in the table. This can cause problems,
because the table can get too full prematurely. We shall discuss this item presently.

Lines 25 through 28 represent the fast way of doing quadratic resolution. From the
definition of the quadratic resolution function, f(i) = f(i − 1) + 2i − 1, so the next cell to
try is a distance from the previous cell tried and this distance increases by 2 on successive
probes. If the new location is past the array, it can be put back in range by subtracting
TableSize. This is faster than the obvious method, because it avoids the multiplication and
division that seem to be required. An important warning: The order of testing at lines 22
and 23 is important. Don’t switch it!

The final routine is insertion. As with separate chaining hashing, we do nothing if x is
already present. It is a simple modification to do something else. Otherwise, we place it at
the spot suggested by the findPos routine. The code is shown in Figure 5.17 (on page 187).
If the load factor exceeds 0.5, the table is full and we enlarge the hash table. This is called
rehashing, and is discussed in Section 5.5.

Although quadratic probing eliminates primary clustering, elements that hash to the
same position will probe the same alternative cells. This is known as secondary clustering.
Secondary clustering is a slight theoretical blemish. Simulation results suggest that it gen-
erally causes less than an extra half probe per search. The following technique eliminates
this, but does so at the cost of computing an extra hash function.

5.4.3 Double Hashing
The last collision resolution method we will examine is double hashing. For double hash-
ing, one popular choice is f(i) = i ·hash2(x). This formula says that we apply a second hash
function to x and probe at a distance hash2(x), 2hash2(x), . . . , and so on. A poor choice of
hash2(x) would be disastrous. For instance, the obvious choice hash2(x) = x mod 9 would
not help if 99 were inserted into the input in the previous examples. Thus, the function
must never evaluate to zero. It is also important to make sure all cells can be probed (this
is not possible in the example below, because the table size is not prime). A function such
as hash2(x) = R − (x mod R), with R a prime smaller than TableSize, will work well. If we
choose R = 7, then Figure 5.18 shows the results of inserting the same keys as before.

www.manaraa.com

184 Chapter 5 Hashing

1 public class QuadraticProbingHashTable<AnyType>
2 {
3 public QuadraticProbingHashTable()
4 { /* Figure 5.15 */ }
5 public QuadraticProbingHashTable(int size)
6 { /* Figure 5.15 */ }
7 public void makeEmpty()
8 { /* Figure 5.15 */ }
9

10 public boolean contains(AnyType x)
11 { /* Figure 5.16 */ }
12 public void insert(AnyType x)
13 { /* Figure 5.17 */ }
14 public void remove(AnyType x)
15 { /* Figure 5.17 */ }
16
17 private static class HashEntry<AnyType>
18 {
19 public AnyType element; // the element
20 public boolean isActive; // false if marked deleted
21
22 public HashEntry(AnyType e)
23 { this(e, true); }
24
25 public HashEntry(AnyType e, boolean i)
26 { element = e; isActive = i; }
27 }
28
29 private static final int DEFAULT_TABLE_SIZE = 11;
30
31 private HashEntry<AnyType> [] array; // The array of elements
32 private int currentSize; // The number of occupied cells
33
34 private void allocateArray(int arraySize)
35 { /* Figure 5.15 */ }
36 private boolean isActive(int currentPos)
37 { /* Figure 5.16 */ }
38 private int findPos(AnyType x)
39 { /* Figure 5.16 */ }
40 private void rehash()
41 { /* Figure 5.22 */ }
42
43 private int myhash(AnyType x)
44 { /* See online code */ }
45 private static int nextPrime(int n)
46 { /* See online code */ }
47 private static boolean isPrime(int n)
48 { /* See online code */ }
49 }

Figure 5.14 Class skeleton for hash tables using probing strategies, including the nested
HashEntry class

www.manaraa.com

5.4 Hash Tables Without Linked Lists 185

1 /**
2 * Construct the hash table.
3 */
4 public QuadraticProbingHashTable()
5 {
6 this(DEFAULT_TABLE_SIZE);
7 }
8
9 /**

10 * Construct the hash table.
11 * @param size the approximate initial size.
12 */
13 public QuadraticProbingHashTable(int size)
14 {
15 allocateArray(size);
16 makeEmpty();
17 }
18
19 /**
20 * Make the hash table logically empty.
21 */
22 public void makeEmpty()
23 {
24 currentSize = 0;
25 for(int i = 0; i < array.length; i++)
26 array[i] = null;
27 }
28
29 /**
30 * Internal method to allocate array.
31 * @param arraySize the size of the array.
32 */
33 private void allocateArray(int arraySize)
34 {
35 array = new HashEntry[nextPrime(arraySize)];
36 }

Figure 5.15 Routines to initialize hash table

The first collision occurs when 49 is inserted. hash2(49) = 7−0 = 7, so 49 is inserted
in position 6. hash2(58) = 7 − 2 = 5, so 58 is inserted at location 3. Finally, 69 collides
and is inserted at a distance hash2(69) = 7 − 6 = 1 away. If we tried to insert 60 in
position 0, we would have a collision. Since hash2(60) = 7 − 4 = 3, we would then try
positions 3, 6, 9, and then 2 until an empty spot is found. It is generally possible to find
some bad case, but there are not too many here.

www.manaraa.com

186 Chapter 5 Hashing

1 /**
2 * Find an item in the hash table.
3 * @param x the item to search for.
4 * @return the matching item.
5 */
6 public boolean contains(AnyType x)
7 {
8 int currentPos = findPos(x);
9 return isActive(currentPos);

10 }
11
12 /**
13 * Method that performs quadratic probing resolution in half-empty table.
14 * @param x the item to search for.
15 * @return the position where the search terminates.
16 */
17 private int findPos(AnyType x)
18 {
19 int offset = 1;
20 int currentPos = myhash(x);
21
22 while(array[currentPos] != null &&
23 !array[currentPos].element.equals(x))
24 {
25 currentPos += offset; // Compute ith probe
26 offset += 2;
27 if(currentPos >= array.length)
28 currentPos -= array.length;
29 }
30
31 return currentPos;
32 }
33
34 /**
35 * Return true if currentPos exists and is active.
36 * @param currentPos the result of a call to findPos.
37 * @return true if currentPos is active.
38 */
39 private boolean isActive(int currentPos)
40 {
41 return array[currentPos] != null && array[currentPos].isActive;
42 }

Figure 5.16 contains routine (and private helpers) for hashing with quadratic probing

www.manaraa.com

5.4 Hash Tables Without Linked Lists 187

1 /**
2 * Insert into the hash table. If the item is
3 * already present, do nothing.
4 * @param x the item to insert.
5 */
6 public void insert(AnyType x)
7 {
8 // Insert x as active
9 int currentPos = findPos(x);

10 if(isActive(currentPos))
11 return;
12
13 array[currentPos] = new HashEntry<>(x, true);
14
15 // Rehash; see Section 5.5
16 if(++currentSize > array.length / 2)
17 rehash();
18 }
19
20 /**
21 * Remove from the hash table.
22 * @param x the item to remove.
23 */
24 public void remove(AnyType x)
25 {
26 int currentPos = findPos(x);
27 if(isActive(currentPos))
28 array[currentPos].isActive = false;
29 }

Figure 5.17 insert routine for hash tables with quadratic probing

As we have said before, the size of our sample hash table is not prime. We have done
this for convenience in computing the hash function, but it is worth seeing why it is impor-
tant to make sure the table size is prime when double hashing is used. If we attempt to
insert 23 into the table, it would collide with 58. Since hash2(23) = 7 − 2 = 5, and the
table size is 10, we essentially have only one alternative location, and it is already taken.
Thus, if the table size is not prime, it is possible to run out of alternative locations pre-
maturely. However, if double hashing is correctly implemented, simulations imply that the
expected number of probes is almost the same as for a random collision resolution strat-
egy. This makes double hashing theoretically interesting. Quadratic probing, however, does
not require the use of a second hash function and is thus likely to be simpler and faster in
practice, especially for keys like strings whose hash functions are expensive to compute.

www.manaraa.com

188 Chapter 5 Hashing

Empty Table After 89 After 18 After 49 After 58 After 69

0 69

1

2

3 58 58

4

5

6 49 49 49

7

8 18 18 18 18

9 89 89 89 89 89

Figure 5.18 Hash table with double hashing, after each insertion

5.5 Rehashing
If the table gets too full, the running time for the operations will start taking too long
and insertions might fail for open addressing hashing with quadratic resolution. This can
happen if there are too many removals intermixed with insertions. A solution, then, is
to build another table that is about twice as big (with an associated new hash function)
and scan down the entire original hash table, computing the new hash value for each
(nondeleted) element and inserting it in the new table.

As an example, suppose the elements 13, 15, 24, and 6 are inserted into a linear
probing hash table of size 7. The hash function is h(x) = x mod 7. Suppose linear probing
is used to resolve collisions. The resulting hash table appears in Figure 5.19.

If 23 is inserted into the table, the resulting table in Figure 5.20 will be over 70 percent
full. Because the table is so full, a new table is created. The size of this table is 17, because
this is the first prime that is twice as large as the old table size. The new hash function is
then h(x) = x mod 17. The old table is scanned, and elements 6, 15, 23, 24, and 13 are
inserted into the new table. The resulting table appears in Figure 5.21.

This entire operation is called rehashing. This is obviously a very expensive operation;
the running time is O(N), since there are N elements to rehash and the table size is roughly
2N, but it is actually not all that bad, because it happens very infrequently. In particular,
there must have been N/2 insertions prior to the last rehash, so it essentially adds a con-
stant cost to each insertion.2 If this data structure is part of the program, the effect is not
noticeable. On the other hand, if the hashing is performed as part of an interactive system,
then the unfortunate user whose insertion caused a rehash could see a slowdown.

Rehashing can be implemented in several ways with quadratic probing. One alternative
is to rehash as soon as the table is half full. The other extreme is to rehash only when an

2 This is why the new table is made twice as large as the old table.

www.manaraa.com

5.6 Hash Tables in the Standard Library 189

6

15

24

13

0

1

2

3

4

5

6

Figure 5.19 Hash table with linear probing with input 13, 15, 6, 24

6

15

23

24

13

0

1

2

3

4

5

6

Figure 5.20 Hash table with linear probing after 23 is inserted

insertion fails. A third, middle-of-the-road strategy is to rehash when the table reaches a
certain load factor. Since performance does degrade as the load factor increases, the third
strategy, implemented with a good cutoff, could be best.

Rehashing for separate chaining hash tables is similar. Figure 5.22 shows that rehashing
is simple to implement, and provides an implementation for separate chaining rehashing
also.

5.6 Hash Tables in the Standard Library
The Standard Library includes hash table implementations of Set and Map, namely HashSet
and HashMap. The items in the HashSet (or the keys in the HashMap) must provide an equals
and hashCode method, as described earlier in Section 5.3. The HashSet and HashMap are
currently implemented using separate chaining hashing.

These classes can be used if it is not important for the entries to be viewable in sorted
order. For instance, in the word-changing example in Section 4.8, there were three maps:

www.manaraa.com

190 Chapter 5 Hashing

6

23

24

13

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.21 Linear probing hash table after rehashing

1. A map in which the key is a word length, and the value is a collection of all words of
that word length.

2. A map in which the key is a representative, and the value is a collection of all words
with that representative.

3. A map in which the key is a word, and the value is a collection of all words that differ
in only one character from that word.

Because the order in which word lengths are processed does not matter, the first map
can be a HashMap. Because the representatives are not even needed after the second map is
built, the second map can be a HashMap. The third map can also be a HashMap, unless we
want printHighChangeables to alphabetically list the subset of words that can be changed
into a large number of other words.

The performance of a HashMap can often be superior to a TreeMap, but it is hard to know
for sure without writing the code both ways. Thus, in cases where either a HashMap or
TreeMap is acceptable, it is preferable to declare variables using the interface type Map and
then change the instantiation from a TreeMap to a HashMap, and perform timing tests.

www.manaraa.com

5.6 Hash Tables in the Standard Library 191

1 /**
2 * Rehashing for quadratic probing hash table.
3 */
4 private void rehash()
5 {
6 HashEntry<AnyType> [] oldArray = array;
7
8 // Create a new double-sized, empty table
9 allocateArray(nextPrime(2 * oldArray.length));

10 currentSize = 0;
11
12 // Copy table over
13 for(int i = 0; i < oldArray.length; i++)
14 if(oldArray[i] != null && oldArray[i].isActive)
15 insert(oldArray[i].element);
16 }
17
18 /**
19 * Rehashing for separate chaining hash table.
20 */
21 private void rehash()
22 {
23 List<AnyType> [] oldLists = theLists;
24
25 // Create new double-sized, empty table
26 theLists = new List[nextPrime(2 * theLists.length)];
27 for(int j = 0; j < theLists.length; j++)
28 theLists[j] = new LinkedList<>();
29
30 // Copy table over
31 currentSize = 0;
32 for(int i = 0; i < oldLists.length; i++)
33 for(AnyType item : oldLists[i])
34 insert(item);
35 }

Figure 5.22 Rehashing for both separate chaining and probing hash tables

In Java, library types that can be reasonably inserted into a HashSet or as keys into
a HashMap already have equals and hashCode defined. In particular the String class has
a hashCode that is essentially the code in Figure 5.4 with lines 14–16 removed, and 37
replaced with 31. Because the expensive part of the hash table operations is computing
the hashCode, the hashCode method in the String class contains an important optimization:
Each String object stores internally the value of its hashCode. Initially it is 0, but if hashCode
is invoked, the value is remembered. Thus if hashCode is computed on the same String

www.manaraa.com

192 Chapter 5 Hashing

1 public final class String
2 {
3 public int hashCode()
4 {
5 if(hash != 0)
6 return hash;
7
8 for(int i = 0; i < length(); i++)
9 hash = hash * 31 + (int) charAt(i);

10 return hash;
11 }
12
13 private int hash = 0;
14 }

Figure 5.23 Excerpt of String class hashCode

object a second time, we can avoid the expensive recomputation. This technique is called
caching the hash code, and represents another classic time-space tradeoff. Figure 5.23
shows an implementation of the String class that caches the hash code.

Caching the hash code works only because Strings are immutable: If the String were
allowed to change, it would invalidate the hashCode, and the hashCode would have to be
reset back to 0. Although two String objects with the same state must have their hash
codes computed independently, there are many situations in which the same String object
keeps having its hash code queried. One situation where caching the hash code helps
occurs during rehashing, because all the Strings involved in the rehashing have already
had their hash codes cached. On the other hand, caching the hash code does not help
in the representative map for the word changing example. Each of the representatives is
a different String computed by removing a character from a larger String, and thus each
individual String has to have its hash code computed separately. However, in the third
map, caching the hash code does help, because the keys are only Strings that were stored
in the original array of Strings.

5.7 Hash Tables with Worst-Case O(1) Access
The hash tables that we have examined so far all have the property that with reasonable
load factors, and appropriate hash functions, we can expect O(1) cost on average for inser-
tions, removes, and searching. But what is the expected worst case for a search assuming a
reasonably well-behaved hash function?

For separate chaining, assuming a load factor of 1, this is one version of the classic
balls and bins problem: Given N balls placed randomly (uniformly) in N bins, what is
the expected number of balls in the most occupied bin? The answer is well known to
be Θ(log N/ log log N), meaning that on average, we expect some queries to take nearly

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 193

logarithmic time. Similar types of bounds are observed (or provable) for the length of the
longest expected probe sequence in a probing hash table.

We would like to obtain O(1) worst-case cost. In some applications, such as hardware
implementations of lookup tables for routers and memory caches, it is especially important
that the search have a definite (i.e., constant) amount of completion time. Let us assume
that N is known in advance, so no rehashing is needed. If we are allowed to rearrange items
as they are inserted, then O(1) worst-case cost is achievable for searches.

In the remainder of this section we describe the earliest solution to this problem,
namely perfect hashing, and then two more recent approaches that appear to offer
promising alternatives to the classic hashing schemes that have been prevalent for
many years.

5.7.1 Perfect Hashing
Suppose, for purposes of simplification, that all N items are known in advance. If a separate
chaining implementation could guarantee that each list had at most a constant number of
items, we would be done. We know that as we make more lists, the lists will on average
be shorter, so theoretically if we have enough lists, then with a reasonably high probability
we might expect to have no collisions at all!

But there are two fundamental problems with this approach: First, the number of lists
might be unreasonably large; second, even with lots of lists, we might still get unlucky.

The second problem is relatively easy to address in principle. Suppose we choose the
number of lists to be M (i.e., TableSize is M), which is sufficiently large to guarantee that
with probability at least 1

2 , there will be no collisions. Then if a collision is detected, we
simply clear out the table and try again using a different hash function that is independent
of the first. If we still get a collision, we try a third hash function, and so on. The expected
number of trials will be at most 2 (since the success probability is 1

2), and this is all folded
into the insertion cost. Section 5.8 discusses the crucial issue of how to produce additional
hash functions.

So we are left with determining how large M, the number of lists, needs to be.
Unfortunately, M needs to be quite large; specifically M = �(N2). However, if M = N2, we
can show that the table is collision free with probability at least 1

2 , and this result can be
used to make a workable modification to our basic approach.

Theorem 5.2.
If N balls are placed into M = N2 bins, the probability that no bin has more than one
ball is less than 1

2 .

Proof.
If a pair (i, j) of balls are placed in the same bin, we call that a collision. Let Ci,j be the
expected number of collisions produced by any two balls (i, j). Clearly the probability
that any two specified balls collide is 1/M, and thus Ci,j is 1/M, since the number
of collisions that involve the pair (i, j) is either 0 or 1. Thus the expected number of
collisions in the entire table is

∑
(i,j), i<j Ci,j. Since there are N(N − 1)/2 pairs, this sum

is N(N − 1)/(2M) = N(N − 1)/(2N2) < 1
2 . Since the expected number of collisions is

below 1
2 , the probability that there is even one collision must also be below 1

2 .

www.manaraa.com

194 Chapter 5 Hashing

0

1

2

3

4

5

6

22 = 4

7

8

9

22 = 4

32 = 9

Figure 5.24 Perfect hashing table using secondary hash tables

Of course, using N2 lists is impractical. However, the preceding analysis suggests the fol-
lowing alternative: Use only N bins, but resolve the collisions in each bin by using hash
tables instead of linked lists. The idea is that because the bins are expected to have only a
few items each, the hash table that is used for each bin can be quadratic in the bin size.
Figure 5.24 shows the basic structure. Here, the primary hash table has ten bins. Bins 1, 3,
5, and 7 are all empty. Bins 0, 4, and 8 have one item, so they are resolved by a secondary
hash table with one position. Bins 2 and 6 have two items, so they will be resolved into a
secondary hash table with four (22) positions. And bin 9 has three items, so it is resolved
into a secondary hash table with nine (32) positions.

As with the original idea, each secondary hash table will be constructed using a differ-
ent hash function until it is collision free. The primary hash table can also be constructed
several times if the number of collisions that are produced is higher than required. This
scheme is known as perfect hashing. All that remains to be shown is that the total size of
the secondary hash tables is indeed expected to be linear.

Theorem 5.3.
If N items are placed into a primary hash table containing N bins, then the total size of
the secondary hash tables has expected value at most 2N.

Proof.
Using the same logic as in the proof of Theorem 5.2, the expected number of pairwise
collisions is at most N(N − 1)/2N, or (N − 1)/2. Let bi be the number of items that
hash to position i in the primary hash table; observe that b2

i space is used for this cell
in the secondary hash table, and that this accounts for bi (bi − 1)/2 pairwise collisions,
which we will call ci. Thus the amount of space used for the ith secondary hash table
is 2ci + bi. The total space is then 2

∑
ci + ∑

bi. The total number of collisions is

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 195

(N − 1)/2 (from the first sentence of this proof); the total number of items is of course
N, so we obtain a total secondary space requirement of 2(N − 1)/2 + N < 2N.

Thus the probability that the total secondary space requirement is more than 4N is at
most 1

2 (since, otherwise the expected value would be higher than 2N), so we can keep
choosing hash functions for the primary table until we generate the appropriate secondary
space requirement. Once that is done, each secondary hash table will itself require only an
average of two trials to be collision free. After the tables are built, any lookup can be done
in two probes.

Perfect hashing works if the items are all known in advance. There are dynamic
schemes that allow insertions and deletions (dynamic perfect hashing), but instead we
will investigate two newer alternatives that are relatively easy to code and appear to be
competitive in practice with the classic hashing algorithms.

5.7.2 Cuckoo Hashing
From our previous discussion, we know that in the balls and bins problem, if N
items are randomly tossed into N bins, the size of the largest bin is expected to be
Θ(log N/ log log N). Since this bound has been known for a long time, and the problem
has been well studied by mathematicians, it was surprising when in the mid 1990s, it was
shown that if, at each toss, two bins were randomly chosen and the item was tossed into the
more empty bin (at the time), then the size of the largest bin would only be Θ(log log N),
a significantly lower number. Quickly, a host of potential algorithms and data structures
arose out of this new concept of the “power of two choices.”

One of the ideas is cuckoo hashing. In cuckoo hashing, suppose we have N items.
We maintain two tables each more than half empty, and we have two independent has
functions that can assign each item to a position in each table. Cuckoo hashing maintains
the invariant that an item is always stored in one of these two locations.

As an example, Figure 5.25 shows a potential cuckoo hash table for six items, with
two tables of size 5 (These tables are too small, but serve well as an example). Based on the
randomly chosen hash functions, item A can be at either position 0 in Table 1, or position
2 in Table 2. Item F can be at either position 3 in Table 1, or position 4 in Table 2, and
so on. Immediately, this implies that a search in a cuckoo hash table requires at most two

Table 1

0 B

1 C

2

3 E

4

Table 2

0 D

1

2 A

3

4 F

A: 0, 2

B: 0, 0

C: 1, 4

D: 1, 0

E: 3, 2

F: 3, 4

Figure 5.25 Potential cuckoo hash table. Hash functions are shown on the right. For
these six items, there are only three valid positions in Table 1 and three valid positions in
Table 2, so it is not clear that this arrangement can easily be found

www.manaraa.com

196 Chapter 5 Hashing

table accesses, and a remove is trivial, once the item is located (lazy deletion is not needed
now!).

But there is an important detail: How is the table built? For instance, in Figure 5.25,
there are only three available locations in the first table for the six items, and there are
only three available locations in the second table for the six items. So there are only six
available locations for these six items, and thus we must find an ideal matching of slots for
our six items. Clearly if there were a seventh item G with locations 1 for Table 1 and 2 for
Table 2, it could not be inserted into the table by any algorithm (the seven items would be
competing for six table locations). One could argue that this means that the table would
simply be too loaded (G would yield a 0.70 load factor), but at the same time, if the table
had thousands of items, and were lightly loaded, but we had A, B, C, D, E, F, G with these
hash positions, it would still be impossible to insert all seven of those items. So it is not at
all obvious that this scheme can be made to work. The answer in this situation would be to
pick another hash function, and this can be fine as long as it is unlikely that this situation
occurs.

The cuckoo hashing algorithm itself is simple: To insert a new item x, first make sure it
is not already there. We can then use the first hash function and if the (first) table location
is empty, the item can be placed. So Figure 5.26 shows the result of inserting A into an
empty hash table.

Suppose now we want to insert B, which has hash locations 0 in Table 1 and 0 in
Table 2. For the remainder of the algorithm we will use (h1, h2) to specify the two locations,
so B’s locations are given by (0, 0). Table 1 is already occupied in position 0. At this point
there are two options: One is to look in Table 2. The problem is that position 0 in Table 2
could also be occupied. It happens that in this case it is not, but the algorithm that the
standard cuckoo hash table uses does not bother to look. Instead, it preemptively places
the new item B in Table 1. In order to do so, it must displace A, so A moves to Table 2,
using its Table 2 hash location, which is position 2. The result is shown in Figure 5.27. It
is easy to insert C, and this is shown in Figure 5.28.

Next we want to insert D, with hash locations (1, 0). But the Table 1 location
(position 1) is already taken. Note also, that the Table 2 location is not already taken,
but we don’t look there. Instead, we have D replace C, and then C goes into Table 2 at
position 4, as suggested by its second hash function. The resulting tables are shown in
Figure 5.29. After this is done, E can be easily inserted. So far, so good, but can we now
insert F? Figures 5.30 to 5.33 show that this algorithm successfully inserts F, by displacing
E, then A, and then B.

Table 1

0 A

1

2

3

4

Table 2

0

1

2

3

4

A: 0, 2

Figure 5.26 Cuckoo hash table after insertion of A

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 197

Table 1

0 B

1

2

3

4

Table 2

0

1

2 A

3

4

A: 0, 2

B: 0, 0

Figure 5.27 Cuckoo hash table after insertion of B

Table 1

0 B

1 C

2

3

4

Table 2

0

1

2 A

3

4

A: 0, 2

B: 0, 0

C: 1, 4

Figure 5.28 Cuckoo hash table after insertion of C

Table 1

0 B

1 D

2

3 E

4

Table 2

0

1

2 A

3

4 C

A: 0, 2

B: 0, 0

C: 1, 4

D: 1, 0

E: 3, 2

Figure 5.29 Cuckoo hash table after insertion of D

Table 1

0 B

1 D

2

3 F

4

Table 2

0

1

2 A

3

4 C

A: 0, 2

B: 0, 0

C: 1, 4

D: 1, 0

E: 3, 2

F: 3, 4

Figure 5.30 Cuckoo hash table starting the insertion of F into the table in Figure 5.29.
First, F displaces E

Clearly as we mentioned before, we cannot successfully insert G, with hash locations
(1, 2). If we were to try, we would displace D, then B, then A, E, F, and C, and then C
would try to go back into Table 1, position 1, displacing G which was placed there at
the start. This would get us to Figure 5.34. So now G would try its alternate in Table 2
(location 2) and then displace A, which would displace B, which would displace D, which

www.manaraa.com

198 Chapter 5 Hashing

Table 1

0 B

1 D

2

3 F

4

Table 2

0

1

2 E

3

4 C

A: 0, 2

B: 0, 0

C: 1, 4

D: 1, 0

E: 3, 2

F: 3, 4

Figure 5.31 Continuing the insertion of F into the table in Figure 5.29. Next, E
displaces A

Table 1

0 A

1 D

2

3 F

4

Table 2

0

1

2 E

3

4 C

A: 0, 2

B: 0, 0

C: 1, 4

D: 1, 0

E: 3, 2

F: 3, 4

Figure 5.32 Continuing the insertion of F into the table in Figure 5.29. Next, A
displaces B

Table 1

0 A

1 D

2

3 F

4

Table 2

0 B

1

2 E

3

4 C

A: 0, 2

B: 0, 0

C: 1, 4

D: 1, 0

E: 3, 2

F: 3, 4

Figure 5.33 Completing the insertion of F into the table in Figure 5.29. Miraculously (?),
B finds an empty position in Table 2

would displace C, which would displace F, which would displace E, which would now
displace G from position 2. At this point, G would be in a cycle.

The central issue then concerns questions such as what is the probability of there being
a cycle that prevents the insertion from completing, and what is the expected number of
displacements required for a successful insertion? Fortunately, if the table’s load factor is
below 0.5, an analysis shows that the probability of a cycle is very low, that the expected
number of displacements is a small constant, and that it is extremely unlikely that a suc-
cessful insertion would require more than O(log N) displacements. As such, we can simply
rebuild the tables with new hash functions after a certain number of displacements are
detected. More precisely, the probability that a single insertion would require a new set of
hash functions can be made to be O(1/N2); the new hash functions themselves generate N
more insertions to rebuild the table, but even so, this means the rebuilding cost is minimal.

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 199

Table 1

0 B

1 C

2

3 E

4

Table 2

0 D

1

2 A

3

4 F

A: 0, 2

B: 0, 0

C: 1, 4

D: 1, 0

E: 3, 2

F: 3, 4

G: 1, 2

Figure 5.34 Inserting G into the table in Figure 5.33. G displaces D, which displaces B,
which displaces A, which displaces E, which displaces F, which displaces C, which dis-
places G. It is not yet hopeless since when G is displaced, we would now try the other hash
table, at position 2. However, while that could be successful in general, in this case there
is a cycle and the insertion will not terminate

1 item per cell 2 items per cell 4 items per cell

2 hash functions 0.49 0.86 0.93

3 hash functions 0.91 0.97 0.98

4 hash functions 0.97 0.99 0.999

Figure 5.35 Maximum load factors for cuckoo hashing variations

However, if the table’s load factor is at 0.5 or higher, then the probability of a cycle becomes
drastically higher, and this scheme is unlikely to work well at all.

After the publication of cuckoo hashing, numerous extensions were proposed. For
instance, instead of two tables, we can use a higher number of tables, such as 3 or 4.
While this increases the cost of a lookup, it also drastically increases the theoretical space
utilization. In some applications the lookups through separate hash functions can be done
in parallel and thus cost little to no additional time. Another extension is to allow each table
to store multiple keys; again this can increase space utilization and also make it easier to
do insertions and can be more cache-friendly. Various combinations are possible, as shown
in Figure 5.35. And finally, often cuckoo hash tables are implemented as one giant table
with two (or more) hash functions that probe the entire table, and some variations attempt
to place an item in the second hash table immediately if there is an available spot, rather
than starting a sequence of displacements.

Cuckoo Hash Table Implementation
Implementing cuckoo hashing requires a collection of hash functions; simply using
hashCode to generate the collection of hash functions makes no sense, since any hashCode
collisions will result in collisions in all the hash functions. Figure 5.36 shows a simple
interface that can be used to send families of hash functions to the cuckoo hash table.

Figure 5.37 provides the class skeleton for cuckoo hashing. We will code a vari-
ant that will allow an arbitrary number of hash functions (specified by the HashFamily
object that constructs the hash table) which uses a single array that is addressed by all the

www.manaraa.com

200 Chapter 5 Hashing

1 public interface HashFamily<AnyType>
2 {
3 int hash(AnyType x, int which);
4 int getNumberOfFunctions();
5 void generateNewFunctions();
6 }

Figure 5.36 Generic HashFamily interface for cuckoo hashing

hash functions. Thus our implementation differs from the classic notion of two separately
addressable hash tables. We can implement the classic version by making relatively minor
changes to the code; however, this version provided in this section seems to perform better
in tests using simple hash functions.

In Figure 5.37, we specify that the maximum load for the table is 0.4; if the load
factor of the table is about to exceed this limit, an automatic table expansion is performed.
We also define ALLOWED_REHASHES, which specifies how many rehashes we will perform if
evictions take too long. In theory, ALLOWED_REHASHES can be infinite, since we expect only
a small constant number of rehashes are needed; in practice, depending on several factors
such as the number of hash functions, the quality of the hash functions, and the load factor,
the rehashes could significantly slow things down, and it might be worthwhile to expand
the table, even though this will cost space. The data representation for the cuckoo hash
table is straightforward: We store a simple array, the current size, and the collections of
hash functions, represented in a HashFamily instance. We also maintain the number of hash
functions, even though that is always obtainable from the HashFamily instance.

Figure 5.38 shows the constructor and doClear methods, and these are straightfor-
ward. Figure 5.39 shows a pair of private methods. The first, myHash, is used to select the
appropriate hash function and then scale it into a valid array index. The second, findPos,
consults all the hash functions to return the index containing item x, or −1 if x is not
found. findPos is then used by contains and remove in Figures 5.40 and 5.41, respectively,
and we can see that those methods are easy to implement.

The difficult routine is insertion. In Figure 5.42, we can see that the basic plan is to
check to see if the item is already present, returning if so. Otherwise, we check to see if the
table is fully loaded, and if so, we expand it. Finally we call a helper routine to do all the
dirty work.

The helper routine for insertion is shown in Figure 5.43. We declare a variable rehashes
to keep track of how many attempts have been made to rehash in this insertion. Our
insertion routine is mutually recursive: If needed, insert eventually calls rehash, which
eventually calls back into insert. Thus rehashes is declared in an outer scope for code
simplicity.

Our basic logic is different from the classic scheme. We have already tested that the
item to insert is not already present. At lines 15–25, we check to see if any of the valid

www.manaraa.com

1 public class CuckooHashTable<AnyType>
2 {
3 public CuckooHashTable(HashFamily<? super AnyType> hf)
4 { /* Figure 5.38 */ }
5 public CuckooHashTable(HashFamily<? super AnyType> hf, int size);
6 { /* Figure 5.38 */ }
7
8 public void makeEmpty()
9 { doClear(); }

10
11 public boolean contains(AnyType x)
12 { /* Figure 5.40 */ }
13
14 private int myhash(AnyType x, int which)
15 { /* Figure 5.39 */ }
16
17 private int findPos(AnyType x)
18 { /* Figure 5.39 */ }
19
20 public boolean remove(AnyType x)
21 { /* Figure 5.41 */ }
22
23 public boolean insert(AnyType x)
24 { /* Figure 5.42 */ }
25
26 private void expand()
27 { /* Figure 5.44 */ }
28
29 private void rehash()
30 { /* Figure 5.44 */ }
31
32 private void doClear()
33 { /* Figure 5.38 */ }
34
35 private void allocateArray(int arraySize)
36 { array = (AnyType[]) new Object[arraySize]; }
37
38 private static final double MAX_LOAD = 0.4;
39 private static final int ALLOWED_REHASHES = 1;
40 private static final int DEFAULT_TABLE_SIZE = 101;
41
42 private final HashFamily<? super AnyType> hashFunctions;
43 private final int numHashFunctions;
44 private AnyType [] array;
45 private int currentSize;
46 }

Figure 5.37 Class skeleton for cuckoo hashing

www.manaraa.com

202 Chapter 5 Hashing

1 /**
2 * Construct the hash table.
3 * @param hf the hash family
4 */
5 public CuckooHashTable(HashFamily<? super AnyType> hf)
6 {
7 this(hf, DEFAULT_TABLE_SIZE);
8 }
9

10 /**
11 * Construct the hash table.
12 * @param hf the hash family
13 * @param size the approximate initial size.
14 */
15 public CuckooHashTable(HashFamily<? super AnyType> hf, int size)
16 {
17 allocateArray(nextPrime(size));
18 doClear();
19 hashFunctions = hf;
20 numHashFunctions = hf.getNumberOfFunctions();
21 }
22
23 private void doClear()
24 {
25 currentSize = 0;
26 for(int i = 0; i < array.length; i++)
27 array[i] = null;
28 }

Figure 5.38 Routines to initialize the cuckoo hash table

positions are empty; if so, we place our item in the first available position and we are done.
Otherwise, we evict one of the existing items. However, there are some tricky issues:

� Evicting the first item did not perform well in experiments.
� Evicting the last item did not perform well in experiments.
� Evicting the items in sequence (i.e., the first eviction uses hash function 0, the next

uses hash function 1, etc.) did not perform well in experiments.
� Evicting the item purely randomly did not perform well in experiments: In particular,

with only two hash functions, it tended to create cycles.

To alleviate the last problem, we maintain the last position that was evicted and if our
random item was the last evicted item, we select a new random item. This will loop forever
if used with two hash functions, and both hash functions happen to probe to the same

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 203

1 /**
2 * Compute the hash code for x using specified hash function
3 * @param x the item
4 * @param which the hash function
5 * @return the hash code
6 */
7 private int myhash(AnyType x, int which)
8 {
9 int hashVal = hashFunctions.hash(x, which);

10
11 hashVal %= array.length;
12 if(hashVal < 0)
13 hashVal += array.length;
14
15 return hashVal;
16 }
17
18 /**
19 * Method that searches all hash function places.
20 * @param x the item to search for.
21 * @return the position where the search terminates, or -1 if not found.
22 */
23 private int findPos(AnyType x)
24 {
25 for(int i = 0; i < numHashFunctions; i++)
26 {
27 int pos = myhash(x, i);
28 if(array[pos] != null && array[pos].equals(x))
29 return pos;
30 }
31
32 return -1;
33 }

Figure 5.39 Routines to find the location of an item in the cuckoo hash table and to
compute the hash code for a given table

location, and that location was a prior eviction, so we limit the loop to five iterations
(deliberately using an odd number).

The code for expand and rehash is shown in Figure 5.44. expand creates a larger array but
keeps the same hash functions. The zero-parameter rehash leaves the array size unchanged
but creates a new array that is populated with newly chosen hash functions.

Finally, Figure 5.45 shows the StringHashFamily class that provides a set of simple
hash functions for strings. These hash functions replace the constant 37 in Figure 5.4 with
randomly chosen numbers (not necessarily prime).

www.manaraa.com

204 Chapter 5 Hashing

1 /**
2 * Find an item in the hash table.
3 * @param x the item to search for.
4 * @return true if item is found.
5 */
6 public boolean contains(AnyType x)
7 {
8 return findPos(x) != -1;
9 }

Figure 5.40 Routine to search a cuckoo hash table

1 /**
2 * Remove from the hash table.
3 * @param x the item to remove.
4 * @return true if item was found and removed
5 */
6 public boolean remove(AnyType x)
7 {
8 int pos = findPos(x);
9

10 if(pos != -1)
11 {
12 array[pos] = null;
13 currentSize--;
14 }
15
16 return pos != -1;
17 }

Figure 5.41 Routine to remove from a cuckoo hash table

The benefits of cuckoo hashing include the worst-case constant lookup and deletion
times, the avoidance of lazy deletion and extra data, and the potential for parallelism.
However, cuckoo hashing is extremely sensitive to the choice of hash functions; the inven-
tors of the cuckoo hash table reported that many of the standard hash functions that they
attempted performed poorly in tests. Furthermore, although the insertion time is expected
to be constant time as long as the load factor is below 1

2 , the bound that has been shown
for the expected insertion cost for classic cuckoo hashing with two separate tables (both
with load factor λ) is roughly 1/(1 − (4 λ2)1/3), which deteriorates rapidly as the load fac-
tor gets close to 1

2 (the formula itself makes no sense when λ equals or exceeds 1
2). Using

lower load factors or more than two hash functions seems like a reasonable alternative.

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 205

1 /**
2 * Insert into the hash table. If the item is
3 * already present, return false.
4 * @param x the item to insert.
5 */
6 public boolean insert(AnyType x)
7 {
8 if(contains(x))
9 return false;

10
11 if(currentSize >= array.length * MAX_LOAD)
12 expand();
13
14 return insertHelper1(x);
15 }

Figure 5.42 Public insert routine for cuckoo hashing

5.7.3 Hopscotch Hashing
Hopscotch hashing is a new algorithm that tries to improve on the classic linear probing
algorithm. Recall that in linear probing, cells are tried in sequential order, starting from the
hash location. Because of primary and secondary clustering, this sequence can be long on
average as the table gets loaded, and thus many improvements such as quadratic probing,
double hashing, and so forth, have been proposed to reduce the number of collisions.
However, on some modern architectures, the locality produced by probing adjacent cells
is a more significant factor than the extra probes, and linear probing can still be practical
or even a best choice.

The idea of hopscotch hashing is to bound the maximal length of the probe sequence
by a predetermined constant that is optimized to the underlying computer’s architecture.
Doing so would give constant-time lookups in the worst case, and like cuckoo hashing, the
lookup could be parallelized to simultaneously check the bounded set of possible locations.

If an insertion would place a new item too far from its hash location, then we effi-
ciently go backward toward the hash location, evicting potential items. If we are careful,
the evictions can be done quickly and guarantee that those evicted are not placed too far
from their hash locations. The algorithm is deterministic in that given a hash function,
either the items can be evicted or they can’t. The latter case implies that the table is likely
too crowded, and a rehash is in order; but this would happen only at extremely high load
factors, exceeding 0.9. For a table with a load factor of 1

2 , the failure probability is almost
zero (Exercise 5.23).

Let MAX_DIST be the chosen bound on the maximum probe sequence. This means
that item x must be found somewhere in the MAX_DIST positions listed in hash(x),
hash(x) + 1, . . . , hash(x) + (MAX_DIST − 1). In order to efficiently process evictions,
we maintain information that tells for each position x, whether the item in the alternate
position is occupied by an element that hashes to position x.

www.manaraa.com

1 private int rehashes = 0;
2 private Random r = new Random();
3
4 private boolean insertHelper1(AnyType x)
5 {
6 final int COUNT_LIMIT = 100;
7
8 while(true)
9 {

10 int lastPos = -1;
11 int pos;
12
13 for(int count = 0; count < COUNT_LIMIT; count++)
14 {
15 for(int i = 0; i < numHashFunctions; i++)
16 {
17 pos = myhash(x, i);
18
19 if(array[pos] == null)
20 {
21 array[pos] = x;
22 currentSize++;
23 return true;
24 }
25 }
26
27 // none of the spots are available. Evict out a random one
28 int i = 0;
29 do
30 {
31 pos = myhash(x, r.nextInt(numHashFunctions)) ;
32 } while(pos == lastPos && i++ < 5);
33
34 AnyType tmp = array[lastPos = pos];
35 array[pos] = x;
36 x = tmp;
37 }
38
39 if(++rehashes > ALLOWED_REHASHES)
40 {
41 expand(); // Make the table bigger
42 rehashes = 0; // Reset the # of rehashes
43 }
44 else
45 rehash(); // Same table size, new hash functions
46 }
47 }

Figure 5.43 Insertion routine for cuckoo hashing uses a different algorithm that chooses
the item to evict randomly, attempting not to re-evict the last item. The table will attempt
to select new hash functions (rehash) if there are too many evictions and will expand if
there are too many rehashes

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 207

1 private void expand()
2 {
3 rehash((int) (array.length / MAX_LOAD));
4 }
5
6 private void rehash()
7 {
8 hashFunctions.generateNewFunctions();
9 rehash(array.length);

10 }
11
12 private void rehash(int newLength)
13 {
14 AnyType [] oldArray = array;
15 allocateArray(nextPrime(newLength));
16 currentSize = 0;
17
18 // Copy table over
19 for(AnyType str : oldArray)
20 if(str != null)
21 insert(str);
22 }

Figure 5.44 Rehashing and expanding code for cuckoo hash tables

As an example, Figure 5.46 shows a fairly crowded hopscotch hash table, using
MAX_DIST = 4. The bit array for position 6 shows that only position 6 has an item
(C) with hash value 6: Only the first bit of Hop[6] is set. Hop[7] has the first two bits
set, indicating that positions 7 and 8 (A and D) are occupied with items whose hash value
is 7. And Hop[8] has only the third bit set, indicating that the item in position 10 (E) has
hash value 8. If MAX_DIST is no more than 32, the Hop array is essentially an array of
32-bit integers, so the additional space requirement is not substantial. If Hop[pos] contains
all 1’s for some pos, then an attempt to insert an item whose hash value is pos will clearly
fail, since there would now be MAX_DIST + 1 items trying to reside within MAX_DIST
positions of pos—an impossibility.

Continuing the example, suppose we now insert item H with hash value 9. Our normal
linear probing would try to place it in position 13, but that is too far from the hash value
of 9. So instead, we look to evict an item and relocate it to position 13. The only candidates
to go into position 13 would be items with hash value of 10, 11, 12, or 13. If we examine
Hop[10], we see that there are no candidates with hash value 10. But Hop[11] produces a
candidate, G, with value 11 that can be placed into position 13. Since position 11 is now
close enough to the hash value of H, we can now insert H. These steps, along with the
changes to the Hop information, are shown in Figure 5.47.

Finally, we will attempt to insert I whose hash value is 6. Linear probing suggests
position 14, but of course that is too far away. Thus we look for in Hop[11], and it tells

www.manaraa.com

208 Chapter 5 Hashing

1 public class StringHashFamily implements HashFamily<String>
2 {
3 private final int [] MULTIPLIERS;
4 private final java.util.Random r = new java.util.Random();
5
6 public StringHashFamily(int d)
7 {
8 MULTIPLIERS = new int[d];
9 generateNewFunctions();

10 }
11
12 public int getNumberOfFunctions()
13 {
14 return MULTIPLIERS.length;
15 }
16
17 public void generateNewFunctions()
18 {
19 for(int i = 0; i < MULTIPLIERS.length; i++)
20 MULTIPLIERS[i] = r.nextInt();
21 }
22
23 public int hash(String x, int which)
24 {
25 final int multiplier = MULTIPLIERS[which];
26 int hashVal = 0;
27
28 for(int i = 0; i < x.length(); i++)
29 hashVal = multiplier * hashVal + x.charAt(i);
30
31 return hashVal;
32 }
33 }

Figure 5.45 Casual string hashing for cuckoo hashing; these hash functions do not prov-
ably satisfy the requirements needed for cuckoo hashing but offer decent performance if
the table is not highly loaded and the alternate insertion routine in Figure 5.43 is used

us that G can move down, freeing up position 13. Now that 13 is vacant, we can look
in Hop[10] to find another element to evict. But Hop[10] has all zeros in the first three
positions, so there are no items with hash value 10 that can be moved. So we examine
Hop[11]. There we find all zeros in the first two positions.

So we try Hop[12], where we need the first position to be 1, which it is. Thus F can
move down. These two steps are shown in Figure 5.48. Notice, that if this were not the
case—for instance if hash(F) were 9 instead of 12—we would be stuck and have to rehash.

www.manaraa.com

5.7 Hash Tables with Worst-Case O(1) Access 209

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1000

10 E 0000

11 G 1000

12 F 1000

13 0000

14 0000

. . .

A: 7

B: 9

C: 6

D: 7

E: 8

F: 12

G: 11

Figure 5.46 Hopscotch hashing table. The hops tell which of the positions in the block
are occupied with cells containing this hash value. Thus Hop[8] = 0010 indicates that
only position 10 currently contains items whose hash value is 8, while positions 8, 9, and
11 do not

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1000

10 E 0000

11 G 1000

12 F 1000

13 0000

14 0000

. . .

→

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1000

10 E 0000

11 0010

12 F 1000

13 G 0000

14 0000

. . .

→

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1010

10 E 0000

11 H 0010

12 F 1000

13 G 0000

14 0000

. . .

A: 7

B: 9

C: 6

D: 7

E: 8

F: 12

G: 11

H: 9

Figure 5.47 Hopscotch hashing table. Attempting to insert H. Linear probing suggests
location 13, but that is too far, so we evict G from position 11 to find a closer position

However, that is not a problem with our algorithm; instead there would simply be no way
to place all of C, I, A, D, E, B, H, and F (if F’s hash value were 9); these items would all have
hash values between 6 and 9, and would thus need to be placed in the seven spots between
6 and 12. But that would be eight items in seven spots—an impossibility. However, since
this is not the case for our example, and we have evicted an item from position 12, we
can now continue, and Figure 5.49 shows the remaining eviction from position 9, and
subsequent placement of I.

www.manaraa.com

210 Chapter 5 Hashing

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1010

10 E 0000

11 H 0010

12 F 1000

13 G 0000

14 0000

. . .

→

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1010

10 E 0000

11 H 0001

12 F 1000

13 0000

14 G 0000

. . .

→

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1010

10 E 0000

11 H 0001

12 0100

13 F 0000

14 G 0000

. . .

A: 7

B: 9

C: 6

D: 7

E: 8

F: 12

G: 11

H: 9

I: 6

Figure 5.48 Hopscotch hashing table. Attempting to insert I. Linear probing suggests
location 14, but that is too far; consulting Hop[11], we see that G can move down, leaving
position 13 open. Consulting Hop[10] gives no suggestions. Hop[11] does not help either
(why?), so Hop[12] suggests moving F

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 B 1010

10 E 0000

11 H 0001

12 0100

13 F 0000

14 G 0000

. . .

→

Item Hop

. . .

6 C 1000

7 A 1100

8 D 0010

9 0011

10 E 0000

11 H 0001

12 B 0100

13 F 0000

14 G 0000

. . .

→

Item Hop

. . .

6 C 1001

7 A 1100

8 D 0010

9 I 0011

10 E 0000

11 H 0001

12 B 0100

13 F 0000

14 G 0000

. . .

A: 7

B: 9

C: 6

D: 7

E: 8

F: 12

G: 11

H: 9

I: 6

Figure 5.49 Hopscotch hashing table. Insertion of I continues: Next B is evicted, and
finally we have a spot that is close enough to the hash value and can insert I

Hopscotch hashing is a relatively new algorithm, but the initial experimental results are
very promising, especially for applications that make use of multiple processors and require
significant parallelism and concurrency. It remains to be seen if either cuckoo hashing or
hopscotch hashing emerge as a practical alternative to the classic separate chaining and
linear/quadratic probing schemes.

www.manaraa.com

5.8 Universal Hashing 211

5.8 Universal Hashing
Although hash tables are very efficient and have average cost per operation, assuming
appropriate load factors, their analysis and performance depend on the hash function
having two fundamental properties:

1. The hash function must be computable in constant time (i.e., independent of the
number of items in the hash table).

2. The hash function must distribute its items uniformly among the array slots.

In particular, if the hash function is poor, then all bets are off, and the cost per operation
can be linear. In this section, we discuss universal hash functions, which allow us to
choose the hash function randomly in such a way that condition 2 above is satisfied. As
in Section 5.7, we use M to represent Tablesize. Although a strong motivation for the use
of universal hash functions is to provide theoretical justification for the assumptions used
in the classic hash table analyses, these functions can also be used in applications that
require a high level of robustness, in which worst-case (or even substantially degraded)
performance, perhaps based on inputs generated by a saboteur or hacker, simply cannot
be tolerated.

As in Section 5.7, we use M to represent TableSize.

Definition 5.1.
A family H of hash functions is universal, if for any x �= y, the number of hash functions
h in H for which h(x) = h(y) is at most |H|/M.

Notice that this definition holds for each pair of items, rather than being averaged over
all pairs of items. The definition above means that if we choose a hash function randomly
from a universal family H, then the probability of a collision between any two distinct items
is at most 1/M, and when adding into a table with N items, the probability of a collision at
the initial point is at most N/M, or the load factor.

The use of a universal hash function for separate chaining or hopscotch hashing would
be sufficient to meet the assumptions used in the analysis of those data structures. However,
it is not sufficient for cuckoo hashing, which requires a stronger notion of independence.
In cuckoo hashing, we first see if there is a vacant location; if there is not, and we do an
eviction, a different item is now involved in looking for a vacant location. This repeats
until we find the vacant location, or decide to rehash [generally within O(log N) steps].
In order for the analysis to work, each step must have a collision probability of N/M
independently, with a different item x being subject to the hash function. We can formalize
this independence requirement in the following definition.

www.manaraa.com

212 Chapter 5 Hashing

Definition 5.2.
A family H of hash functions is k-universal, if for any x1 �= y1, x2 �= y2, . . . , xk �= yk,
the number of hash functions h in H for which h(x1) = h(y1), h(x2) = h(y2), . . ., and
h(xk) = h(yk) is at most |H|/Mk.

With this definition, we see that the analysis of cuckoo hashing requires an O(log N)-
universal hash function (after that many evictions, we give up and rehash). In this section
we look only at universal hash functions.

To design a simple universal hash function, we will assume first that we are mapping
very large integers into smaller integers ranging from 0 to M − 1. Let p be a prime larger
than the largest input key.

Our universal family H will consist of the following set of functions, where a and b are
chosen randomly:

H = {Ha,b(x) = ((ax + b) mod p) mod M, where 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1}
For example, in this family, three of the possible random choices of (a, b) yield three
different hash functions:

H3,7(x) = ((3x + 7) mod p) mod M

H4,1(x) = ((4x + 1) mod p) mod M

H8,0(x) = ((8x) mod p) mod M

Observe that there are p(p − 1) possible hash functions that can be chosen.

Theorem 5.4.
The hash family H = {Ha,b(x) = ((ax + b) mod p) mod M, where 1 ≤ a ≤ p − 1,
0 ≤ b ≤ p − 1} is universal.

Proof.
Let x and y be distinct values, with x > y, such that Ha,b(x) = Ha,b(y).

Clearly if (ax + b) mod p is equal to (ay + b) mod p, then we will have a collision.
However, this cannot happen: Subtracting equations yields a(x − y) ≡ 0 (mod p),
which would mean that p divides a or p divides x − y, since p is prime. But neither can
happen, since both a and x − y are between 1 and p − 1.

So let r = (ax + b) mod p and let s = (ay + b) mod p, and by the above argument,
r �= s. Thus there are p possible values for r, and for each r, there are p − 1 possible
values for s, for a total of p(p − 1) possible (r, s) pairs. Notice that the number of (a, b)
pairs and the number of (r, s) pairs is identical; thus each (r, s) pair will correspond
to exactly one (a, b) pair if we can solve for (a, b) in terms of r and s. But that is easy:
As before, subtracting equations yields a(x − y) ≡ (r − s) (mod p), which means that
by multiplying both sides by the unique multiplicative inverse of (x − y) (which must
exist, since x − y is not zero and p is prime), we obtain a, in terms of r and s. Then b
follows.

Finally, this means that the probability that x and y collide is equal to the proba-
bility that r ≡ s (mod M), and the above analysis allows us to assume that r and s are
chosen randomly, rather than a and b. Immediate intuition would place this probability
at 1/M, but that would only be true if p were an exact multiple of M, and all possible

www.manaraa.com

5.8 Universal Hashing 213

(r, s) pairs were equally likely. Since p is prime, and r �= s, that is not exactly true, so a
more careful analysis is needed.

For a given r, the number of values of s that can collide mod M is at most �p/M�−1
(the −1 is because r �= s). It is easy to see that this is at most (p − 1)/M. Thus the
probability that r and s will generate a collision is at most 1/M (we divide by p − 1,
because as mentioned earlier in the proof, there are only p − 1 choices for s given r).
This implies that the hash family is universal.

Implementation of this hash function would seem to require two mod operations:
one mod p and the second mod M. Figure 5.50 shows a simple implementation in Java,
assuming that M is significantly less than the 231 − 1 limit of a Java integer. Because the
computations must now be exactly as specified, and thus overflow is no longer acceptable,
we promote to 64-bit long computations.

However, we are allowed to choose any prime p, as long as it is larger than M. Hence, it
makes sense to choose a prime that is most favorable for computations. One such prime is
p = 231 − 1. Prime numbers of this form are known as Mersenne primes; other Mersenne
primes include 25 − 1, 261 − 1 and 289 − 1. Just as a multiplication by a Mersenne prime
such as 31 can be implemented by a bit shift and a subtract, a mod operation involving a
Mersenne prime can also be implemented by a bit shift and an addition:

Suppose r ≡ y (mod p). If we divide y by (p + 1), then y = q′(p + 1) + r′, where q′
and r′ are the quotient and remainder, respectively. Thus, r ≡ q′(p + 1) + r′ (mod p).
And since (p + 1) ≡ 1 (mod p), we obtain r ≡ q′ + r′ (mod p).

Figure 5.51 implements this idea, which is known as the Carter-Wegman trick. On
line 8, the bit shift computes the quotient and the bitwise and computes the remainder

1 public static int universalHash(int x, int A, int B, int P, int M)
2 {
3 return (int) ((((long) A * x) + B) % P) % M;
4 }

Figure 5.50 Simple implementation of universal hashing

1 public static final int DIGS = 31;
2 public static final int mersennep = (1<<DIGS) - 1;
3
4 public static int universalHash(int x, int A, int B, int M)
5 {
6 long hashVal = (long) A * x + B;
7
8 hashVal = ((hashVal >> DIGS) + (hashVal & mersennep));
9 if(hashVal >= mersennep)

10 hashVal -= mersennep;
11
12 return (int) hashVal % M;
13 }

Figure 5.51 Simple implementation of universal hashing

www.manaraa.com

214 Chapter 5 Hashing

when dividing by (p + 1); these bitwise operations work because (p + 1) is an exact power
of two. Since the remainder could be almost as large as p, the resulting sum might be larger
than p, so we scale it back down at lines 9 and 10.

Universal hash functions exist for strings also. First, choose any prime p, larger than M
(and larger than the largest character code). Then use our standard string hashing function,
choosing the multiplier randomly between 1 and p−1 and returning an intermediate hash
value between 0 and p − 1, inclusive. Finally, apply a universal hash function to generate
the final hash value between 0 and M − 1.

5.9 Extendible Hashing
Our last topic in this chapter deals with the case where the amount of data is too large to
fit in main memory. As we saw in Chapter 4, the main consideration then is the number of
disk accesses required to retrieve data.

As before, we assume that at any point we have N records to store; the value of N
changes over time. Furthermore, at most M records fit in one disk block. We will use
M = 4 in this section.

If either probing hashing or separate chaining hashing is used, the major problem
is that collisions could cause several blocks to be examined during a search, even for a
well-distributed hash table. Furthermore, when the table gets too full, an extremely
expensive rehashing step must be performed, which requires O(N) disk accesses.

A clever alternative, known as extendible hashing, allows a search to be performed in
two disk accesses. Insertions also require few disk accesses.

We recall from Chapter 4 that a B-tree has depth O(logM/2 N). As M increases, the depth
of a B-tree decreases. We could in theory choose M to be so large that the depth of the B-tree
would be 1. Then any search after the first would take one disk access, since, presumably,
the root node could be stored in main memory. The problem with this strategy is that the
branching factor is so high that it would take considerable processing to determine which
leaf the data were in. If the time to perform this step could be reduced, then we would
have a practical scheme. This is exactly the strategy used by extendible hashing.

Let us suppose, for the moment, that our data consist of several six-bit integers.
Figure 5.52 shows an extendible hashing scheme for these data. The root of the “tree”
contains four links determined by the leading two bits of the data. Each leaf has up to
M = 4 elements. It happens that in each leaf the first two bits are identical; this is indi-
cated by the number in parentheses. To be more formal, D will represent the number of
bits used by the root, which is sometimes known as the directory. The number of entries
in the directory is thus 2D. dL is the number of leading bits that all the elements of some
leaf L have in common. dL will depend on the particular leaf, and dL ≤ D.

Suppose that we want to insert the key 100100. This would go into the third leaf, but
as the third leaf is already full, there is no room. We thus split this leaf into two leaves,
which are now determined by the first three bits. This requires increasing the directory size
to 3. These changes are reflected in Figure 5.53.

www.manaraa.com

5.9 Extendible Hashing 215

(2)

000100

001000

001010

001011

(2)

010100

011000

(2)

100000

101000

101100

101110

(2)

111000

111001

00 01 10 11

Figure 5.52 Extendible hashing: original data

(2)

000100

001000

001010

001011

(2)

010100

011000

(3)

100000

100100

(3)

101000

101100

101110

(2)

111000

111001

000 001 010 011 100 101 110 111

Figure 5.53 Extendible hashing: after insertion of 100100 and directory split

Notice that all the leaves not involved in the split are now pointed to by two adjacent
directory entries. Thus, although an entire directory is rewritten, none of the other leaves
is actually accessed.

If the key 000000 is now inserted, then the first leaf is split, generating two leaves with
dL = 3. Since D = 3, the only change required in the directory is the updating of the 000
and 001 links. See Figure 5.54.

www.manaraa.com

216 Chapter 5 Hashing

(3)

000000

000100

(3)

001000

001010

001011

(2)

010100

011000

(3)

100000

100100

(3)

101000

101100

101110

(2)

111000

111001

000 001 010 011 100 101 110 111

Figure 5.54 Extendible hashing: after insertion of 000000 and leaf split

This very simple strategy provides quick access times for insert and search operations
on large databases. There are a few important details we have not considered.

First, it is possible that several directory splits will be required if the elements in a leaf
agree in more than D + 1 leading bits. For instance, starting at the original example, with
D = 2, if 111010, 111011, and finally 111100 are inserted, the directory size must be
increased to 4 to distinguish between the five keys. This is an easy detail to take care of,
but must not be forgotten. Second, there is the possibility of duplicate keys; if there are
more than M duplicates, then this algorithm does not work at all. In this case, some other
arrangements need to be made.

These possibilities suggest that it is important for the bits to be fairly random. This can
be accomplished by hashing the keys into a reasonably long integer—hence the name.

We close by mentioning some of the performance properties of extendible hashing,
which are derived after a very difficult analysis. These results are based on the reasonable
assumption that the bit patterns are uniformly distributed.

The expected number of leaves is (N/M) log2 e. Thus the average leaf is ln 2 = 0.69
full. This is the same as for B-trees, which is not entirely surprising, since for both data
structures new nodes are created when the (M + 1)th entry is added.

The more surprising result is that the expected size of the directory (in other words,
2D) is O(N1+1/M/M). If M is very small, then the directory can get unduly large. In this
case, we can have the leaves contain links to the records instead of the actual records,
thus increasing the value of M. This adds a second disk access to each search operation in
order to maintain a smaller directory. If the directory is too large to fit in main memory, the
second disk access would be needed anyway.

www.manaraa.com

Summary 217

Summary

Hash tables can be used to implement the insert and search operations in constant average
time. It is especially important to pay attention to details such as load factor when using
hash tables, since otherwise the time bounds are not valid. It is also important to choose
the hash function carefully when the key is not a short string or integer.

For separate chaining hashing, the load factor should be close to 1, although perfor-
mance does not significantly degrade unless the load factor becomes very large. For probing
hashing, the load factor should not exceed 0.5, unless this is completely unavoidable. If
linear probing is used, performance degenerates rapidly as the load factor approaches 1.
Rehashing can be implemented to allow the table to grow (and shrink), thus maintaining
a reasonable load factor. This is important if space is tight and it is not possible just to
declare a huge hash table.

Other alternatives such as cuckoo hashing and hopscotch hashing can also yield good
results. Because all these algorithms are constant time, it is difficult to make strong state-
ments about which hash table implementation is the “best”; recent simulation results
provide conflicting guidance and suggest that the performance can depend strongly
on the types of items being manipulated, the underlying computer hardware, and the
programming language.

Binary search trees can also be used to implement insert and contains operations.
Although the resulting average time bounds are O(log N), binary search trees also support
routines that require order and are thus more powerful. Using a hash table, it is not possible
to find the minimum element. It is not possible to search efficiently for a string unless the
exact string is known. A binary search tree could quickly find all items in a certain range;
this is not supported by hash tables. Furthermore, the O(log N) bound is not necessarily
that much more than O(1), especially since no multiplications or divisions are required by
search trees.

On the other hand, the worst case for hashing generally results from an implementation
error, whereas sorted input can make binary trees perform poorly. Balanced search trees are
quite expensive to implement, so if no ordering information is required and there is any
suspicion that the input might be sorted, then hashing is the data structure of choice.

Hashing applications are abundant. Compilers use hash tables to keep track of declared
variables in source code. The data structure is known as a symbol table. Hash tables are
the ideal application for this problem. Identifiers are typically short, so the hash function
can be computed quickly, and alphabetizing the variables is often unnecessary.

A hash table is useful for any graph theory problem where the nodes have real names
instead of numbers. Here, as the input is read, vertices are assigned integers from 1 onward
by order of appearance. Again, the input is likely to have large groups of alphabetized
entries. For example, the vertices could be computers. Then if one particular installation
lists its computers as ibm1, ibm2, ibm3, . . . , there could be a dramatic effect on efficiency if
a search tree is used.

A third common use of hash tables is in programs that play games. As the program
searches through different lines of play, it keeps track of positions it has seen by comput-
ing a hash function based on the position (and storing its move for that position). If the
same position reoccurs, usually by a simple transposition of moves, the program can avoid

www.manaraa.com

218 Chapter 5 Hashing

expensive recomputation. This general feature of all game-playing programs is known as
the transposition table.

Yet another use of hashing is in online spelling checkers. If misspelling detection (as
opposed to correction) is important, an entire dictionary can be prehashed and words can
be checked in constant time. Hash tables are well suited for this, because it is not important
to alphabetize words; printing out misspellings in the order they occurred in the document
is certainly acceptable.

Hash tables are often used to implement caches, both in software (for instance, the
cache in your Internet browser) and in hardware (for instance, the memory caches in
modern computers). They are also used in hardware implementations of routers.

We close this chapter by returning to the word puzzle problem of Chapter 1. If the
second algorithm described in Chapter 1 is used, and we assume that the maximum word
size is some small constant, then the time to read in the dictionary containing W words
and put it in a hash table is O(W). This time is likely to be dominated by the disk I/O and
not the hashing routines. The rest of the algorithm would test for the presence of a word
for each ordered quadruple (row, column, orientation, number of characters). As each lookup
would be O(1), and there are only a constant number of orientations (8) and characters
per word, the running time of this phase would be O(R · C). The total running time would
be O(R · C + W), which is a distinct improvement over the original O(R · C · W). We could
make further optimizations, which would decrease the running time in practice; these are
described in the exercises.

Exercises

5.1 Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function
h(x) = x mod 10, show the resulting:
a. Separate chaining hash table.
b. Hash table using linear probing.
c. Hash table using quadratic probing.
d. Hash table with second hash function h2(x) = 7 − (x mod 7).

5.2 Show the result of rehashing the hash tables in Exercise 5.1.

5.3 Write a program to compute the number of collisions required in a long random
sequence of insertions using linear probing, quadratic probing, and double hashing.

5.4 A large number of deletions in a separate chaining hash table can cause the table
to be fairly empty, which wastes space. In this case, we can rehash to a table half
as large. Assume that we rehash to a larger table when there are twice as many
elements as the table size. How empty should the table be before we rehash to a
smaller table?

5.5 Reimplement separate chaining hash tables using singly linked lists instead of using
java.util.LinkedList.

5.6 The isEmpty routine for quadratic probing has not been written. Can you implement
it by returning the expression currentSize==0?

www.manaraa.com

Exercises 219

5.7 In the quadratic probing hash table, suppose that instead of inserting a new item
into the location suggested by findPos, we insert it into the first inactive cell on the
search path (thus, it is possible to reclaim a cell that is marked “deleted,” potentially
saving space).
a. Rewrite the insertion algorithm to use this observation. Do this by having find-

Pos maintain, with an additional variable, the location of the first inactive cell it
encounters.

b. Explain the circumstances under which the revised algorithm is faster than the
original algorithm. Can it be slower?

5.8 Suppose instead of quadratic probing, we use “cubic probing”; here the ith probe
is at hash(x) + i3. Does cubic probing improve on quadratic probing?

5.9 The hash function in Figure 5.4 makes repeated calls to key.length() in the for
loop. Is it worth computing this once prior to entering the loop?

5.10 What are the advantages and disadvantages of the various collision resolution
strategies?

5.11 Suppose that to mitigate the effects of secondary clustering we use as the collision
resolution function f(i) = i · r(hash(x)), where hash(x) is the 32-bit hash value
(not yet scaled to a suitable array index), and r(y) = |48271y(mod (231 − 1))|
mod TableSize. (Section 10.4.1 describes a method of performing this calculation
without overflows, but it is unlikely that overflow matters in this case.) Explain
why this strategy tends to avoid secondary clustering, and compare this strategy
with both double hashing and quadratic probing.

5.12 Rehashing requires recomputing the hash function for all items in the hash table.
Since computing the hash function is expensive, suppose objects provide a hash
member function of their own, and each object stores the result in an additional
data member the first time the hash function is computed for it. Show how such a
scheme would apply for the Employee class in Figure 5.8, and explain under what
circumstances the remembered hash value remains valid in each Employee.

5.13 Write a program to implement the following strategy for multiplying two sparse
polynomials P1, P2 of size M and N, respectively. Each polynomial is represented as
a linked list of objects consisting of a coefficient and an exponent (Exercise 3.12).
We multiply each term in P1 by a term in P2 for a total of MN operations. One
method is to sort these terms and combine like terms, but this requires sorting
MN records, which could be expensive, especially in small-memory environments.
Alternatively, we could merge terms as they are computed and then sort the result.
a. Write a program to implement the alternative strategy.
b. If the output polynomial has about O(M + N) terms, what is the running time

of both methods?

�5.14 Describe a procedure that avoids initializing a hash table (at the expense of
memory).

www.manaraa.com

220 Chapter 5 Hashing

5.15 Suppose we want to find the first occurrence of a string P1P2 · · · Pk in a long input
string A1A2 · · · AN. We can solve this problem by hashing the pattern string, obtain-
ing a hash value HP, and comparing this value with the hash value formed from
A1A2 · · · Ak, A2A3 · · · Ak+1, A3A4 · · · Ak+2, and so on until AN−k+1AN−k+2 · · · AN.
If we have a match of hash values, we compare the strings character by character
to verify the match. We return the position (in A) if the strings actually do match,
and we continue in the unlikely event that the match is false.

�a. Show that if the hash value of AiAi+1 · · · Ai+k−1 is known, then the hash value
of Ai+1Ai+2 · · · Ai+k can be computed in constant time.

b. Show that the running time is O(k + N) plus the time spent refuting false
matches.

�c. Show that the expected number of false matches is negligible.
d. Write a program to implement this algorithm.

��e. Describe an algorithm that runs in O(k + N) worst-case time.
��f. Describe an algorithm that runs in O(N/k) average time.

5.16 Java 7 adds syntax that allows a switch statement to work with the String type
(instead of the primitive integer types). Explain how hash tables can be used by the
compiler to implement this language addition.

5.17 An (old style) BASIC program consists of a series of statements numbered in ascend-
ing order. Control is passed by use of a goto or gosub and a statement number. Write
a program that reads in a legal BASIC program and renumbers the statements so that
the first starts at number F and each statement has a number D higher than the pre-
vious statement. You may assume an upper limit of N statements, but the statement
numbers in the input might be as large as a 32-bit integer. Your program must run
in linear time.

5.18 a. Implement the word puzzle program using the algorithm described at the end
of the chapter.

b. We can get a big speed increase by storing, in addition to each word W, all of
W’s prefixes. (If one of W’s prefixes is another word in the dictionary, it is stored
as a real word.) Although this may seem to increase the size of the hash table
drastically, it does not, because many words have the same prefixes. When a scan
is performed in a particular direction, if the word that is looked up is not even
in the hash table as a prefix, then the scan in that direction can be terminated
early. Use this idea to write an improved program to solve the word puzzle.

c. If we are willing to sacrifice the sanctity of the hash table ADT, we can speed up
the program in part (b) by noting that if, for example, we have just computed
the hash function for “excel,” we do not need to compute the hash function for
“excels” from scratch. Adjust your hash function so that it can take advantage of
its previous calculation.

d. In Chapter 2, we suggested using binary search. Incorporate the idea of using
prefixes into your binary search algorithm. The modification should be simple.
Which algorithm is faster?

www.manaraa.com

Exercises 221

1 class Map<KeyType,ValueType>
2 {
3 public Map()
4
5 public void put(KeyType key, ValueType val)
6 public ValueType get(KeyType key)
7 public boolean isEmpty()
8 public void makeEmpty()
9

10 private QuadraticProbingHashTable<Entry<KeyType,ValueType>> items;
11
12 private static class Entry<KeyType,ValueType>
13 {
14 KeyType key;
15 ValueType value;
16 // Appropriate Constructors, etc.
17 }
18 }

Figure 5.55 Map skeleton for Exercise 5.20

5.19 Under certain assumptions, the expected cost of an insertion into a hash table with
secondary clustering is given by 1/(1−λ)−λ−ln(1−λ). Unfortunately, this formula
is not accurate for quadratic probing. However, assuming that it is, determine the
following:
a. The expected cost of an unsuccessful search.
b. The expected cost of a successful search.

5.20 Implement a generic Map that supports the put and get operations. The implemen-
tation will store a hash table of pairs (key, definition). Figure 5.55 provides the Map
specification (minus some details).

5.21 Implement a spelling checker by using a hash table. Assume that the dictionary
comes from two sources: an existing large dictionary and a second file containing
a personal dictionary. Output all misspelled words and the line numbers in which
they occur. Also, for each misspelled word, list any words in the dictionary that are
obtainable by applying any of the following rules:
a. Add one character.
b. Remove one character.
c. Exchange adjacent characters.

5.22 Prove Markov’s Inequality: If X is any random variable and a > 0, then
Pr(|X| ≥ a) ≤ E(|X|)/a. Show how this inequality can be applied to Theorems 5.2
and 5.3.

5.23 If a hopscotch table with parameter MAX_DIST has load factor 0.5, what is the
approximate probability that an insertion requires a rehash?

www.manaraa.com

222 Chapter 5 Hashing

5.24 Implement a hopscotch hash table and compare its performance with linear
probing, separate chaining, and cuckoo hashing.

5.25 Implement the classic cuckoo hash table in which two separate tables are main-
tained. The simplest way to do this is to use a single array and modify the hash
function to access either the top half or the bottom half.

5.26 Extend the classic cuckoo hash table to use d hash functions.

5.27 Show the result of inserting the keys 10111101, 00000010, 10011011, 10111110,
01111111, 01010001, 10010110, 00001011, 11001111, 10011110, 11011011,
00101011, 01100001, 11110000, 01101111 into an initially empty extendible
hashing data structure with M = 4.

5.28 Write a program to implement extendible hashing. If the table is small enough to
fit in main memory, how does its performance compare with separate chaining and
open addressing hashing?

References

Despite the apparent simplicity of hashing, much of the analysis is quite difficult, and there
are still many unresolved questions. There are also many interesting theoretical issues.

Hashing dates to at least 1953, when H. P. Luhn wrote an internal IBM memorandum
that used separate chaining hashing. Early papers on hashing are [11] and [32]. A wealth
of information on the subject, including an analysis of hashing with linear probing under
the assumption of totally random and independent hashing, can be found in [25]. More
recent results have shown that linear probing requires only 5-independent hash functions
[31]. An excellent survey on early classic hash tables methods is [28]; [29] contains sug-
gestions, and pitfalls, for choosing hash functions. Precise analytic and simulation results
for separate chaining, linear probing, quadratic probing, and double hashing can be found
in [19]. However, due to changes (improvements) in computer architecture and compilers,
simulation results tend to quickly become dated.

An analysis of double hashing can be found in [20] and [27]. Yet another collision
resolution scheme is coalesced hashing, described in [33]. Yao [37] has shown the uniform
hashing, in which no clustering exists, is optimal with respect to cost of a successful search,
assuming that items cannot move once placed.

Universal hash functions were first described in [5] and [35]; the latter paper intro-
duces the “Carter-Wegman trick” of using Mersenne prime numbers to avoid expensive
mod operations. Perfect hashing is described in [16], and a dynamic version of perfect
hashing was described in [8]. [12] is a survey of some classic dynamic hashing schemes.

The �(log N/ log log N) bound on the length of the longest list in separate chaining
was shown (in precise form) in [18]. The “power of two choices,” showing that when the
shorter of two randomly selected lists in chosen, then the bound on the length of the
longest list is lowered to only �(log log N), was first described in [2]. An early example
of the power of two choices is [4]. The classic work on cuckoo hashing is [30]; since the
initial paper, a host of new results have appeared that analyze the amount of independence

www.manaraa.com

References 223

needed in the hash functions, and describe alternative implementations [7], [34], [15],
[10], [23], [24], [1], [6], [9] and [17]. Hopscotch hashing appeared in [21].

Extendible hashing appears in [13], with analysis in [14] and [36].
Exercise 5.15 (a–d) is from [22]. Part (e) is from [26], and part (f) is from [3].

1. Y. Arbitman, M. Naor, and G. Segev, “De-Amortized Cuckoo Hashing: Provable Worst-Case
Performance and Experimental Results,” Proceedings of the 36th International Colloquium on
Automata, Languages and Programming (2009), 107–118.

2. Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced Allocations,” SIAM Journal of
Computing, 29 (1999), 180–200.

3. R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm,” Communications of the
ACM, 20 (1977), 762–772.

4. A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions to Improve IP Lookups,”
Proceedings of the Twentieth IEEE INFOCOM (2001), 1454–1463.

5. J. L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” Journal of Computer
and System Sciences, 18 (1979), 143–154.

6. J. Cohen and D. Kane, “Bounds on the Independence Required for Cuckoo Hashing,”
preprint.

7. L. Devroye and P. Morin, “Cuckoo Hashing: Further Analysis,” Information Processing
Letters, 86 (2003), 215–219.

8. M. Dietzfelbinger, A. R. Karlin, K. Melhorn, F. Meyer auf der Heide, H. Rohnert, and R. E.
Tarjan, “Dynamic Perfect Hashing: Upper and Lower Bounds,” SIAM Journal on Computing,
23 (1994), 738–761.

9. M. Dietzfelbinger and U. Schellbach, “On Risks of Using Cuckoo Hashing with Simple
Universal Hash Classes,” Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms (2009), 795–804.

10. M. Dietzfelbinger and C. Weidling, “Balanced Allocation and Dictionaries with Tightly
Packed Constant Size Bins,” Theoretical Computer Science, 380 (2007), 47–68.

11. I. Dumey, “Indexing for Rapid Random-Access Memory,” Computers and Automation, 5
(1956), 6–9.

12. R. J. Enbody and H. C. Du, “Dynamic Hashing Schemes,” Computing Surveys, 20 (1988),
85–113.

13. R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible Hashing—A Fast
Access Method for Dynamic Files,” ACM Transactions on Database Systems, 4 (1979),
315–344.

14. P. Flajolet, “On the Performance Evaluation of Extendible Hashing and Trie Searching,”
Acta Informatica, 20 (1983), 345–369.

15. D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space Efficient Hash Tables with Worst
Case Constant Access Time,” Theory of Computing Systems, 38 (2005), 229–248.

16. M. L. Fredman, J. Komlos, and E. Szemeredi, “Storing a Sparse Table with O(1) Worst Case
Access Time,” Journal of the ACM, 31 (1984), 538–544.

17. A. Frieze, P. Melsted, and M. Mitzenmacher, “An Analysis of Random-Walk Cuckoo
Hashing,” Proceedings of the Twelfth International Workshop on Approximation Algorithms in
Combinatorial Optimization (APPROX) (2009), 350–364.

www.manaraa.com

224 Chapter 5 Hashing

18. G. Gonnet, “Expected Length of the Longest Probe sequence in Hash Code Searching,”
Journal of the Association for Computing Machinery, 28 (1981), 289–304.

19. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2nd ed.,
Addison-Wesley, Reading, Mass., 1991.

20. L. J. Guibas and E. Szemeredi, “The Analysis of Double Hashing,” Journal of Computer and
System Sciences, 16 (1978), 226–274.

21. M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch Hashing,” Proceedings of the Twenty-
Second International Symposium on Distributed Computing (2008), 350–364.

22. R. M. Karp and M. O. Rabin, “Efficient Randomized Pattern-Matching Algorithms,” Aiken
Computer Laboratory Report TR-31-81, Harvard University, Cambridge, Mass., 1981.

23. A. Kirsch and M. Mitzenmacher, “The Power of One Move: Hashing Schemes
for Hardware,” Proceedings of the 27th IEEE International Conference on Computer
Communications (INFOCOM) (2008), 106–110.

24. A. Kirsch, M. Mitzenmacher, and U. Wieder, “More Robust Hashing: Cuckoo Hashing
with a Stash,” Proceedings of the Sixteenth Annual European Symposium on Algorithms (2008),
611–622.

25. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd ed.,
Addison-Wesley, Reading, Mass., 1998.

26. D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast Pattern Matching in Strings,” SIAM Journal
on Computing, 6 (1977), 323–350.

27. G. Lueker and M. Molodowitch, “More Analysis of Double Hashing,” Proceedings of the
Twentieth ACM Symposium on Theory of Computing (1988), 354–359.

28. W. D. Maurer and T. G. Lewis, “Hash Table Methods,” Computing Surveys, 7 (1975), 5–20.
29. B. J. McKenzie, R. Harries, and T. Bell, “Selecting a Hashing Algorithm,” Software—Practice

and Experience, 20 (1990), 209–224.
30. R. Pagh and F. F. Rodler, “Cuckoo Hashing,” Journal of Algorithms, 51 (2004), 122–144.
31. M. Pătraşcu and M. Thorup, “On the k-Independence Required by Linear Probing and

Minwise Independence,” Proceedings of the 37th International Colloquium on Automata,
Languages, and Programming (2010), 715–726.

32. W. W. Peterson, “Addressing for Random Access Storage,” IBM Journal of Research and
Development, 1 (1957), 130–146.

33. J. S. Vitter, “Implementations for Coalesced Hashing,” Communications of the ACM, 25
(1982), 911–926.

34. B. Vöcking, “How Asymmetry Helps Load Balancing,” Journal of the ACM, 50 (2003),
568–589.

35. M. N. Wegman and J. Carter, “New Hash Functions and Their Use in Authentication and
Set Equality,” Journal of Computer and System Sciences, 22 (1981), 265–279.

36. A. C. Yao, “A Note on the Analysis of Extendible Hashing,” Information Processing Letters,
11 (1980), 84–86.

37. A. C. Yao, “Uniform Hashing Is Optimal,” Journal of the ACM, 32 (1985), 687–693.

www.manaraa.com

C H A P T E R 6

Priority Queues (Heaps)

Although jobs sent to a printer are generally placed on a queue, this might not always be
the best thing to do. For instance, one job might be particularly important, so it might
be desirable to allow that job to be run as soon as the printer is available. Conversely, if,
when the printer becomes available, there are several 1-page jobs and one 100-page job, it
might be reasonable to make the long job go last, even if it is not the last job submitted.
(Unfortunately, most systems do not do this, which can be particularly annoying at times.)

Similarly, in a multiuser environment, the operating system scheduler must decide
which of several processes to run. Generally a process is allowed to run only for a fixed
period of time. One algorithm uses a queue. Jobs are initially placed at the end of the
queue. The scheduler will repeatedly take the first job on the queue, run it until either it
finishes or its time limit is up, and place it at the end of the queue if it does not finish.
This strategy is generally not appropriate, because very short jobs will seem to take a long
time because of the wait involved to run. Generally, it is important that short jobs finish
as fast as possible, so these jobs should have precedence over jobs that have already been
running. Furthermore, some jobs that are not short are still very important and should also
have precedence.

This particular application seems to require a special kind of queue, known as a
priority queue. In this chapter, we will discuss

� Efficient implementation of the priority queue ADT.
� Uses of priority queues.
� Advanced implementations of priority queues.

The data structures we will see are among the most elegant in computer science.

6.1 Model
A priority queue is a data structure that allows at least the following two operations: insert,
which does the obvious thing; and deleteMin, which finds, returns, and removes the mini-
mum element in the priority queue. The insert operation is the equivalent of enqueue, and
deleteMin is the priority queue equivalent of the queue’s dequeue operation.

As with most data structures, it is sometimes possible to add other operations, but
these are extensions and not part of the basic model depicted in Figure 6.1.

Priority queues have many applications besides operating systems. In Chapter 7,
we will see how priority queues are used for external sorting. Priority queues are also 225

www.manaraa.com

226 Chapter 6 Priority Queues (Heaps)

insert
Priority Queue

deleteMin

Figure 6.1 Basic model of a priority queue

important in the implementation of greedy algorithms, which operate by repeatedly find-
ing a minimum; we will see specific examples in Chapters 9 and 10. In this chapter we will
see a use of priority queues in discrete event simulation.

6.2 Simple Implementations
There are several obvious ways to implement a priority queue. We could use a simple
linked list, performing insertions at the front in O(1) and traversing the list, which requires
O(N) time, to delete the minimum. Alternatively, we could insist that the list be kept always
sorted; this makes insertions expensive (O(N)) and deleteMins cheap (O(1)). The former is
probably the better idea of the two, based on the fact that there are never more deleteMins
than insertions.

Another way of implementing priority queues would be to use a binary search tree.
This gives an O(log N) average running time for both operations. This is true in spite of the
fact that although the insertions are random, the deletions are not. Recall that the only ele-
ment we ever delete is the minimum. Repeatedly removing a node that is in the left subtree
would seem to hurt the balance of the tree by making the right subtree heavy. However,
the right subtree is random. In the worst case, where the deleteMins have depleted the
left subtree, the right subtree would have at most twice as many elements as it should.
This adds only a small constant to its expected depth. Notice that the bound can be made
into a worst-case bound by using a balanced tree; this protects one against bad insertion
sequences.

Using a search tree could be overkill because it supports a host of operations that are
not required. The basic data structure we will use will not require links and will support
both operations in O(log N) worst-case time. Insertion will actually take constant time on
average, and our implementation will allow building a priority queue of N items in linear
time, if no deletions intervene. We will then discuss how to implement priority queues to
support efficient merging. This additional operation seems to complicate matters a bit and
apparently requires the use of a linked structure.

6.3 Binary Heap
The implementation we will use is known as a binary heap. Its use is so common for
priority queue implementations that, in the context of priority queues, when the word heap
is used without a qualifier, it is generally assumed to be referring to this implementation

www.manaraa.com

6.3 Binary Heap 227

of the data structure. In this section, we will refer to binary heaps merely as heaps. Like
binary search trees, heaps have two properties, namely, a structure property and a heap-
order property. As with AVL trees, an operation on a heap can destroy one of the properties,
so a heap operation must not terminate until all heap properties are in order. This turns
out to be simple to do.

6.3.1 Structure Property
A heap is a binary tree that is completely filled, with the possible exception of the bottom
level, which is filled from left to right. Such a tree is known as a complete binary tree.
Figure 6.2 shows an example.

It is easy to show that a complete binary tree of height h has between 2h and 2h+1 − 1
nodes. This implies that the height of a complete binary tree is
log N�, which is clearly
O(log N).

An important observation is that because a complete binary tree is so regular, it can be
represented in an array and no links are necessary. The array in Figure 6.3 corresponds to
the heap in Figure 6.2.

For any element in array position i, the left child is in position 2i, the right child is in
the cell after the left child (2i + 1), and the parent is in position
i/2�. Thus not only are
links not required, but the operations required to traverse the tree are extremely simple

A

B C

F GED

H JI

Figure 6.2 A complete binary tree

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6.3 Array implementation of complete binary tree

www.manaraa.com

228 Chapter 6 Priority Queues (Heaps)

1 public class BinaryHeap<AnyType extends Comparable<? super AnyType>>
2 {
3 public BinaryHeap()
4 { /* See online code */ }
5 public BinaryHeap(int capacity)
6 { /* See online code */ }
7 public BinaryHeap(AnyType [] items)
8 { /* Figure 6.14 */ }
9

10 public void insert(AnyType x)
11 { /* Figure 6.8 */ }
12 public AnyType findMin()
13 { /* See online code */ }
14 public AnyType deleteMin()
15 { /* Figure 6.12 */ }
16 public boolean isEmpty()
17 { /* See online code */ }
18 public void makeEmpty()
19 { /* See online code */ }
20
21 private static final int DEFAULT_CAPACITY = 10;
22
23 private int currentSize; // Number of elements in heap
24 private AnyType [] array; // The heap array
25
26 private void percolateDown(int hole)
27 { /* Figure 6.12 */ }
28 private void buildHeap()
29 { /* Figure 6.14 */ }
30 private void enlargeArray(int newSize)
31 { /* See online code */ }
32 }

Figure 6.4 Class skeleton for priority queue

and likely to be very fast on most computers. The only problem with this implementation
is that an estimate of the maximum heap size is required in advance, but typically this is
not a problem (and we can resize if necessary). In Figure 6.3, the limit on the heap size is
13 elements. The array has a position 0; more on this later.

A heap data structure will, then, consist of an array (of Comparable objects) and an
integer representing the current heap size. Figure 6.4 shows a priority queue skeleton.

Throughout this chapter, we shall draw the heaps as trees, with the implication that an
actual implementation will use simple arrays.

www.manaraa.com

6.3 Binary Heap 229

13

21 16

24 31 19 68

65 26 32

13

21 16

6 31 19 68

65 26 32

Figure 6.5 Two complete trees (only the left tree is a heap)

6.3.2 Heap-Order Property
The property that allows operations to be performed quickly is the heap-order property.
Since we want to be able to find the minimum quickly, it makes sense that the smallest
element should be at the root. If we consider that any subtree should also be a heap, then
any node should be smaller than all of its descendants.

Applying this logic, we arrive at the heap-order property. In a heap, for every node X,
the key in the parent of X is smaller than (or equal to) the key in X, with the exception
of the root (which has no parent).1 In Figure 6.5 the tree on the left is a heap, but the tree
on the right is not (the dashed line shows the violation of heap order).

By the heap-order property, the minimum element can always be found at the root.
Thus, we get the extra operation, findMin, in constant time.

6.3.3 Basic Heap Operations
It is easy (both conceptually and practically) to perform the two required operations. All
the work involves ensuring that the heap-order property is maintained.

insert
To insert an element X into the heap, we create a hole in the next available location, since
otherwise the tree will not be complete. If X can be placed in the hole without violating
heap order, then we do so and are done. Otherwise we slide the element that is in the hole’s
parent node into the hole, thus bubbling the hole up toward the root. We continue this
process until X can be placed in the hole. Figure 6.6 shows that to insert 14, we create a
hole in the next available heap location. Inserting 14 in the hole would violate the heap-
order property, so 31 is slid down into the hole. This strategy is continued in Figure 6.7
until the correct location for 14 is found.

1 Analogously, we can declare a (max) heap, which enables us to efficiently find and remove the maximum
element, by changing the heap-order property. Thus, a priority queue can be used to find either a minimum
or a maximum, but this needs to be decided ahead of time.

www.manaraa.com

230 Chapter 6 Priority Queues (Heaps)

13

21 16

24 31 19 68

65 26 32

13

21 16

24 19 68

65 26 32 31

Figure 6.6 Attempt to insert 14: creating the hole and bubbling the hole up

1313

16 14

24 19 68

65 26 32

2121

16

24 19 68

65 26 32 3131

Figure 6.7 The remaining two steps to insert 14 in previous heap

This general strategy is known as a percolate up; the new element is percolated up
the heap until the correct location is found. Insertion is easily implemented with the code
shown in Figure 6.8.

We could have implemented the percolation in the insert routine by performing
repeated swaps until the correct order was established, but a swap requires three assign-
ment statements. If an element is percolated up d levels, the number of assignments
performed by the swaps would be 3d. Our method uses d + 1 assignments.

If the element to be inserted is the new minimum, it will be pushed all the way to the
top. At some point, hole will be 1 and we will want to break out of the loop. We could do
this with an explicit test, or we can put a reference to the inserted item in position 0 in order
to make the loop terminate. We elect to place x into position 0 in our implementation.

The time to do the insertion could be as much as O(log N), if the element to be inserted
is the new minimum and is percolated all the way to the root. On average, the percolation
terminates early; it has been shown that 2.607 comparisons are required on average to
perform an insert, so the average insert moves an element up 1.607 levels.

www.manaraa.com

6.3 Binary Heap 231

1 /**
2 * Insert into the priority queue, maintaining heap order.
3 * Duplicates are allowed.
4 * @param x the item to insert.
5 */
6 public void insert(AnyType x)
7 {
8 if(currentSize == array.length - 1)
9 enlargeArray(array.length * 2 + 1);

10
11 // Percolate up
12 int hole = ++currentSize;
13 for(array[0] = x; x.compareTo(array[hole / 2]) < 0; hole /= 2)
14 array[hole] = array[hole / 2];
15 array[hole] = x;
16 }

Figure 6.8 Procedure to insert into a binary heap

13

16 1414

19 1919 68

65 26 32

2121

16

19 68

65 26 32 3131

Figure 6.9 Creation of the hole at the root

deleteMin
deleteMins are handled in a similar manner as insertions. Finding the minimum is easy;
the hard part is removing it. When the minimum is removed, a hole is created at the root.
Since the heap now becomes one smaller, it follows that the last element X in the heap
must move somewhere in the heap. If X can be placed in the hole, then we are done. This
is unlikely, so we slide the smaller of the hole’s children into the hole, thus pushing the hole
down one level. We repeat this step until X can be placed in the hole. Thus, our action is
to place X in its correct spot along a path from the root containing minimum children.

In Figure 6.9 the left figure shows a heap prior to the deleteMin. After 13 is removed, we
must now try to place 31 in the heap. The value 31 cannot be placed in the hole, because
this would violate heap order. Thus, we place the smaller child (14) in the hole, sliding the
hole down one level (see Figure 6.10). We repeat this again, and since 31 is larger than 19,

www.manaraa.com

232 Chapter 6 Priority Queues (Heaps)

1414

16 19

1919 68

65 26 32

2121

16

19 68

65 26 32 3131

Figure 6.10 Next two steps in deleteMin

1414

1619 19

19 68

65 32

212126 26

16

19 68

65 3231 31

Figure 6.11 Last two steps in deleteMin

we place 19 into the hole and create a new hole one level deeper. We then place 26 in the
hole and create a new hole on the bottom level since once again, 31 is too large. Finally, we
are able to place 31 in the hole (Figure 6.11). This general strategy is known as a percolate
down. We use the same technique as in the insert routine to avoid the use of swaps in this
routine.

A frequent implementation error in heaps occurs when there are an even number of
elements in the heap, and the one node that has only one child is encountered. You must
make sure not to assume that there are always two children, so this usually involves an extra
test. In the code depicted in Figure 6.12, we’ve done this test at line 29. One extremely
tricky solution is always to ensure that your algorithm thinks every node has two children.
Do this by placing a sentinel, of value higher than any in the heap, at the spot after the heap
ends, at the start of each percolate down when the heap size is even. You should think very
carefully before attempting this, and you must put in a prominent comment if you do use
this technique. Although this eliminates the need to test for the presence of a right child,
you cannot eliminate the requirement that you test when you reach the bottom, because
this would require a sentinel for every leaf.

The worst-case running time for this operation is O(log N). On average, the element
that is placed at the root is percolated almost to the bottom of the heap (which is the level
it came from), so the average running time is O(log N).

www.manaraa.com

6.3 Binary Heap 233

1 /**
2 * Remove the smallest item from the priority queue.
3 * @return the smallest item, or throw UnderflowException, if empty.
4 */
5 public AnyType deleteMin()
6 {
7 if(isEmpty())
8 throw new UnderflowException();
9

10 AnyType minItem = findMin();
11 array[1] = array[currentSize--];
12 percolateDown(1);
13
14 return minItem;
15 }
16
17 /**
18 * Internal method to percolate down in the heap.
19 * @param hole the index at which the percolate begins.
20 */
21 private void percolateDown(int hole)
22 {
23 int child;
24 AnyType tmp = array[hole];
25
26 for(; hole * 2 <= currentSize; hole = child)
27 {
28 child = hole * 2;
29 if(child != currentSize &&
30 array[child + 1].compareTo(array[child]) < 0)
31 child++;
32 if(array[child].compareTo(tmp) < 0)
33 array[hole] = array[child];
34 else
35 break;
36 }
37 array[hole] = tmp;
38 }

Figure 6.12 Method to perform deleteMin in a binary heap

www.manaraa.com

234 Chapter 6 Priority Queues (Heaps)

Figure 6.13 A very large complete binary tree

6.3.4 Other Heap Operations
Notice that although finding the minimum can be performed in constant time, a heap
designed to find the minimum element (also known as a (min)heap) is of no help
whatsoever in finding the maximum element. In fact, a heap has very little ordering infor-
mation, so there is no way to find any particular element without a linear scan through the
entire heap. To see this, consider the large heap structure (the elements are not shown) in
Figure 6.13, where we see that the only information known about the maximum element
is that it is at one of the leaves. Half the elements, though, are contained in leaves, so this is
practically useless information. For this reason, if it is important to know where elements
are, some other data structure, such as a hash table, must be used in addition to the heap.
(Recall that the model does not allow looking inside the heap.)

If we assume that the position of every element is known by some other method,
then several other operations become cheap. The first three operations below all run in
logarithmic worst-case time.

decreaseKey
The decreaseKey(p,) operation lowers the value of the item at position p by a positive
amount . Since this might violate the heap order, it must be fixed by a percolate up. This
operation could be useful to system administrators: They can make their programs run
with highest priority.

increaseKey
The increaseKey(p,) operation increases the value of the item at position p by a positive
amount . This is done with a percolate down. Many schedulers automatically drop the
priority of a process that is consuming excessive CPU time.

www.manaraa.com

6.3 Binary Heap 235

delete
The delete(p) operation removes the node at position p from the heap. This is done by first
performing decreaseKey(p,∞) and then performing deleteMin(). When a process is termi-
nated by a user (instead of finishing normally), it must be removed from the priority queue.

buildHeap
The binary heap is sometimes constructed from an initial collection of items. This con-
structor takes as input N items and places them into a heap. Obviously, this can be done
with N successive inserts. Since each insert will take O(1) average and O(log N) worst-
case time, the total running time of this algorithm would be O(N) average but O(N log N)
worst-case. Since this is a special instruction and there are no other operations interven-
ing, and we already know that the instruction can be performed in linear average time, it
is reasonable to expect that with reasonable care a linear time bound can be guaranteed.

The general algorithm is to place the N items into the tree in any order, maintaining the
structure property. Then, if percolateDown(i) percolates down from node i, the buildHeap
routine in Figure 6.14 can be used by the constructor to create a heap-ordered tree.

The first tree in Figure 6.15 is the unordered tree. The seven remaining trees in
Figures 6.15 through 6.18 show the result of each of the seven percolateDowns. Each dashed
line corresponds to two comparisons: one to find the smaller child and one to compare
the smaller child with the node. Notice that there are only 10 dashed lines in the entire
algorithm (there could have been an 11th—where?) corresponding to 20 comparisons.

To bound the running time of buildHeap, we must bound the number of dashed lines.
This can be done by computing the sum of the heights of all the nodes in the heap, which
is the maximum number of dashed lines. What we would like to show is that this sum
is O(N).

Theorem 6.1.
For the perfect binary tree of height h containing 2h+1−1 nodes, the sum of the heights
of the nodes is 2h+1 − 1 − (h + 1).

Proof.
It is easy to see that this tree consists of 1 node at height h, 2 nodes at height h − 1, 22

nodes at height h − 2, and in general 2i nodes at height h − i. The sum of the heights
of all the nodes is then

S =
h∑

i=0

2i(h − i)

= h + 2(h − 1) + 4(h − 2) + 8(h − 3) + 16(h − 4) + · · · + 2h−1(1) (6.1)

Multiplying by 2 gives the equation

2S = 2h + 4(h − 1) + 8(h − 2) + 16(h − 3) + · · · + 2h(1) (6.2)

We subtract these two equations and obtain Equation (6.3). We find that certain terms
almost cancel. For instance, we have 2h − 2(h − 1) = 2, 4(h − 1) − 4(h − 2) = 4,
and so on. The last term in Equation (6.2), 2h, does not appear in Equation (6.1);

www.manaraa.com

236 Chapter 6 Priority Queues (Heaps)

1 /**
2 * Construct the binary heap given an array of items.
3 */
4 public BinaryHeap(AnyType [] items)
5 {
6 currentSize = items.length;
7 array = (AnyType[]) new Comparable[(currentSize + 2) * 11 / 10];
8
9 int i = 1;

10 for(AnyType item : items)
11 array[i++] = item;
12 buildHeap();
13 }
14
15 /**
16 * Establish heap order property from an arbitrary
17 * arrangement of items. Runs in linear time.
18 */
19 private void buildHeap()
20 {
21 for(int i = currentSize / 2; i > 0; i--)
22 percolateDown(i);
23 }

Figure 6.14 Sketch of buildHeap

150

80 40

30 10 70 110

100 20 90 60 50 120 140 130

150

80 40

30 10 70 110

100 20 90 60 50 120 140 130

Figure 6.15 Left: initial heap; right: after percolateDown(7)

thus, it appears in Equation (6.3). The first term in Equation (6.1), h, does not appear
in Equation (6.2); thus, −h appears in Equation (6.3). We obtain

S = −h + 2 + 4 + 8 + · · · + 2h−1 + 2h = (2h+1 − 1) − (h + 1) (6.3)

which proves the theorem.

www.manaraa.com

6.3 Binary Heap 237

150

80 40

30 10 50 110

100 20 90 60 70 120 140 130

150

80 40

30 10 50 110

100 20 90 60 70 120 140 130

Figure 6.16 Left: after percolateDown(6); right: after percolateDown(5)

150

80 40

20 10 50 110

100 30 90 60 70 120 140 130

150

80 40

20 10 50 110

100 30 90 60 70 120 140 130

Figure 6.17 Left: after percolateDown(4); right: after percolateDown(3)

150

10 40

20 60 50 110

100 30 90 80 70 120 140 130

10

20 40

30 60 50 110

100 150 90 80 70 120 140 130

Figure 6.18 Left: after percolateDown(2); right: after percolateDown(1)

A complete tree is not a perfect binary tree, but the result we have obtained is an upper
bound on the sum of the heights of the nodes in a complete tree. Since a complete tree has
between 2h and 2h+1 nodes, this theorem implies that this sum is O(N), where N is the
number of nodes.

Although the result we have obtained is sufficient to show that buildHeap is linear, the
bound on the sum of the heights is not as strong as possible. For a complete tree with
N = 2h nodes, the bound we have obtained is roughly 2N. The sum of the heights can
be shown by induction to be N − b(N), where b(N) is the number of 1s in the binary
representation of N.

www.manaraa.com

238 Chapter 6 Priority Queues (Heaps)

6.4 Applications of Priority Queues
We have already mentioned how priority queues are used in operating systems design.
In Chapter 9, we will see how priority queues are used to implement several graph algo-
rithms efficiently. Here we will show how to use priority queues to obtain solutions to two
problems.

6.4.1 The Selection Problem
The first problem we will examine is the selection problem from Chapter 1. Recall that the
input is a list of N elements, which can be totally ordered, and an integer k. The selection
problem is to find the kth largest element.

Two algorithms were given in Chapter 1, but neither is very efficient. The first algo-
rithm, which we shall call algorithm 1A, is to read the elements into an array and sort them,
returning the appropriate element. Assuming a simple sorting algorithm, the running time
is O(N2). The alternative algorithm, 1B, is to read k elements into an array and sort them.
The smallest of these is in the kth position. We process the remaining elements one by one.
As an element arrives, it is compared with the kth element in the array. If it is larger, then
the kth element is removed, and the new element is placed in the correct place among the
remaining k − 1 elements. When the algorithm ends, the element in the kth position is the
answer. The running time is O(N ·k) (why?). If k = �N/2�, then both algorithms are O(N2).
Notice that for any k, we can solve the symmetric problem of finding the (N − k + 1)th
smallest element, so k = �N/2� is really the hardest case for these algorithms. This
also happens to be the most interesting case, since this value of k is known as the
median.

We give two algorithms here, both of which run in O(N log N) in the extreme case of
k = �N/2�, which is a distinct improvement.

Algorithm 6A
For simplicity, we assume that we are interested in finding the kth smallest element. The
algorithm is simple. We read the N elements into an array. We then apply the buildHeap
algorithm to this array. Finally, we perform k deleteMin operations. The last element
extracted from the heap is our answer. It should be clear that by changing the heap-order
property, we could solve the original problem of finding the kth largest element.

The correctness of the algorithm should be clear. The worst-case timing is O(N) to
construct the heap, if buildHeap is used, and O(log N) for each deleteMin. Since there are k
deleteMins, we obtain a total running time of O(N + k log N). If k = O(N/log N), then the
running time is dominated by the buildHeap operation and is O(N). For larger values of k,
the running time is O(k log N). If k = �N/2�, then the running time is �(N log N).

Notice that if we run this program for k = N and record the values as they leave the
heap, we will have essentially sorted the input file in O(N log N) time. In Chapter 7, we
will refine this idea to obtain a fast sorting algorithm known as heapsort.

www.manaraa.com

6.4 Applications of Priority Queues 239

Algorithm 6B
For the second algorithm, we return to the original problem and find the kth largest ele-
ment. We use the idea from algorithm 1B. At any point in time we will maintain a set S
of the k largest elements. After the first k elements are read, when a new element is read
it is compared with the kth largest element, which we denote by Sk. Notice that Sk is the
smallest element in S. If the new element is larger, then it replaces Sk in S. S will then have
a new smallest element, which may or may not be the newly added element. At the end of
the input, we find the smallest element in S and return it as the answer.

This is essentially the same algorithm described in Chapter 1. Here, however, we will
use a heap to implement S. The first k elements are placed into the heap in total time O(k)
with a call to buildHeap. The time to process each of the remaining elements is O(1), to test
if the element goes into S, plus O(log k), to delete Sk and insert the new element if this is
necessary. Thus, the total time is O(k + (N − k) log k) = O(N log k). This algorithm also
gives a bound of �(N log N) for finding the median.

In Chapter 7, we will see how to solve this problem in O(N) average time. In
Chapter 10, we will see an elegant, albeit impractical, algorithm to solve this problem
in O(N) worst-case time.

6.4.2 Event Simulation
In Section 3.7.3, we described an important queuing problem. Recall that we have a sys-
tem, such as a bank, where customers arrive and wait in a line until one of k tellers is
available. Customer arrival is governed by a probability distribution function, as is the ser-
vice time (the amount of time to be served once a teller is available). We are interested in
statistics such as how long on average a customer has to wait or how long the line might be.

With certain probability distributions and values of k, these answers can be computed
exactly. However, as k gets larger, the analysis becomes considerably more difficult, so it is
appealing to use a computer to simulate the operation of the bank. In this way, the bank
officers can determine how many tellers are needed to ensure reasonably smooth service.

A simulation consists of processing events. The two events here are (a) a customer
arriving and (b) a customer departing, thus freeing up a teller.

We can use the probability functions to generate an input stream consisting of ordered
pairs of arrival time and service time for each customer, sorted by arrival time. We do not
need to use the exact time of day. Rather, we can use a quantum unit, which we will refer
to as a tick.

One way to do this simulation is to start a simulation clock at zero ticks. We then
advance the clock one tick at a time, checking to see if there is an event. If there is, then we
process the event(s) and compile statistics. When there are no customers left in the input
stream and all the tellers are free, then the simulation is over.

The problem with this simulation strategy is that its running time does not depend
on the number of customers or events (there are two events per customer), but instead
depends on the number of ticks, which is not really part of the input. To see why this is
important, suppose we changed the clock units to milliticks and multiplied all the times in
the input by 1,000. The result would be that the simulation would take 1,000 times longer!

www.manaraa.com

240 Chapter 6 Priority Queues (Heaps)

The key to avoiding this problem is to advance the clock to the next event time at each
stage. This is conceptually easy to do. At any point, the next event that can occur is either
(a) the next customer in the input file arrives or (b) one of the customers at a teller leaves.
Since all the times when the events will happen are available, we just need to find the event
that happens nearest in the future and process that event.

If the event is a departure, processing includes gathering statistics for the departing
customer and checking the line (queue) to see whether there is another customer waiting. If
so, we add that customer, process whatever statistics are required, compute the time when
that customer will leave, and add that departure to the set of events waiting to happen.

If the event is an arrival, we check for an available teller. If there is none, we place the
arrival on the line (queue); otherwise we give the customer a teller, compute the customer’s
departure time, and add the departure to the set of events waiting to happen.

The waiting line for customers can be implemented as a queue. Since we need to find
the event nearest in the future, it is appropriate that the set of departures waiting to happen
be organized in a priority queue. The next event is thus the next arrival or next departure
(whichever is sooner); both are easily available.

It is then straightforward, although possibly time-consuming, to write the simulation
routines. If there are C customers (and thus 2C events) and k tellers, then the running time
of the simulation would be O(C log(k + 1)) because computing and processing each event
takes O(log H), where H = k + 1 is the size of the heap.2

6.5 d-Heaps
Binary heaps are so simple that they are almost always used when priority queues are
needed. A simple generalization is a d-heap, which is exactly like a binary heap except that
all nodes have d children (thus, a binary heap is a 2-heap).

Figure 6.19 shows a 3-heap. Notice that a d-heap is much shallower than a binary heap,
improving the running time of inserts to O(logd N). However, for large d, the deleteMin
operation is more expensive, because even though the tree is shallower, the minimum of d
children must be found, which takes d − 1 comparisons using a standard algorithm. This
raises the time for this operation to O(d logd N). If d is a constant, both running times are, of
course, O(log N). Although an array can still be used, the multiplications and divisions to
find children and parents are now by d, which, unless d is a power of 2, seriously increases
the running time, because we can no longer implement division by a bit shift. d-heaps are
interesting in theory, because there are many algorithms where the number of insertions is
much greater than the number of deleteMins (and thus a theoretical speedup is possible).
They are also of interest when the priority queue is too large to fit entirely in main memory.
In this case, a d-heap can be advantageous in much the same way as B-trees. Finally, there
is evidence suggesting that 4-heaps may outperform binary heaps in practice.

The most glaring weakness of the heap implementation, aside from the inability to per-
form finds, is that combining two heaps into one is a hard operation. This extra operation

2 We use O(C log(k + 1)) instead of O(C log k) to avoid confusion for the k = 1 case.

www.manaraa.com

6.6 Leftist Heaps 241

1

10

11 9

13 15 174 7 6 8 9

532

Figure 6.19 A d-heap

is known as a merge. There are quite a few ways of implementing heaps so that the running
time of a merge is O(log N). We will now discuss three data structures, of various complex-
ity, that support the merge operation efficiently. We will defer any complicated analysis until
Chapter 11.

6.6 Leftist Heaps
It seems difficult to design a data structure that efficiently supports merging (that is, pro-
cesses a merge in o(N) time) and uses only an array, as in a binary heap. The reason for
this is that merging would seem to require copying one array into another, which would
take �(N) time for equal-sized heaps. For this reason, all the advanced data structures that
support efficient merging require the use of a linked data structure. In practice, we can
expect that this will make all the other operations slower.

Like a binary heap, a leftist heap has both a structural property and an ordering prop-
erty. Indeed, a leftist heap, like virtually all heaps used, has the same heap-order property
we have already seen. Furthermore, a leftist heap is also a binary tree. The only difference
between a leftist heap and a binary heap is that leftist heaps are not perfectly balanced but
actually attempt to be very unbalanced.

6.6.1 Leftist Heap Property
We define the null path length, npl(X), of any node X to be the length of the shortest path
from X to a node without two children. Thus, the npl of a node with zero or one child is 0,
while npl(null) = −1. In the tree in Figure 6.20, the null path lengths are indicated inside
the tree nodes.

Notice that the null path length of any node is 1 more than the minimum of the null
path lengths of its children. This applies to nodes with less than two children because the
null path length of null is −1.

The leftist heap property is that for every node X in the heap, the null path length of
the left child is at least as large as that of the right child. This property is satisfied by only
one of the trees in Figure 6.20, namely, the tree on the left. This property actually goes

www.manaraa.com

242 Chapter 6 Priority Queues (Heaps)

1

1 0

0 0

0

1

1* 0

0 1

0 0

Figure 6.20 Null path lengths for two trees; only the left tree is leftist

out of its way to ensure that the tree is unbalanced, because it clearly biases the tree to get
deep toward the left. Indeed, a tree consisting of a long path of left nodes is possible (and
actually preferable to facilitate merging)—hence the name leftist heap.

Because leftist heaps tend to have deep left paths, it follows that the right path ought
to be short. Indeed, the right path down a leftist heap is as short as any in the heap.
Otherwise, there would be a path that goes through some node X and takes the left child.
Then X would violate the leftist property.

Theorem 6.2.
A leftist tree with r nodes on the right path must have at least 2r − 1 nodes.

Proof.
The proof is by induction. If r = 1, there must be at least one tree node. Otherwise,
suppose that the theorem is true for 1, 2, . . . , r. Consider a leftist tree with r + 1 nodes
on the right path. Then the root has a right subtree with r nodes on the right path, and
a left subtree with at least r nodes on the right path (otherwise it would not be leftist).
Applying the inductive hypothesis to these subtrees yields a minimum of 2r − 1 nodes
in each subtree. This plus the root gives at least 2r+1 − 1 nodes in the tree, proving the
theorem.

From this theorem, it follows immediately that a leftist tree of N nodes has a right path
containing at most
log(N + 1)� nodes. The general idea for the leftist heap operations is
to perform all the work on the right path, which is guaranteed to be short. The only tricky
part is that performing inserts and merges on the right path could destroy the leftist heap
property. It turns out to be extremely easy to restore the property.

6.6.2 Leftist Heap Operations
The fundamental operation on leftist heaps is merging. Notice that insertion is merely a
special case of merging, since we may view an insertion as a merge of a one-node heap with
a larger heap. We will first give a simple recursive solution and then show how this might

www.manaraa.com

6.6 Leftist Heaps 243

3

10 8

21 14

23

17

26

6

12 7

18 24

33

37 18

H1 H2

Figure 6.21 Two leftist heaps H1 and H2

6

12

18 24

33

7

8 37

17 18

26

Figure 6.22 Result of merging H2 with H1’s right subheap

be done nonrecursively. Our input is the two leftist heaps, H1 and H2, in Figure 6.21. You
should check that these heaps really are leftist. Notice that the smallest elements are at the
roots. In addition to space for the data and left and right references, each node will have
an entry that indicates the null path length.

If either of the two heaps is empty, then we can return the other heap. Otherwise, to
merge the two heaps, we compare their roots. First, we recursively merge the heap with the
larger root with the right subheap of the heap with the smaller root. In our example, this
means we recursively merge H2 with the subheap of H1 rooted at 8, obtaining the heap in
Figure 6.22.

Since this tree is formed recursively, and we have not yet finished the description of
the algorithm, we cannot at this point show how this heap was obtained. However, it is
reasonable to assume that the resulting tree is a leftist heap, because it was obtained via a
recursive step. This is much like the inductive hypothesis in a proof by induction. Since we

www.manaraa.com

244 Chapter 6 Priority Queues (Heaps)

can handle the base case (which occurs when one tree is empty), we can assume that the
recursive step works as long as we can finish the merge; this is rule 3 of recursion, which
we discussed in Chapter 1. We now make this new heap the right child of the root of H1

(see Figure 6.23).
Although the resulting heap satisfies the heap-order property, it is not leftist because

the left subtree of the root has a null path length of 1 whereas the right subtree has a null
path length of 2. Thus, the leftist property is violated at the root. However, it is easy to
see that the remainder of the tree must be leftist. The right subtree of the root is leftist,
because of the recursive step. The left subtree of the root has not been changed, so it too
must still be leftist. Thus, we need only to fix the root. We can make the entire tree leftist
by merely swapping the root’s left and right children (Figure 6.24) and updating the null
path length—the new null path length is 1 plus the null path length of the new right
child—completing the merge. Notice that if the null path length is not updated, then all
null path lengths will be 0, and the heap will not be leftist but merely random. In this case,
the algorithm will work, but the time bound we will claim will no longer be valid.

The description of the algorithm translates directly into code. The node class
(Figure 6.25) is the same as the binary tree, except that it is augmented with the npl
(null path length) field. The leftist heap stores a reference to the root as its data member.
We have seen in Chapter 4 that when an element is inserted into an empty binary tree,
the node referenced by the root will need to change. We use the usual technique of imple-
menting private recursive methods to do the merging. The class skeleton is also shown in
Figure 6.25.

The two merge routines (Figure 6.26) are drivers designed to remove special cases
and ensure that H1 has the smaller root. The actual merging is performed in merge1
(Figure 6.27). The public merge method merges rhs into the controlling heap. rhs becomes
empty. The alias test in the public method disallows h.merge(h).

The time to perform the merge is proportional to the sum of the length of the right
paths, because constant work is performed at each node visited during the recursive calls.
Thus we obtain an O(log N) time bound to merge two leftist heaps. We can also perform
this operation nonrecursively by essentially performing two passes. In the first pass, we
create a new tree by merging the right paths of both heaps. To do this, we arrange the nodes
on the right paths of H1 and H2 in sorted order, keeping their respective left children. In our
example, the new right path is 3, 6, 7, 8, 18 and the resulting tree is shown in Figure 6.28.
A second pass is made up the heap, and child swaps are performed at nodes that violate
the leftist heap property. In Figure 6.28, there is a swap at nodes 7 and 3, and the same
tree as before is obtained. The nonrecursive version is simpler to visualize but harder to
code. We leave it to the reader to show that the recursive and nonrecursive procedures do
the same thing.

As mentioned above, we can carry out insertions by making the item to be inserted
a one-node heap and performing a merge. To perform a deleteMin, we merely destroy the
root, creating two heaps, which can then be merged. Thus, the time to perform a deleteMin
is O(log N). These two routines are coded in Figure 6.29 and Figure 6.30.

www.manaraa.com

6.6 Leftist Heaps 245

6

12 7

18 24 8 37

33 17 18

26

3

10

21 14

23

Figure 6.23 Result of attaching leftist heap of previous figure as H1’s right child

6

12 7

18 24 8 37

33 17 18

26

3

10

21 14

23

Figure 6.24 Result of swapping children of H1’s root

www.manaraa.com

246 Chapter 6 Priority Queues (Heaps)

1 public class LeftistHeap<AnyType extends Comparable<? super AnyType>>
2 {
3 public LeftistHeap()
4 { root = null; }
5
6 public void merge(LeftistHeap<AnyType> rhs)
7 { /* Figure 6.26 */ }
8 public void insert(AnyType x)
9 { /* Figure 6.29 */ }

10 public AnyType findMin()
11 { /* See online code */ }
12 public AnyType deleteMin()
13 { /* Figure 6.30 */ }
14
15 public boolean isEmpty()
16 { return root == null; }
17 public void makeEmpty()
18 { root = null; }
19
20 private static class Node<AnyType>
21 {
22 // Constructors
23 Node(AnyType theElement)
24 { this(theElement, null, null); }
25
26 Node(AnyType theElement, Node<AnyType> lt, Node<AnyType> rt)
27 { element = theElement; left = lt; right = rt; npl = 0; }
28
29 AnyType element; // The data in the node
30 Node<AnyType> left; // Left child
31 Node<AnyType> right; // Right child
32 int npl; // null path length
33 }
34
35 private Node<AnyType> root; // root
36
37 private Node<AnyType> merge(Node<AnyType> h1, Node<AnyType> h2)
38 { /* Figure 6.26 */ }
39 private Node<AnyType> merge1(Node<AnyType> h1, Node<AnyType> h2)
40 { /* Figure 6.27 */ }
41 private void swapChildren(Node<AnyType> t)
42 { /* See online code */ }
43 }

Figure 6.25 Leftist heap type declarations

www.manaraa.com

6.6 Leftist Heaps 247

1 /**
2 * Merge rhs into the priority queue.
3 * rhs becomes empty. rhs must be different from this.
4 * @param rhs the other leftist heap.
5 */
6 public void merge(LeftistHeap<AnyType> rhs)
7 {
8 if(this == rhs) // Avoid aliasing problems
9 return;

10
11 root = merge(root, rhs.root);
12 rhs.root = null;
13 }
14
15 /**
16 * Internal method to merge two roots.
17 * Deals with deviant cases and calls recursive merge1.
18 */
19 private Node<AnyType> merge(Node<AnyType> h1, Node<AnyType> h2)
20 {
21 if(h1 == null)
22 return h2;
23 if(h2 == null)
24 return h1;
25 if(h1.element.compareTo(h2.element) < 0)
26 return merge1(h1, h2);
27 else
28 return merge1(h2, h1);
29 }

Figure 6.26 Driving routines for merging leftist heaps

Finally, we can build a leftist heap in O(N) time by building a binary heap (obvi-
ously using a linked implementation). Although a binary heap is clearly leftist, this is
not necessarily the best solution, because the heap we obtain is the worst possible leftist
heap. Furthermore, traversing the tree in reverse-level order is not as easy with links. The
buildHeap effect can be obtained by recursively building the left and right subtrees and then
percolating the root down. The exercises contain an alternative solution.

www.manaraa.com

248 Chapter 6 Priority Queues (Heaps)

1 /**
2 * Internal method to merge two roots.
3 * Assumes trees are not empty, and h1’s root contains smallest item.
4 */
5 private Node<AnyType> merge1(Node<AnyType> h1, Node<AnyType> h2)
6 {
7 if(h1.left == null) // Single node
8 h1.left = h2; // Other fields in h1 already accurate
9 else

10 {
11 h1.right = merge(h1.right, h2);
12 if(h1.left.npl < h1.right.npl)
13 swapChildren(h1);
14 h1.npl = h1.right.npl + 1;
15 }
16 return h1;
17 }

Figure 6.27 Actual routine to merge leftist heaps

3

10

21 14

23

6

12 7

8

17

26

18 24

33

37

18

Figure 6.28 Result of merging right paths of H1 and H2

www.manaraa.com

6.7 Skew Heaps 249

1 /**
2 * Insert into the priority queue, maintaining heap order.
3 * @param x the item to insert.
4 */
5 public void insert(AnyType x)
6 {
7 root = merge(new Node<>(x), root);
8 }

Figure 6.29 Insertion routine for leftist heaps

1 /**
2 * Remove the smallest item from the priority queue.
3 * @return the smallest item, or throw UnderflowException if empty.
4 */
5 public AnyType deleteMin()
6 {
7 if(isEmpty())
8 throw new UnderflowException();
9

10 AnyType minItem = root.element;
11 root = merge(root.left, root.right);
12
13 return minItem;
14 }

Figure 6.30 deleteMin routine for leftist heaps

6.7 Skew Heaps
A skew heap is a self-adjusting version of a leftist heap that is incredibly simple to imple-
ment. The relationship of skew heaps to leftist heaps is analogous to the relation between
splay trees and AVL trees. Skew heaps are binary trees with heap order, but there is no struc-
tural constraint on these trees. Unlike leftist heaps, no information is maintained about the
null path length of any node. The right path of a skew heap can be arbitrarily long at
any time, so the worst-case running time of all operations is O(N). However, as with splay
trees, it can be shown (see Chapter 11) that for any M consecutive operations, the total
worst-case running time is O(M log N). Thus, skew heaps have O(log N) amortized cost
per operation.

As with leftist heaps, the fundamental operation on skew heaps is merging. The merge
routine is once again recursive, and we perform the exact same operations as before, with

www.manaraa.com

250 Chapter 6 Priority Queues (Heaps)

one exception. The difference is that for leftist heaps, we check to see whether the left
and right children satisfy the leftist heap structure property and swap them if they do not.
For skew heaps, the swap is unconditional; we always do it, with the one exception that
the largest of all the nodes on the right paths does not have its children swapped. This
one exception is what happens in the natural recursive implementation, so it is not really
a special case at all. Furthermore, it is not necessary to prove the bounds, but since this
node is guaranteed not to have a right child, it would be silly to perform the swap and give
it one. (In our example, there are no children of this node, so we do not worry about it.)
Again, suppose our input is the same two heaps as before, Figure 6.31.

If we recursively merge H2 with the subheap of H1 rooted at 8, we will get the heap in
Figure 6.32.

Again, this is done recursively, so by the third rule of recursion (Section 1.3) we need
not worry about how it was obtained. This heap happens to be leftist, but there is no

3

10 8

21 14

23

17

26 H1

6

12 7

18 24

33

37 18

H2

Figure 6.31 Two skew heaps H1 and H2

6

127

18 248 37

331718

26

Figure 6.32 Result of merging H2 with H1’s right subheap

www.manaraa.com

6.7 Skew Heaps 251

6

127

18 248 37

331718

26

3

10

21 14

23

Figure 6.33 Result of merging skew heaps H1 and H2

guarantee that this is always the case. We make this heap the new left child of H1, and the
old left child of H1 becomes the new right child (see Figure 6.33).

The entire tree is leftist, but it is easy to see that that is not always true: Inserting 15
into this new heap would destroy the leftist property.

We can perform all operations nonrecursively, as with leftist heaps, by merging the
right paths and swapping left and right children for every node on the right path, with
the exception of the last. After a few examples, it becomes clear that since all but the last
node on the right path have their children swapped, the net effect is that this becomes the
new left path (see the preceding example to convince yourself). This makes it very easy to
merge two skew heaps visually.3

The implementation of skew heaps is left as a (trivial) exercise. Note that because a
right path could be long, a recursive implementation could fail because of lack of stack
space, even though performance would otherwise be acceptable. Skew heaps have the
advantage that no extra space is required to maintain path lengths and no tests are required
to determine when to swap children. It is an open problem to determine precisely the
expected right path length of both leftist and skew heaps (the latter is undoubtedly more
difficult). Such a comparison would make it easier to determine whether the slight loss of
balance information is compensated by the lack of testing.

3 This is not exactly the same as the recursive implementation (but yields the same time bounds). If we
only swap children for nodes on the right path that are above the point where the merging of right paths
terminated due to exhaustion of one heap’s right path, we get the same result as the recursive version.

www.manaraa.com

252 Chapter 6 Priority Queues (Heaps)

B 3B 2B 1B 0

B 4

Figure 6.34 Binomial trees B0, B1, B2, B3, and B4

6.8 Binomial Queues
Although both leftist and skew heaps support merging, insertion, and deleteMin all effec-
tively in O(log N) time per operation, there is room for improvement because we know
that binary heaps support insertion in constant average time per operation. Binomial queues
support all three operations in O(log N) worst-case time per operation, but insertions take
constant time on average.

6.8.1 Binomial Queue Structure
Binomial queues differ from all the priority queue implementations that we have seen in
that a binomial queue is not a heap-ordered tree but rather a collection of heap-ordered
trees, known as a forest. Each of the heap-ordered trees is of a constrained form known
as a binomial tree (the reason for the name will be obvious later). There is at most one
binomial tree of every height. A binomial tree of height 0 is a one-node tree; a binomial
tree, Bk, of height k is formed by attaching a binomial tree, Bk−1, to the root of another
binomial tree, Bk−1. Figure 6.34 shows binomial trees B0, B1, B2, B3, and B4.

From the diagram we see that a binomial tree, Bk, consists of a root with children
B0, B1, . . . , Bk−1. Binomial trees of height k have exactly 2k nodes, and the number of
nodes at depth d is the binomial coefficient

(k
d

)
. If we impose heap order on the binomial

www.manaraa.com

6.8 Binomial Queues 253

H 1:
16 12

18 24

65

21

Figure 6.35 Binomial queue H1 with six elements

trees and allow at most one binomial tree of any height, we can represent a priority queue
of any size by a collection of binomial trees. For instance, a priority queue of size 13 could
be represented by the forest B3, B2, B0. We might write this representation as 1101, which
not only represents 13 in binary but also represents the fact that B3, B2, and B0 are present
in the representation and B1 is not.

As an example, a priority queue of six elements could be represented as in Figure 6.35.

6.8.2 Binomial Queue Operations
The minimum element can then be found by scanning the roots of all the trees. Since there
are at most log N different trees, the minimum can be found in O(log N) time. Alternatively,
we can maintain knowledge of the minimum and perform the operation in O(1) time, if
we remember to update the minimum when it changes during other operations.

Merging two binomial queues is a conceptually easy operation, which we will describe
by example. Consider the two binomial queues, H1 and H2, with six and seven elements,
respectively, pictured in Figure 6.36.

The merge is performed by essentially adding the two queues together. Let H3 be the
new binomial queue. Since H1 has no binomial tree of height 0 and H2 does, we can
just use the binomial tree of height 0 in H2 as part of H3. Next, we add binomial trees
of height 1. Since both H1 and H2 have binomial trees of height 1, we merge them by
making the larger root a subtree of the smaller, creating a binomial tree of height 2, shown
in Figure 6.37. Thus, H3 will not have a binomial tree of height 1. There are now three
binomial trees of height 2, namely, the original trees of H1 and H2 plus the tree formed

:
13 14 23

26 24

65

51

:
16 12

18 24

65

21
H1

H2

Figure 6.36 Two binomial queues H1 and H2

www.manaraa.com

254 Chapter 6 Priority Queues (Heaps)

14

16

18

26

Figure 6.37 Merge of the two B1 trees in H1 and H2

H 3:
13 23

24

65

51

12

21 24

65

14

26 16

18

Figure 6.38 Binomial queue H3: the result of merging H1 and H2

by the previous step. We keep one binomial tree of height 2 in H3 and merge the other
two, creating a binomial tree of height 3. Since H1 and H2 have no trees of height 3, this
tree becomes part of H3 and we are finished. The resulting binomial queue is shown in
Figure 6.38.

Since merging two binomial trees takes constant time with almost any reasonable
implementation, and there are O(log N) binomial trees, the merge takes O(log N) time in
the worst case. To make this operation efficient, we need to keep the trees in the binomial
queue sorted by height, which is certainly a simple thing to do.

Insertion is just a special case of merging, since we merely create a one-node tree
and perform a merge. The worst-case time of this operation is likewise O(log N). More
precisely, if the priority queue into which the element is being inserted has the property
that the smallest nonexistent binomial tree is Bi, the running time is proportional to i + 1.
For example, H3 (Figure 6.38) is missing a binomial tree of height 1, so the insertion will
terminate in two steps. Since each tree in a binomial queue is present with probability
1
2 , it follows that we expect an insertion to terminate in two steps, so the average time
is constant. Furthermore, an analysis will show that performing N inserts on an initially
empty binomial queue will take O(N) worst-case time. Indeed, it is possible to do this
operation using only N − 1 comparisons; we leave this as an exercise.

As an example, we show in Figures 6.39 through 6.45 the binomial queues that are
formed by inserting 1 through 7 in order. Inserting 4 shows off a bad case. We merge 4
with B0, obtaining a new tree of height 1. We then merge this tree with B1, obtaining a
tree of height 2, which is the new priority queue. We count this as three steps (two tree
merges plus the stopping case). The next insertion after 7 is inserted is another bad case
and would require three tree merges.

1

Figure 6.39 After 1 is inserted

www.manaraa.com

6.8 Binomial Queues 255

1

2

Figure 6.40 After 2 is inserted

3 1

2

Figure 6.41 After 3 is inserted

1

3

4

2

Figure 6.42 After 4 is inserted

5 1

3

4

2

Figure 6.43 After 5 is inserted

5 1

6 3

4

2

Figure 6.44 After 6 is inserted

A deleteMin can be performed by first finding the binomial tree with the smallest root.
Let this tree be Bk, and let the original priority queue be H. We remove the binomial tree
Bk from the forest of trees in H, forming the new binomial queue H′. We also remove the
root of Bk, creating binomial trees B0, B1, . . . , Bk−1, which collectively form priority queue
H′′. We finish the operation by merging H′ and H′′.

As an example, suppose we perform a deleteMin on H3, which is shown again in
Figure 6.46. The minimum root is 12, so we obtain the two priority queues H′ and H′′
in Figure 6.47 and Figure 6.48. The binomial queue that results from merging H′ and H′′
is the final answer and is shown in Figure 6.49.

www.manaraa.com

256 Chapter 6 Priority Queues (Heaps)

7 5 1

6 3

4

2

Figure 6.45 After 7 is inserted

H 3:
13 23

24

65

51

12

21 24

65

14

26 16

18

Figure 6.46 Binomial queue H3

13 23

24

65

51
H′:

Figure 6.47 Binomial queue H′, containing all the binomial trees in H3 except B3

21 24 14

65 16

18

26
H′′:

Figure 6.48 Binomial queue H′′: B3 with 12 removed

For the analysis, note first that the deleteMin operation breaks the original binomial
queue into two. It takes O(log N) time to find the tree containing the minimum element
and to create the queues H′ and H′′. Merging these two queues takes O(log N) time, so the
entire deleteMin operation takes O(log N) time.

6.8.3 Implementation of Binomial Queues
The deleteMin operation requires the ability to find all the subtrees of the root quickly, so
the standard representation of general trees is required: The children of each node are kept

www.manaraa.com

6.8 Binomial Queues 257

23

24

65

51

13

21 24

65

14

26 16

18

Figure 6.49 Result of applying deleteMin to H3

H 3:
13 23

24

65

51

12

21 24

65

14

26 16

18

Figure 6.50 Binomial queue H3 drawn as a forest

12 23

2124

652616

18

14

13

5124

65

Figure 6.51 Representation of binomial queue H3

in a linked list, and each node has a reference to its first child (if any). This operation also
requires that the children be ordered by the size of their subtrees. We also need to make
sure that it is easy to merge two trees. When two trees are merged, one of the trees is added
as a child to the other. Since this new tree will be the largest subtree, it makes sense to
maintain the subtrees in decreasing sizes. Only then will we be able to merge two binomial
trees, and thus two binomial queues, efficiently. The binomial queue will be an array of
binomial trees.

To summarize, then, each node in a binomial tree will contain the data, first child, and
right sibling. The children in a binomial tree are arranged in decreasing rank.

Figure 6.51 shows how the binomial queue in Figure 6.50 is represented. Figure 6.52
shows the type declarations for a node in the binomial tree, and the binomial queue class
skeleton.

www.manaraa.com

1 public class BinomialQueue<AnyType extends Comparable<? super AnyType>>
2 {
3 public BinomialQueue()
4 { /* See online code */ }
5 public BinomialQueue(AnyType item)
6 { /* See online code */ }
7
8 public void merge(BinomialQueue<AnyType> rhs)
9 { /* Figure 6.55 */ }

10 public void insert(AnyType x)
11 { merge(new BinomialQueue<>(x)); }
12 public AnyType findMin()
13 { /* See online code */ }
14 public AnyType deleteMin()
15 { /* Figure 6.56 */ }
16
17 public boolean isEmpty()
18 { return currentSize == 0; }
19 public void makeEmpty()
20 { /* See online code */ }
21
22 private static class Node<AnyType>
23 {
24 // Constructors
25 Node(AnyType theElement)
26 { this(theElement, null, null); }
27
28 Node(AnyType theElement, Node<AnyType> lt, Node<AnyType> nt)
29 { element = theElement; leftChild = lt; nextSibling = nt; }
30
31 AnyType element; // The data in the node
32 Node<AnyType> leftChild; // Left child
33 Node<AnyType> nextSibling; // Right child
34 }
35
36 private static final int DEFAULT_TREES = 1;
37
38 private int currentSize; // # items in priority queue
39 private Node<AnyType> [] theTrees; // An array of tree roots
40
41 private void expandTheTrees(int newNumTrees)
42 { /* See online code */ }
43 private Node<AnyType> combineTrees(Node<AnyType> t1, Node<AnyType> t2)
44 { /* Figure 6.54 */ }
45
46 private int capacity()
47 { return (1 << theTrees.length) - 1; }
48 private int findMinIndex()
49 { /* See online code */ }
50 }

Figure 6.52 Binomial queue class skeleton and node definition

www.manaraa.com

6.8 Binomial Queues 259

12

2124

65

14

2616

18

12

2124

652616

18

14

Figure 6.53 Merging two binomial trees

1 /**
2 * Return the result of merging equal-sized t1 and t2.
3 */
4 private Node<AnyType> combineTrees(Node<AnyType> t1, Node<AnyType> t2)
5 {
6 if(t1.element.compareTo(t2.element) > 0)
7 return combineTrees(t2, t1);
8 t2.nextSibling = t1.leftChild;
9 t1.leftChild = t2;

10 return t1;
11 }

Figure 6.54 Routine to merge two equal-sized binomial trees

In order to merge two binomial queues, we need a routine to merge two binomial trees
of the same size. Figure 6.53 shows how the links change when two binomial trees are
merged. The code to do this is simple and is shown in Figure 6.54.

We provide a simple implementation of the merge routine. H1 is represented by the
current object and H2 is represented by rhs. The routine combines H1 and H2, placing the
result in H1 and making H2 empty. At any point we are dealing with trees of rank i. t1 and
t2 are the trees in H1 and H2, respectively, and carry is the tree carried from a previous step
(it might be null). Depending on each of the eight possible cases, the tree that results for
rank i and the carry tree of rank i + 1 is formed. This process proceeds from rank 0 to the
last rank in the resulting binomial queue. The code is shown in Figure 6.55. Improvements
to the code are suggested in Exercise 6.35.

The deleteMin routine for binomial queues is given in Figure 6.56.
We can extend binomial queues to support some of the nonstandard operations that

binary heaps allow, such as decreaseKey and delete, when the position of the affected
element is known. A decreaseKey is a percolateUp, which can be performed in O(log N)
time if we add a field to each node that stores a parent link. An arbitrary delete can be
performed by a combination of decreaseKey and deleteMin in O(log N) time.

www.manaraa.com

260 Chapter 6 Priority Queues (Heaps)

1 /**
2 * Merge rhs into the priority queue.
3 * rhs becomes empty. rhs must be different from this.
4 * @param rhs the other binomial queue.
5 */
6 public void merge(BinomialQueue<AnyType> rhs)
7 {
8 if(this == rhs) // Avoid aliasing problems
9 return;

10
11 currentSize += rhs.currentSize;
12
13 if(currentSize > capacity())
14 {
15 int maxLength = Math.max(theTrees.length, rhs.theTrees.length);
16 expandTheTrees(maxLength + 1);
17 }
18
19 Node<AnyType> carry = null;
20 for(int i = 0, j = 1; j <= currentSize; i++, j *= 2)
21 {
22 Node<AnyType> t1 = theTrees[i];
23 Node<AnyType> t2 = i < rhs.theTrees.length ? rhs.theTrees[i] : null;
24
25 int whichCase = t1 == null ? 0 : 1;
26 whichCase += t2 == null ? 0 : 2;
27 whichCase += carry == null ? 0 : 4;
28
29 switch(whichCase)
30 {
31 case 0: /* No trees */
32 case 1: /* Only this */
33 break;
34 case 2: /* Only rhs */
35 theTrees[i] = t2;
36 rhs.theTrees[i] = null;
37 break;
38 case 4: /* Only carry */
39 theTrees[i] = carry;
40 carry = null;
41 break;
42 case 3: /* this and rhs */
43 carry = combineTrees(t1, t2);
44 theTrees[i] = rhs.theTrees[i] = null;
45 break;

Figure 6.55 Routine to merge two priority queues

www.manaraa.com

Summary 261

46 case 5: /* this and carry */
47 carry = combineTrees(t1, carry);
48 theTrees[i] = null;
49 break;
50 case 6: /* rhs and carry */
51 carry = combineTrees(t2, carry);
52 rhs.theTrees[i] = null;
53 break;
54 case 7: /* All three */
55 theTrees[i] = carry;
56 carry = combineTrees(t1, t2);
57 rhs.theTrees[i] = null;
58 break;
59 }
60 }
61
62 for(int k = 0; k < rhs.theTrees.length; k++)
63 rhs.theTrees[k] = null;
64 rhs.currentSize = 0;
65 }

Figure 6.55 (continued)

6.9 Priority Queues in the Standard Library
Prior to Java 1.5, there was no support in the Java library for priority queues. However, in
Java 1.5, there is a generic PriorityQueue class. In this class, insert, findMin, and deleteMin
are expressed via calls to add, element, and remove. The PriorityQueue can be constructed
either with no parameters, a comparator, or another compatible collection.

Because there are many efficient implementations of priority queues, it is unfor-
tunate that the library designers did not choose to make PriorityQueue an interface.
Nonetheless, the PriorityQueue implementation in Java 1.5 is sufficient for most priority
queue applications.

Summary

In this chapter we have seen various implementations and uses of the priority queue ADT.
The standard binary heap implementation is elegant because of its simplicity and speed.
It requires no links and only a constant amount of extra space, yet supports the priority
queue operations efficiently.

www.manaraa.com

262 Chapter 6 Priority Queues (Heaps)

1 /**
2 * Remove the smallest item from the priority queue.
3 * @return the smallest item, or throw UnderflowException if empty.
4 */
5 public AnyType deleteMin()
6 {
7 if(isEmpty())
8 throw new UnderflowException();
9

10 int minIndex = findMinIndex();
11 AnyType minItem = theTrees[minIndex].element;
12
13 Node<AnyType> deletedTree = theTrees[minIndex].leftChild;
14
15 // Construct H’’
16 BinomialQueue<AnyType> deletedQueue = new BinomialQueue<>();
17 deletedQueue.expandTheTrees(minIndex + 1);
18
19 deletedQueue.currentSize = (1 << minIndex) - 1;
20 for(int j = minIndex - 1; j >= 0; j--)
21 {
22 deletedQueue.theTrees[j] = deletedTree;
23 deletedTree = deletedTree.nextSibling;
24 deletedQueue.theTrees[j].nextSibling = null;
25 }
26
27 // Construct H’
28 theTrees[minIndex] = null;
29 currentSize -= deletedQueue.currentSize + 1;
30
31 merge(deletedQueue);
32
33 return minItem;
34 }

Figure 6.56 deleteMin for binomial queues, with findMinIndex method

We considered the additional merge operation and developed three implementations,
each of which is unique in its own way. The leftist heap is a wonderful example of the
power of recursion. The skew heap represents a remarkable data structure because of the
lack of balance criteria. Its analysis, which we will perform in Chapter 11, is interesting in
its own right. The binomial queue shows how a simple idea can be used to achieve a good
time bound.

We have also seen several uses of priority queues, ranging from operating systems
scheduling to simulation. We will see their use again in Chapters 7, 9, and 10.

www.manaraa.com

Exercises 263

Exercises

6.1 Can both insert and findMin be implemented in constant time?

6.2 a. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, and 2,
one at a time, into an initially empty binary heap.

b. Show the result of using the linear-time algorithm to build a binary heap using
the same input.

6.3 Show the result of performing three deleteMin operations in the heap of the
previous exercise.

6.4 A complete binary tree of N elements uses array positions 1 to N. Suppose we try
to use an array representation of a binary tree that is not complete. Determine how
large the array must be for the following:
a. a binary tree that has two extra levels (that is, it is very slightly unbalanced)
b. a binary tree that has a deepest node at depth 2 log N
c. a binary tree that has a deepest node at depth 4.1 log N
d. the worst-case binary tree

6.5 Rewrite the BinaryHeap insert method by placing a reference to the inserted item in
position 0.

6.6 How many nodes are in the large heap in Figure 6.13?

6.7 a. Prove that for binary heaps, buildHeap does at most 2N−2 comparisons between
elements.

b. Show that a heap of eight elements can be constructed in eight comparisons
between heap elements.

��c. Give an algorithm to build a binary heap in 13
8 N + O(log N) element compar-

isons.

6.8 Show the following regarding the maximum item in the heap:
a. It must be at one of the leaves.
b. There are exactly �N/2� leaves.
c. Every leaf must be examined to find it.

��6.9 Show that the expected depth of the kth smallest element in a large complete heap
(you may assume N = 2k − 1) is bounded by log k.

6.10 �a. Give an algorithm to find all nodes less than some value, X, in a binary heap.
Your algorithm should run in O(K), where K is the number of nodes output.

b. Does your algorithm extend to any of the other heap structures discussed in this
chapter?

�c. Give an algorithm that finds an arbitrary item X in a binary heap using at most
roughly 3N/4 comparisons.

��6.11 Propose an algorithm to insert M nodes into a binary heap on N elements in
O(M + log N log log N) time. Prove your time bound.

6.12 Write a program to take N elements and do the following:
a. Insert them into a heap one by one.
b. Build a heap in linear time.

www.manaraa.com

264 Chapter 6 Priority Queues (Heaps)

Compare the running time of both algorithms for sorted, reverse-ordered, and
random inputs.

6.13 Each deleteMin operation uses 2 log N comparisons in the worst case.
�a. Propose a scheme so that the deleteMin operation uses only log N + log log N +

O(1) comparisons between elements. This need not imply less data movement.
��b. Extend your scheme in part (a) so that only log N + log log log N + O(1)

comparisons are performed.
��c. How far can you take this idea?

d. Do the savings in comparisons compensate for the increased complexity of your
algorithm?

6.14 If a d-heap is stored as an array, for an entry located in position i, where are the
parents and children?

6.15 Suppose we need to perform M percolateUps and N deleteMins on a d-heap that
initially has N elements.
a. What is the total running time of all operations in terms of M, N, and d?
b. If d = 2, what is the running time of all heap operations?
c. If d = �(N), what is the total running time?

�d. What choice of d minimizes the total running time?

6.16 Suppose that binary heaps are represented using explicit links. Give a simple
algorithm to find the tree node that is at implicit position i.

6.17 Suppose that binary heaps are represented using explicit links. Consider the prob-
lem of merging binary heap lhs with rhs. Assume both heaps are perfect binary
trees, containing 2l − 1 and 2r − 1 nodes, respectively.
a. Give an O(log N) algorithm to merge the two heaps if l = r.
b. Give an O(log N) algorithm to merge the two heaps if |l − r| = 1.
c. Give an O(log2 N) algorithm to merge the two heaps regardless of l and r.

6.18 A min-max heap is a data structure that supports both deleteMin and deleteMax in
O(log N) per operation. The structure is identical to a binary heap, but the heap-
order property is that for any node, X, at even depth, the element stored at X is
smaller than the parent but larger than the grandparent (where this makes sense),
and for any node X at odd depth, the element stored at X is larger than the parent
but smaller than the grandparent. See Figure 6.57.
a. How do we find the minimum and maximum elements?

�b. Give an algorithm to insert a new node into the min-max heap.
�c. Give an algorithm to perform deleteMin and deleteMax.
�d. Can you build a min-max heap in linear time?

��e. Suppose we would like to support deleteMin, deleteMax, and merge. Propose a
data structure to support all operations in O(log N) time.

6.19 Merge the two leftist heaps in Figure 6.58.

6.20 Show the result of inserting keys 1 to 15 in order into an initially empty leftist heap.

6.21 Prove or disprove: A perfectly balanced tree forms if keys 1 to 2k − 1 are inserted
in order into an initially empty leftist heap.

www.manaraa.com

Exercises 265

6

81

14

71

31 59

25

16 24

17

80

79 63

20

18 19

87

12

52

32 13

78

15 48

28

31 42

Figure 6.57 Min-max heap

2

11 5

12 17

18

8

15

4

9

18

31 21

1110

6

Figure 6.58 Input for Exercises 6.19 and 6.26

6.22 Give an example of input that generates the best leftist heap.

6.23 a. Can leftist heaps efficiently support decreaseKey?
b. What changes, if any (if possible), are required to do this?

6.24 One way to delete nodes from a known position in a leftist heap is to use a lazy
strategy. To delete a node, merely mark it deleted. When a findMin or deleteMin is
performed, there is a potential problem if the root is marked deleted, since then the
node has to be actually deleted and the real minimum needs to be found, which
may involve deleting other marked nodes. In this strategy, deletes cost one unit,
but the cost of a deleteMin or findMin depends on the number of nodes that are
marked deleted. Suppose that after a deleteMin or findMin there are k fewer marked
nodes than before the operation.

�a. Show how to perform the deleteMin in O(k log N) time.
��b. Propose an implementation, with an analysis to show that the time to perform

the deleteMin is O(k log(2N/k)).

www.manaraa.com

266 Chapter 6 Priority Queues (Heaps)

6.25 We can perform buildHeap in linear time for leftist heaps by considering each
element as a one-node leftist heap, placing all these heaps on a queue, and per-
forming the following step: Until only one heap is on the queue, dequeue two
heaps, merge them, and enqueue the result.
a. Prove that this algorithm is O(N) in the worst case.
b. Why might this algorithm be preferable to the algorithm described in the text?

6.26 Merge the two skew heaps in Figure 6.58.

6.27 Show the result of inserting keys 1 to 15 in order into a skew heap.

6.28 Prove or disprove: A perfectly balanced tree forms if the keys 1 to 2k−1 are inserted
in order into an initially empty skew heap.

6.29 A skew heap of N elements can be built using the standard binary heap algorithm.
Can we use the same merging strategy described in Exercise 6.25 for skew heaps to
get an O(N) running time?

6.30 Prove that a binomial tree Bk has binomial trees B0, B1, . . . , Bk−1 as children of the
root.

6.31 Prove that a binomial tree of height k has
(k

d

)
nodes at depth d.

6.32 Merge the two binomial queues in Figure 6.59.

6.33 a. Show that N inserts into an initially empty binomial queue takes O(N) time in
the worst case.

b. Give an algorithm to build a binomial queue of N elements, using at most N − 1
comparisons between elements.

�c. Propose an algorithm to insert M nodes into a binomial queue of N elements in
O(M + log N) worst-case time. Prove your bound.

6.34 Write an efficient routine to perform insert using binomial queues. Do not call
merge.

13 23

24

65

51

12

21 24

65

14

26 16

18

4 215

18 29

55

11

Figure 6.59 Input for Exercise 6.32

www.manaraa.com

References 267

6.35 For the binomial queue:
a. Modify the merge routine to terminate merging if there are no trees left in H2 and

the carry tree is null.
b. Modify the merge so that the smaller tree is always merged into the larger.

��6.36 Suppose we extend binomial queues to allow at most two trees of the same height
per structure. Can we obtain O(1) worst-case time for insertion while retaining
O(log N) for the other operations?

6.37 Suppose you have a number of boxes, each of which can hold total weight C and
items i1, i2, i3, . . . , iN, which weigh w1, w2, w3, . . . , wN, respectively. The object is
to pack all the items without placing more weight in any box than its capacity and
using as few boxes as possible. For instance, if C = 5, and the items have weights
2, 2, 3, 3, then we can solve the problem with two boxes.

In general, this problem is very hard, and no efficient solution is known. Write
programs to implement efficiently the following approximation strategies:

�a. Place the weight in the first box for which it fits (creating a new box if there is
no box with enough room). (This strategy and all that follow would give three
boxes, which is suboptimal.)

b. Place the weight in the box with the most room for it.
�c. Place the weight in the most filled box that can accept it without overflowing.

��d. Are any of these strategies enhanced by presorting the items by weight?

6.38 Suppose we want to add the decreaseAllKeys() operation to the heap repertoire.
The result of this operation is that all keys in the heap have their value decreased
by an amount . For the heap implementation of your choice, explain the nec-
essary modifications so that all other operations retain their running times and
decreaseAllKeys runs in O(1).

6.39 Which of the two selection algorithms has the better time bound?

References

The binary heap was first described in [28]. The linear-time algorithm for its construction
is from [14].

The first description of d-heaps was in [19]. Recent results suggest that 4-heaps may
improve binary heaps in some circumstances [22]. Leftist heaps were invented by Crane
[11] and described in Knuth [21]. Skew heaps were developed by Sleator and Tarjan [24].
Binomial queues were invented by Vuillemin [27]; Brown provided a detailed analysis and
empirical study showing that they perform well in practice [4], if carefully implemented.

Exercise 6.7(b–c) is taken from [17]. Exercise 6.10(c) is from [6]. A method for con-
structing binary heaps that uses about 1.52N comparisons on average is described in [23].
Lazy deletion in leftist heaps (Exercise 6.24) is from [10]. A solution to Exercise 6.36 can
be found in [8].

Min-max heaps (Exercise 6.18) were originally described in [1]. A more efficient imple-
mentation of the operations is given in [18] and [25]. Alternative representations for

www.manaraa.com

268 Chapter 6 Priority Queues (Heaps)

double-ended priority queues are the deap and diamond deque. Details can be found in
[5], [7], and [9]. Solutions to 6.18(e) are given in [12] and [20].

A theoretically interesting priority queue representation is the Fibonacci heap [16],
which we will describe in Chapter 11. The Fibonacci heap allows all operations to be
performed in O(1) amortized time, except for deletions, which are O(log N). Relaxed heaps
[13] achieve identical bounds in the worst case (with the exception of merge). The pro-
cedure of [3] achieves optimal worst-case bounds for all operations. Another interesting
implementation is the pairing heap [15], which is described in Chapter 12. Finally, priority
queues that work when the data consist of small integers are described in [2] and [26].

1. M. D. Atkinson, J. R. Sack, N. Santoro, and T. Strothotte, “Min-Max Heaps and Generalized
Priority Queues,” Communications of the ACM, 29 (1986), 996–1000.

2. J. D. Bright, “Range Restricted Mergeable Priority Queues,” Information Processing Letters,
47 (1993), 159–164.

3. G. S. Brodal, “Worst-Case Efficient Priority Queues,” Proceedings of the Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (1996), 52–58.

4. M. R. Brown, “Implementation and Analysis of Binomial Queue Algorithms,” SIAM Journal
on Computing, 7 (1978), 298–319.

5. S. Carlsson, “The Deap—A Double-Ended Heap to Implement Double-Ended Priority
Queues,” Information Processing Letters, 26 (1987), 33–36.

6. S. Carlsson and J. Chen, “The Complexity of Heaps,” Proceedings of the Third Symposium on
Discrete Algorithms (1992), 393–402.

7. S. Carlsson, J. Chen, and T. Strothotte, “A Note on the Construction of the Data Structure
‘Deap’,” Information Processing Letters, 31 (1989), 315–317.

8. S. Carlsson, J. I. Munro, and P. V. Poblete, “An Implicit Binomial Queue with Constant
Insertion Time,” Proceedings of First Scandinavian Workshop on Algorithm Theory (1988),
1–13.

9. S. C. Chang and M. W. Due, “Diamond Deque: A Simple Data Structure for Priority
Deques,” Information Processing Letters, 46 (1993), 231–237.

10. D. Cheriton and R. E. Tarjan, “Finding Minimum Spanning Trees,” SIAM Journal on
Computing, 5 (1976), 724–742.

11. C. A. Crane, “Linear Lists and Priority Queues as Balanced Binary Trees,” Technical Report
STAN-CS-72-259, Computer Science Department, Stanford University, Stanford, Calif.,
1972.

12. Y. Ding and M. A. Weiss, “The Relaxed Min-Max Heap: A Mergeable Double-Ended Priority
Queue,” Acta Informatica, 30 (1993), 215–231.

13. J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, “Relaxed Heaps: An Alternative
to Fibonacci Heaps with Applications to Parallel Computation,” Communications of the
ACM, 31 (1988), 1343–1354.

14. R. W. Floyd, “Algorithm 245: Treesort 3,” Communications of the ACM, 7 (1964), 701.
15. M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, “The Pairing Heap: A New

Form of Self-adjusting Heap,” Algorithmica, 1 (1986), 111–129.
16. M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in Improved Network

Optimization Algorithms,” Journal of the ACM, 34 (1987), 596–615.

www.manaraa.com

References 269

17. G. H. Gonnet and J. I. Munro, “Heaps on Heaps,” SIAM Journal on Computing, 15 (1986),
964–971.

18. A. Hasham and J. R. Sack, “Bounds for Min-max Heaps,” BIT, 27 (1987), 315–323.
19. D. B. Johnson, “Priority Queues with Update and Finding Minimum Spanning Trees,”

Information Processing Letters, 4 (1975), 53–57.
20. C. M. Khoong and H. W. Leong, “Double-Ended Binomial Queues,” Proceedings of the

Fourth Annual International Symposium on Algorithms and Computation (1993), 128–137.
21. D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, 2d ed, Addison-

Wesley, Reading, Mass., 1998.
22. A. LaMarca and R. E. Ladner, “The Influence of Caches on the Performance of Sorting,”

Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (1997),
370–379.

23. C. J. H. McDiarmid and B. A. Reed, “Building Heaps Fast,” Journal of Algorithms, 10 (1989),
352–365.

24. D. D. Sleator and R. E. Tarjan, “Self-adjusting Heaps,” SIAM Journal on Computing, 15
(1986), 52–69.

25. T. Strothotte, P. Eriksson, and S. Vallner, “A Note on Constructing Min-max Heaps,” BIT,
29 (1989), 251–256.

26. P. van Emde Boas, R. Kaas, and E. Zijlstra, “Design and Implementation of an Efficient
Priority Queue,” Mathematical Systems Theory, 10 (1977), 99–127.

27. J. Vuillemin, “A Data Structure for Manipulating Priority Queues,” Communications of the
ACM, 21 (1978), 309–314.

28. J. W. J. Williams, “Algorithm 232: Heapsort,” Communications of the ACM, 7 (1964),
347–348.

www.manaraa.com

This page intentionally left blank

www.manaraa.com

C H A P T E R 7

Sorting

In this chapter we discuss the problem of sorting an array of elements. To simplify matters,
we will assume in our examples that the array contains only integers, although our code
will once again allow more general objects. For most of this chapter, we will also assume
that the entire sort can be done in main memory, so that the number of elements is relatively
small (less than a few million). Sorts that cannot be performed in main memory and must
be done on disk or tape are also quite important. This type of sorting, known as external
sorting, will be discussed at the end of the chapter.

Our investigation of internal sorting will show that

� There are several easy algorithms to sort in O(N2), such as insertion sort.
� There is an algorithm, Shellsort, that is very simple to code, runs in o(N2), and is

efficient in practice.
� There are slightly more complicated O(N log N) sorting algorithms.
� Any general-purpose sorting algorithm requires �(N log N) comparisons.

The rest of this chapter will describe and analyze the various sorting algorithms. These
algorithms contain interesting and important ideas for code optimization as well as algo-
rithm design. Sorting is also an example where the analysis can be precisely performed. Be
forewarned that where appropriate, we will do as much analysis as possible.

7.1 Preliminaries
The algorithms we describe will all be interchangeable. Each will be passed an array con-
taining the elements; we assume all array positions contain data to be sorted. We will
assume that N is the number of elements passed to our sorting routines.

The objects being sorted are of type Comparable, as described in Section 1.4. We thus
use the compareTo method to place a consistent ordering on the input. Besides (reference)
assignments, this is the only operation allowed on the input data. Sorting under these con-
ditions is known as comparison-based sorting. The sorting algorithms are easily rewritten
to use Comparators, in the event that the default ordering is unavailable or unacceptable.

271

www.manaraa.com

272 Chapter 7 Sorting

Original 34 8 64 51 32 21 Positions Moved

After p = 1 8 34 64 51 32 21 1

After p = 2 8 34 64 51 32 21 0

After p = 3 8 34 51 64 32 21 1

After p = 4 8 32 34 51 64 21 3

After p = 5 8 21 32 34 51 64 4

Figure 7.1 Insertion sort after each pass

7.2 Insertion Sort

7.2.1 The Algorithm
One of the simplest sorting algorithms is the insertion sort. Insertion sort consists of
N − 1 passes. For pass p = 1 through N − 1, insertion sort ensures that the elements in
positions 0 through p are in sorted order. Insertion sort makes use of the fact that elements
in positions 0 through p − 1 are already known to be in sorted order. Figure 7.1 shows a
sample array after each pass of insertion sort.

Figure 7.1 shows the general strategy. In pass p, we move the element in position p
left until its correct place is found among the first p + 1 elements. The code in Figure 7.2
implements this strategy. Lines 12 through 15 implement that data movement without the
explicit use of swaps. The element in position p is saved in tmp, and all larger elements
(prior to position p) are moved one spot to the right. Then tmp is placed in the correct spot.
This is the same technique that was used in the implementation of binary heaps.

7.2.2 Analysis of Insertion Sort
Because of the nested loops, each of which can take N iterations, insertion sort is O(N2).
Furthermore, this bound is tight, because input in reverse order can achieve this bound.
A precise calculation shows that the number of tests in the inner loop in Figure 7.2 is at
most p + 1 times for each value of p. Summing over all p gives a total of

N∑
i=2

i = 2 + 3 + 4 + · · · + N = �(N2)

On the other hand, if the input is presorted, the running time is O(N), because the
test in the inner for loop always fails immediately. Indeed, if the input is almost sorted
(this term will be more rigorously defined in the next section), insertion sort will run
quickly. Because of this wide variation, it is worth analyzing the average-case behavior of
this algorithm. It turns out that the average case is �(N2) for insertion sort, as well as for
a variety of other sorting algorithms, as the next section shows.

www.manaraa.com

7.3 A Lower Bound for Simple Sorting Algorithms 273

1 /**
2 * Simple insertion sort.
3 * @param a an array of Comparable items.
4 */
5 public static <AnyType extends Comparable<? super AnyType>>
6 void insertionSort(AnyType [] a)
7 {
8 int j;
9

10 for(int p = 1; p < a.length; p++)
11 {
12 AnyType tmp = a[p];
13 for(j = p; j > 0 && tmp.compareTo(a[j - 1]) < 0; j--)
14 a[j] = a[j - 1];
15 a[j] = tmp;
16 }
17 }

Figure 7.2 Insertion sort routine

7.3 A Lower Bound for Simple
Sorting Algorithms

An inversion in an array of numbers is any ordered pair (i, j) having the property that i < j
but a[i] > a[j]. In the example of the last section, the input list 34, 8, 64, 51, 32, 21 had
nine inversions, namely (34, 8), (34, 32), (34, 21), (64, 51), (64, 32), (64, 21), (51, 32),
(51, 21), and (32, 21). Notice that this is exactly the number of swaps that needed to be
(implicitly) performed by insertion sort. This is always the case, because swapping two
adjacent elements that are out of place removes exactly one inversion, and a sorted array
has no inversions. Since there is O(N) other work involved in the algorithm, the running
time of insertion sort is O(I + N), where I is the number of inversions in the original array.
Thus, insertion sort runs in linear time if the number of inversions is O(N).

We can compute precise bounds on the average running time of insertion sort by
computing the average number of inversions in a permutation. As usual, defining aver-
age is a difficult proposition. We will assume that there are no duplicate elements (if we
allow duplicates, it is not even clear what the average number of duplicates is). Using this
assumption, we can assume that the input is some permutation of the first N integers (since
only relative ordering is important) and that all are equally likely. Under these assumptions,
we have the following theorem:

Theorem 7.1.
The average number of inversions in an array of N distinct elements is N(N − 1)/4.

www.manaraa.com

274 Chapter 7 Sorting

Proof.
For any list, L, of elements, consider Lr, the list in reverse order. The reverse list of
the example is 21, 32, 51, 64, 8, 34. Consider any pair of two elements in the list (x, y),
with y > x. Clearly, in exactly one of L and Lr this ordered pair represents an inversion.
The total number of these pairs in a list L and its reverse Lr is N(N − 1)/2. Thus, an
average list has half this amount, or N(N − 1)/4 inversions.

This theorem implies that insertion sort is quadratic on average. It also provides a very
strong lower bound about any algorithm that only exchanges adjacent elements.

Theorem 7.2.
Any algorithm that sorts by exchanging adjacent elements requires �(N2) time on
average.

Proof.
The average number of inversions is initially N(N−1)/4 = �(N2). Each swap removes
only one inversion, so �(N2) swaps are required.

This is an example of a lower-bound proof. It is valid not only for insertion sort, which
performs adjacent exchanges implicitly, but also for other simple algorithms such as bubble
sort and selection sort, which we will not describe here. In fact, it is valid over an entire class
of sorting algorithms, including those undiscovered, that perform only adjacent exchanges.
Because of this, this proof cannot be confirmed empirically. Although this lower-bound
proof is rather simple, in general proving lower bounds is much more complicated than
proving upper bounds and in some cases resembles magic.

This lower bound shows us that in order for a sorting algorithm to run in subquadratic,
or o(N2), time, it must do comparisons and, in particular, exchanges between elements
that are far apart. A sorting algorithm makes progress by eliminating inversions, and to run
efficiently, it must eliminate more than just one inversion per exchange.

7.4 Shellsort
Shellsort, named after its inventor, Donald Shell, was one of the first algorithms to break
the quadratic time barrier, although it was not until several years after its initial discovery
that a subquadratic time bound was proven. As suggested in the previous section, it works
by comparing elements that are distant; the distance between comparisons decreases as
the algorithm runs until the last phase, in which adjacent elements are compared. For this
reason, Shellsort is sometimes referred to as diminishing increment sort.

Shellsort uses a sequence, h1, h2, . . . , ht, called the increment sequence. Any incre-
ment sequence will do as long as h1 = 1, but some choices are better than others (we
will discuss that issue later). After a phase, using some increment hk, for every i, we have
a[i] ≤ a[i + hk] (where this makes sense); all elements spaced hk apart are sorted. The file
is then said to be hkhkhk-sorted. For example, Figure 7.3 shows an array after several phases
of Shellsort. An important property of Shellsort (which we state without proof) is that
an hk-sorted file that is then hk−1-sorted remains hk-sorted. If this were not the case, the

www.manaraa.com

7.4 Shellsort 275

Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

Figure 7.3 Shellsort after each pass, using {1, 3, 5} as the increment sequence

1 /**
2 * Shellsort, using Shell’s (poor) increments.
3 * @param a an array of Comparable items.
4 */
5 public static <AnyType extends Comparable<? super AnyType>>
6 void shellsort(AnyType [] a)
7 {
8 int j;
9

10 for(int gap = a.length / 2; gap > 0; gap /= 2)
11 for(int i = gap; i < a.length; i++)
12 {
13 AnyType tmp = a[i];
14 for(j = i; j >= gap &&
15 tmp.compareTo(a[j - gap]) < 0; j -= gap)
16 a[j] = a[j - gap];
17 a[j] = tmp;
18 }
19 }

Figure 7.4 Shellsort routine using Shell’s increments (better increments are possible)

algorithm would likely be of little value, since work done by early phases would be undone
by later phases.

The general strategy to hk-sort is for each position, i, in hk, hk + 1, . . . , N − 1, place
the element in the correct spot among i, i − hk, i − 2hk, and so on. Although this does not
affect the implementation, a careful examination shows that the action of an hk-sort is to
perform an insertion sort on hk independent subarrays. This observation will be important
when we analyze the running time of Shellsort.

A popular (but poor) choice for increment sequence is to use the sequence suggested
by Shell: ht =
N/2�, and hk =
hk+1/2� (This is not the sequence used in the example in
Figure 7.3). Figure 7.4 contains a method that implements Shellsort using this sequence.
We shall see later that there are increment sequences that give a significant improvement
in the algorithm’s running time; even a minor change can drastically affect performance
(Exercise 7.10).

www.manaraa.com

276 Chapter 7 Sorting

The program in Figure 7.4 avoids the explicit use of swaps in the same manner as our
implementation of insertion sort.

7.4.1 Worst-Case Analysis of Shellsort
Although Shellsort is simple to code, the analysis of its running time is quite another
story. The running time of Shellsort depends on the choice of increment sequence, and the
proofs can be rather involved. The average-case analysis of Shellsort is a long-standing open
problem, except for the most trivial increment sequences. We will prove tight worst-case
bounds for two particular increment sequences.

Theorem 7.3.
The worst-case running time of Shellsort, using Shell’s increments, is �(N2).

Proof.
The proof requires showing not only an upper bound on the worst-case running
time but also showing that there exists some input that actually takes � (N2) time
to run. We prove the lower bound first, by constructing a bad case. First, we choose
N to be a power of 2. This makes all the increments even, except for the last incre-
ment, which is 1. Now, we will give as input an array with the N/2 largest numbers
in the even positions and the N/2 smallest numbers in the odd positions (for this
proof, the first position is position 1). As all the increments except the last are even,
when we come to the last pass, the N/2 largest numbers are still all in even posi-
tions and the N/2 smallest numbers are still all in odd positions. The ith smallest
number (i ≤ N/2) is thus in position 2i − 1 before the beginning of the last pass.
Restoring the ith element to its correct place requires moving it i−1 spaces in the array.
Thus, to merely place the N/2 smallest elements in the correct place requires at least∑N/2

i=1 i−1 = � (N2) work. As an example, Figure 7.5 shows a bad (but not the worst)
input when N = 16. The number of inversions remaining after the 2-sort is exactly
1 + 2 + 3 + 4 + 5 + 6 + 7 = 28; thus, the last pass will take considerable time.

To finish the proof, we show the upper bound of O(N2). As we have observed
before, a pass with increment hk consists of hk insertion sorts of about N/hk elements.
Since insertion sort is quadratic, the total cost of a pass is O(hk(N/hk)2) = O(N2/hk).
Summing over all passes gives a total bound of O(

∑t
i=1 N2/hi) = O(N2 ∑t

i=1 1/hi).
Because the increments form a geometric series with common ratio 2, and the largest
term in the series is h1 = 1,

∑t
i=1 1/hi < 2. Thus we obtain a total bound of O(N2).

Start 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16

After 8-sort 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16

After 4-sort 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16

After 2-sort 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 16

After 1-sort 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.5 Bad case for Shellsort with Shell’s increments (positions are numbered 1 to 16)

www.manaraa.com

7.4 Shellsort 277

The problem with Shell’s increments is that pairs of increments are not necessarily rel-
atively prime, and thus the smaller increment can have little effect. Hibbard suggested a
slightly different increment sequence, which gives better results in practice (and theoret-
ically). His increments are of the form 1, 3, 7, . . . , 2k − 1. Although these increments are
almost identical, the key difference is that consecutive increments have no common fac-
tors. We now analyze the worst-case running time of Shellsort for this increment sequence.
The proof is rather complicated.

Theorem 7.4.
The worst-case running time of Shellsort using Hibbard’s increments is �(N3/2).

Proof.
We will prove only the upper bound and leave the proof of the lower bound as an
exercise. The proof requires some well-known results from additive number theory.
References to these results are provided at the end of the chapter.

For the upper bound, as before, we bound the running time of each pass and sum
over all passes. For increments hk > N1/2, we will use the bound O(N2/hk) from the
previous theorem. Although this bound holds for the other increments, it is too large to
be useful. Intuitively, we must take advantage of the fact that this increment sequence
is special. What we need to show is that for any element a[p] in position p, when it is
time to perform an hk-sort, there are only a few elements to the left of position p that
are larger than a[p].

When we come to hk-sort the input array, we know that it has already been hk+1-
and hk+2-sorted. Prior to the hk-sort, consider elements in positions p and p − i, i ≤ p.
If i is a multiple of hk+1 or hk+2, then clearly a[p − i] < a[p]. We can say more,
however. If i is expressible as a linear combination (in nonnegative integers) of hk+1
and hk+2, then a[p − i] < a[p]. As an example, when we come to 3-sort, the file
is already 7- and 15-sorted. 52 is expressible as a linear combination of 7 and 15,
because 52 = 1 ∗ 7 + 3 ∗ 15. Thus, a[100] cannot be larger than a[152] because
a[100] ≤ a[107] ≤ a[122] ≤ a[137] ≤ a[152].

Now, hk+2 = 2hk+1 + 1, so hk+1 and hk+2 cannot share a common factor. In
this case, it is possible to show that all integers that are at least as large as (hk+1 − 1)
(hk+2 −1) = 8h2

k +4hk can be expressed as a linear combination of hk+1 and hk+2 (see
the reference at the end of the chapter).

This tells us that the body of the innermost for loop can be executed at most
8hk + 4 = O(hk) times for each of the N − hk positions. This gives a bound of O(Nhk)
per pass.

Using the fact that about half the increments satisfy hk <
√

N, and assuming that t
is even, the total running time is then

O

⎛
⎝ t/2∑

k=1

Nhk +
t∑

k=t/2+1

N2/hk

⎞
⎠ = O

⎛
⎝N

t/2∑
k=1

hk + N2
t∑

k=t/2+1

1/hk

⎞
⎠

www.manaraa.com

278 Chapter 7 Sorting

Because both sums are geometric series, and since ht/2 = �(
√

N), this simplifies to

= O
(
Nht/2

) + O

(
N2

ht/2

)
= O(N3/2)

The average-case running time of Shellsort, using Hibbard’s increments, is thought to
be O(N5/4), based on simulations, but nobody has been able to prove this. Pratt has shown
that the �(N3/2) bound applies to a wide range of increment sequences.

Sedgewick has proposed several increment sequences that give an O(N4/3) worst-
case running time (also achievable). The average running time is conjectured to be
O(N7/6) for these increment sequences. Empirical studies show that these sequences per-
form significantly better in practice than Hibbard’s. The best of these is the sequence
{1, 5, 19, 41, 109, . . .}, in which the terms are either of the form 9 · 4i − 9 · 2i + 1 or
4i − 3 · 2i + 1. This is most easily implemented by placing these values in an array. This
increment sequence is the best known in practice, although there is a lingering possibility
that some increment sequence might exist that could give a significant improvement in the
running time of Shellsort.

There are several other results on Shellsort that (generally) require difficult theorems
from number theory and combinatorics and are mainly of theoretical interest. Shellsort is
a fine example of a very simple algorithm with an extremely complex analysis.

The performance of Shellsort is quite acceptable in practice, even for N in the tens of
thousands. The simplicity of the code makes it the algorithm of choice for sorting up to
moderately large input.

7.5 Heapsort
As mentioned in Chapter 6, priority queues can be used to sort in O(N log N) time. The
algorithm based on this idea is known as heapsort and gives the best Big-Oh running time
we have seen so far.

Recall, from Chapter 6, that the basic strategy is to build a binary heap of N elements.
This stage takes O(N) time. We then perform N deleteMin operations. The elements leave
the heap smallest first, in sorted order. By recording these elements in a second array and
then copying the array back, we sort N elements. Since each deleteMin takes O(log N) time,
the total running time is O(N log N).

The main problem with this algorithm is that it uses an extra array. Thus, the memory
requirement is doubled. This could be a problem in some instances. Notice that the extra
time spent copying the second array back to the first is only O(N), so that this is not likely
to affect the running time significantly. The problem is space.

A clever way to avoid using a second array makes use of the fact that after each
deleteMin, the heap shrinks by 1. Thus the cell that was last in the heap can be used
to store the element that was just deleted. As an example, suppose we have a heap with six
elements. The first deleteMin produces a1. Now the heap has only five elements, so we can
place a1 in position 6. The next deleteMin produces a2. Since the heap will now only have
four elements, we can place a2 in position 5.

www.manaraa.com

7.5 Heapsort 279

97 53 59 26 41 58 31

0 1 2 3 4 5 6 7 8 9 10

97

53 59

31584126

Figure 7.6 (Max) heap after buildHeap phase

Using this strategy, after the last deleteMin the array will contain the elements in decreas-
ing sorted order. If we want the elements in the more typical increasing sorted order, we can
change the ordering property so that the parent has a larger key than the child. Thus we
have a (max)heap.

In our implementation, we will use a (max)heap but avoid the actual ADT for the pur-
poses of speed. As usual, everything is done in an array. The first step builds the heap in
linear time. We then perform N − 1 deleteMaxes by swapping the last element in the heap
with the first, decrementing the heap size, and percolating down. When the algorithm ter-
minates, the array contains the elements in sorted order. For instance, consider the input
sequence 31, 41, 59, 26, 53, 58, 97. The resulting heap is shown in Figure 7.6.

Figure 7.7 shows the heap that results after the first deleteMax. As the figures imply, the
last element in the heap is 31; 97 has been placed in a part of the heap array that is techni-
cally no longer part of the heap. After 5 more deleteMax operations, the heap will actually
have only one element, but the elements left in the heap array will be in sorted order.

The code to perform heapsort is given in Figure 7.8. The slight complication is that,
unlike the binary heap, where the data begin at array index 1, the array for heapsort con-
tains data in position 0. Thus the code is a little different from the binary heap code. The
changes are minor.

7.5.1 Analysis of Heapsort
As we saw in Chapter 6, the first phase, which constitutes the building of the heap, uses
less than 2N comparisons. In the second phase, the ith deleteMax uses at most less than
2
log (N − i + 1)� comparisons, for a total of at most 2N log N − O(N) comparisons
(assuming N ≥ 2). Consequently, in the worst case, at most 2N log N − O(N) compar-
isons are used by heapsort. Exercise 7.13 asks you to show that it is possible for all of the
deleteMax operations to achieve their worst case simultaneously.

www.manaraa.com

280 Chapter 7 Sorting

59 53 58 26 41 31 97

0 1 2 3 4 5 6 7 8 9 10

59

53 58

97314126

Figure 7.7 Heap after first deleteMax

Experiments have shown that the performance of heapsort is extremely consistent:
On average it uses only slightly fewer comparisons than the worst-case bound suggests.
For many years, nobody had been able to show nontrivial bounds on heapsort’s average
running time. The problem, it seems, is that successive deleteMax operations destroy the
heap’s randomness, making the probability arguments very complex. Eventually another
approach proved successful.

Theorem 7.5.
The average number of comparisons used to heapsort a random permutation of N
distinct items is 2N log N − O(N log log N).

Proof.
The heap construction phase uses �(N) comparisons on average, and so we only need
to prove the bound for the second phase. We assume a permutation of {1, 2, . . . , N}.

Suppose the ith deleteMax pushes the root element down di levels. Then it uses 2di

comparisons. For heapsort on any input, there is a cost sequence D : d1, d2, . . . , dN

that defines the cost of phase 2. That cost is given by MD = ∑N
i=1 di; the number of

comparisons used is thus 2MD.
Let f(N) be the number of heaps of N items. One can show (Exercise 7.58) that

f(N) > (N/(4e))N (where e = 2.71828 . . .). We will show that only an exponentially
small fraction of these heaps (in particular (N/16)N) have a cost smaller than M =
N(log N − log log N − 4). When this is shown, it follows that the average value of MD

is at least M minus a term that is o(1), and thus the average number of comparisons is
at least 2M. Consequently, our basic goal is to show that there are very few heaps that
have small cost sequences.

www.manaraa.com

1 /**
2 * Internal method for heapsort.
3 * @param i the index of an item in the heap.
4 * @return the index of the left child.
5 */
6 private static int leftChild(int i)
7 {
8 return 2 * i + 1;
9 }

10
11 /**
12 * Internal method for heapsort that is used in deleteMax and buildHeap.
13 * @param a an array of Comparable items.
14 * @int i the position from which to percolate down.
15 * @int n the logical size of the binary heap.
16 */
17 private static <AnyType extends Comparable<? super AnyType>>
18 void percDown(AnyType [] a, int i, int n)
19 {
20 int child;
21 AnyType tmp;
22
23 for(tmp = a[i]; leftChild(i) < n; i = child)
24 {
25 child = leftChild(i);
26 if(child != n - 1 && a[child].compareTo(a[child + 1]) < 0)
27 child++;
28 if(tmp.compareTo(a[child]) < 0)
29 a[i] = a[child];
30 else
31 break;
32 }
33 a[i] = tmp;
34 }
35
36 /**
37 * Standard heapsort.
38 * @param a an array of Comparable items.
39 */
40 public static <AnyType extends Comparable<? super AnyType>>
41 void heapsort(AnyType [] a)
42 {
43 for(int i = a.length / 2 - 1; i >= 0; i--) /* buildHeap */
44 percDown(a, i, a.length);
45 for(int i = a.length - 1; i > 0; i--)
46 {
47 swapReferences(a, 0, i); /* deleteMax */
48 percDown(a, 0, i);
49 }
50 }

Figure 7.8 Heapsort

www.manaraa.com

282 Chapter 7 Sorting

Because level di has at most 2di nodes, there are 2di possible places that the root
element can go for any di. Consequently, for any sequence D, the number of distinct
corresponding deleteMax sequences is at most

SD = 2d12d2 · · · 2dN

A simple algebraic manipulation shows that for a given sequence D

SD = 2MD

Because each di can assume any value between 1 and
log N�, there are at
most (log N)N possible sequences D. It follows that the number of distinct deleteMax
sequences that require cost exactly equal to M is at most the number of cost sequences
of total cost M times the number of deleteMax sequences for each of these cost
sequences. A bound of (log N)N2M follows immediately.

The total number of heaps with cost sequence less than M is at most

M−1∑
i=1

(log N)N2i < (log N)N2M

If we choose M = N(log N − log log N − 4), then the number of heaps that have
cost sequence less than M is at most (N/16)N, and the theorem follows from our earlier
comments.

Using a more complex argument, it can be shown that heapsort always uses at least
N log N − O(N) comparisons, and that there are inputs that can achieve this bound. The
average case analysis also can be improved to 2N log N − O(N) comparisons (rather than
the nonlinear second term in Theorem 7.5).

7.6 Mergesort
We now turn our attention to mergesort. Mergesort runs in O(N log N) worst-case running
time, and the number of comparisons used is nearly optimal. It is a fine example of a
recursive algorithm.

The fundamental operation in this algorithm is merging two sorted lists. Because the
lists are sorted, this can be done in one pass through the input, if the output is put in a
third list. The basic merging algorithm takes two input arrays A and B, an output array C,
and three counters, Actr, Bctr, and Cctr, which are initially set to the beginning of their
respective arrays. The smaller of A[Actr] and B[Bctr] is copied to the next entry in C, and
the appropriate counters are advanced. When either input list is exhausted, the remainder
of the other list is copied to C. An example of how the merge routine works is provided for
the following input.

38271522624131

Actr
↑ ↑ ↑

Bctr Cctr

www.manaraa.com

7.6 Mergesort 283

If the array A contains 1, 13, 24, 26, and B contains 2, 15, 27, 38, then the algorithm
proceeds as follows: First, a comparison is done between 1 and 2. 1 is added to C, and
then 13 and 2 are compared.

38271522624131 1

Actr
↑ ↑ ↑

Bctr Cctr

2 is added to C, and then 13 and 15 are compared.

3827152 22624131 1

Actr
↑ ↑ ↑

Bctr Cctr

13 is added to C, and then 24 and 15 are compared. This proceeds until 26 and 27 are
compared.

3827152 2262413 131 1

Actr
↑ ↑ ↑

Bctr Cctr

↑ ↑ ↑

382715 152 2262413 131 1

Actr Bctr Cctr

↑ ↑ ↑

3827152 22624 15 2413 131 1

Actr Bctr Cctr

26 is added to C, and the A array is exhausted.

382715 152 226 2624 2413 131 1

Actr
↑ ↑ ↑

Bctr Cctr

www.manaraa.com

284 Chapter 7 Sorting

The remainder of the B array is then copied to C.

38 3827 2715 152 226 2624 2413 131 1

Actr
↑ ↑ ↑

Bctr Cctr

The time to merge two sorted lists is clearly linear, because at most N − 1 comparisons
are made, where N is the total number of elements. To see this, note that every comparison
adds an element to C, except the last comparison, which adds at least two.

The mergesort algorithm is therefore easy to describe. If N = 1, there is only one
element to sort, and the answer is at hand. Otherwise, recursively mergesort the first half
and the second half. This gives two sorted halves, which can then be merged together
using the merging algorithm described above. For instance, to sort the eight-element array
24, 13, 26, 1, 2, 27, 38, 15, we recursively sort the first four and last four elements, obtain-
ing 1, 13, 24, 26, 2, 15, 27, 38. Then we merge the two halves as above, obtaining the final
list 1, 2, 13, 15, 24, 26, 27, 38. This algorithm is a classic divide-and-conquer strategy. The
problem is divided into smaller problems and solved recursively. The conquering phase
consists of patching together the answers. Divide-and-conquer is a very powerful use of
recursion that we will see many times.

An implementation of mergesort is provided in Figure 7.9. The public mergeSort is just
a driver for the private recursive method mergeSort.

The merge routine is subtle. If a temporary array is declared locally for each recursive
call of merge, then there could be log N temporary arrays active at any point. A close exam-
ination shows that since merge is the last line of mergeSort, there only needs to be one
temporary array active at any point, and that the temporary array can be created in the
public mergeSort driver. Further, we can use any part of the temporary array; we will use
the same portion as the input array a. This allows the improvement described at the end of
this section. Figure 7.10 implements the merge routine.

7.6.1 Analysis of Mergesort
Mergesort is a classic example of the techniques used to analyze recursive routines: we
have to write a recurrence relation for the running time. We will assume that N is a power
of 2, so that we always split into even halves. For N = 1, the time to mergesort is constant,
which we will denote by 1. Otherwise, the time to mergesort N numbers is equal to the
time to do two recursive mergesorts of size N/2, plus the time to merge, which is linear.
The following equations say this exactly:

T(1) = 1

T(N) = 2T(N/2) + N

This is a standard recurrence relation, which can be solved several ways. We will show two
methods. The first idea is to divide the recurrence relation through by N. The reason for
doing this will become apparent soon. This yields

T(N)

N
= T(N/2)

N/2
+ 1

www.manaraa.com

7.6 Mergesort 285

1 /**
2 * Internal method that makes recursive calls.
3 * @param a an array of Comparable items.
4 * @param tmpArray an array to place the merged result.
5 * @param left the left-most index of the subarray.
6 * @param right the right-most index of the subarray.
7 */
8 private static <AnyType extends Comparable<? super AnyType>>
9 void mergeSort(AnyType [] a, AnyType [] tmpArray, int left, int right)

10 {
11 if(left < right)
12 {
13 int center = (left + right) / 2;
14 mergeSort(a, tmpArray, left, center);
15 mergeSort(a, tmpArray, center + 1, right);
16 merge(a, tmpArray, left, center + 1, right);
17 }
18 }
19
20 /**
21 * Mergesort algorithm.
22 * @param a an array of Comparable items.
23 */
24 public static <AnyType extends Comparable<? super AnyType>>
25 void mergeSort(AnyType [] a)
26 {
27 AnyType [] tmpArray = (AnyType[]) new Comparable[a.length];
28
29 mergeSort(a, tmpArray, 0, a.length - 1);
30 }

Figure 7.9 Mergesort routines

This equation is valid for any N that is a power of 2, so we may also write

T(N/2)

N/2
= T(N/4)

N/4
+ 1

and

T(N/4)

N/4
= T(N/8)

N/8
+ 1

...

T(2)

2
= T(1)

1
+ 1

www.manaraa.com

286 Chapter 7 Sorting

1 /**
2 * Internal method that merges two sorted halves of a subarray.
3 * @param a an array of Comparable items.
4 * @param tmpArray an array to place the merged result.
5 * @param leftPos the left-most index of the subarray.
6 * @param rightPos the index of the start of the second half.
7 * @param rightEnd the right-most index of the subarray.
8 */
9 private static <AnyType extends Comparable<? super AnyType>>

10 void merge(AnyType [] a, AnyType [] tmpArray,
11 int leftPos, int rightPos, int rightEnd)
12 {
13 int leftEnd = rightPos - 1;
14 int tmpPos = leftPos;
15 int numElements = rightEnd - leftPos + 1;
16
17 // Main loop
18 while(leftPos <= leftEnd && rightPos <= rightEnd)
19 if(a[leftPos].compareTo(a[rightPos]) <= 0)
20 tmpArray[tmpPos++] = a[leftPos++];
21 else
22 tmpArray[tmpPos++] = a[rightPos++];
23
24 while(leftPos <= leftEnd) // Copy rest of first half
25 tmpArray[tmpPos++] = a[leftPos++];
26
27 while(rightPos <= rightEnd) // Copy rest of right half
28 tmpArray[tmpPos++] = a[rightPos++];
29
30 // Copy tmpArray back
31 for(int i = 0; i < numElements; i++, rightEnd--)
32 a[rightEnd] = tmpArray[rightEnd];
33 }

Figure 7.10 merge routine

Now add up all the equations. This means that we add all of the terms on the left-hand
side and set the result equal to the sum of all of the terms on the right-hand side. Observe
that the term T(N/2)/(N/2) appears on both sides and thus cancels. In fact, virtually all
the terms appear on both sides and cancel. This is called telescoping a sum. After everything
is added, the final result is

T(N)

N
= T(1)

1
+ log N

www.manaraa.com

7.6 Mergesort 287

because all of the other terms cancel and there are log N equations, and so all the 1’s at the
end of these equations add up to log N. Multiplying through by N gives the final answer.

T(N) = N log N + N = O(N log N)

Notice that if we did not divide through by N at the start of the solutions, the sum
would not telescope. This is why it was necessary to divide through by N.

An alternative method is to substitute the recurrence relation continually on the right-
hand side. We have

T(N) = 2T(N/2) + N

Since we can substitute N/2 into the main equation,

2T(N/2) = 2(2(T(N/4)) + N/2) = 4T(N/4) + N

we have

T(N) = 4T(N/4) + 2N

Again, by substituting N/4 into the main equation, we see that

4T(N/4) = 4(2T(N/8) + N/4) = 8T(N/8) + N

So we have

T(N) = 8T(N/8) + 3N

Continuing in this manner, we obtain

T(N) = 2kT(N/2k) + k · N

Using k = log N, we obtain

T(N) = NT(1) + N log N = N log N + N

The choice of which method to use is a matter of taste. The first method tends to
produce scrap work that fits better on a standard, 81/2 ×11 sheet of paper, leading to fewer
mathematical errors, but it requires a certain amount of experience to apply. The second
method is more of a brute-force approach.

Recall that we have assumed N = 2k. The analysis can be refined to handle cases when
N is not a power of 2. The answer turns out to be almost identical (this is usually the case).

Although mergesort’s running time is O(N log N), it has the significant problem that
merging two sorted lists uses linear extra memory.1 The additional work involved in copy-
ing to the temporary array and back, throughout the algorithm, slows the sort considerably.
This copying can be avoided by judiciously switching the roles of a and tmpArray at alter-
nate levels of the recursion. A variant of mergesort can also be implemented nonrecursively
(Exercise 7.16).

1 It is theoretically possible to use less extra memory, but the resulting algorithm is complex and impractical.

www.manaraa.com

288 Chapter 7 Sorting

The running time of mergesort, when compared with other O(N log N) alternatives,
depends heavily on the relative costs of comparing elements and moving elements in the
array (and the temporary array). These costs are language dependent.

For instance, in Java, when performing a generic sort (using a Comparator), an element
comparison can be expensive (because comparisons might not be easily inlined, and thus
the overhead of dynamic dispatch could slow things down), but moving elements is cheap
(because they are reference assignments, rather than copies of large objects). Mergesort
uses the lowest number of comparisons of all the popular sorting algorithms, and thus is a
good candidate for general-purpose sorting in Java. In fact, it is the algorithm used in the
standard Java library for generic sorting.

On the other hand, in C++, in a generic sort, copying objects can be expensive if the
objects are large, while comparing objects often is relatively cheap because of the ability
of the compiler to aggressively perform inline optimization. In this scenario, it might be
reasonable to have an algorithm use a few more comparisons, if we can also use signifi-
cantly fewer data movements. Quicksort, which we discuss in the next section, achieves this
tradeoff, and is the sorting routine commonly used in C++ libraries.

In Java, quicksort is also used as the standard library sort for primitive types. Here,
the costs of comparisons and data moves are similar, so using significantly fewer data
movements more than compensates for a few extra comparisons.

7.7 Quicksort
As its name implies, quicksort is a fast sorting algorithm in practice and is especially
useful in C++, or for sorting primitive types in Java. Its average running time is O(N log N).
It is very fast, mainly due to a very tight and highly optimized inner loop. It has O(N2)
worst-case performance, but this can be made exponentially unlikely with a little effort. By
combining quicksort with heapsort, we can achieve quicksort’s fast running time on almost
all inputs, with heapsort’s O(N log N) worst-case running time. Exercise 7.27 describes this
approach.

The quicksort algorithm is simple to understand and prove correct, although for many
years it had the reputation of being an algorithm that could in theory be highly optimized
but in practice was impossible to code correctly. Like mergesort, quicksort is a divide-and-
conquer recursive algorithm.

Let us begin with the following simple sorting algorithm to sort a list. Arbitrarily choose
any item, and then form three groups: those smaller than the chosen item, those equal to
the chosen item, and those larger than the chosen item. Recursively sort the first and third
groups, and then concatenate the three groups. The result is guaranteed by the basic prin-
ciples of recursion to be a sorted arrangement of the original list. A direct implementation
of this algorithm is shown in Figure 7.11, and its performance, is generally speaking, quite
respectable on most inputs. In fact, if the list contains large numbers of duplicates with rel-
atively few distinct items, as is sometimes the case, then the performance is extremely good.

The algorithm we have described forms the basis of the quicksort. However, by mak-
ing the extra lists, and doing so recursively, it is hard to see how we have improved upon

www.manaraa.com

7.7 Quicksort 289

1 public static void sort(List<Integer> items)
2 {
3 if(items.size() > 1)
4 {
5 List<Integer> smaller = new ArrayList<>();
6 List<Integer> same = new ArrayList<>();
7 List<Integer> larger = new ArrayList<>();
8
9 Integer chosenItem = items.get(items.size() / 2);

10 for(Integer i : items)
11 {
12 if(i < chosenItem)
13 smaller.add(i);
14 else if(i > chosenItem)
15 larger.add(i);
16 else
17 same.add(i);
18 }
19
20 sort(smaller); // Recursive call!
21 sort(larger); // Recursive call!
22
23 items.clear();
24 items.addAll(smaller);
25 items.addAll(same);
26 items.addAll(larger);
27 }
28 }

Figure 7.11 Simple recursive sorting algorithm

mergesort. In fact, so far, we really haven’t. In order to do better, we must avoid using
significant extra memory and have inner loops that are clean. Thus quicksort is com-
monly written in a manner that avoids creating the second group (the equal items), and
the algorithm has numerous subtle details that affect the performance; therein lies the
complications.

We now describe the most common implementation of quicksort—“classic quicksort,”
in which the input is an array, and in which no extra arrays are created by the algorithm.

The classic quicksort algorithm to sort an array S consists of the following four easy
steps:

1. If the number of elements in S is 0 or 1, then return.

2. Pick any element v in S. This is called the pivot.

www.manaraa.com

290 Chapter 7 Sorting

3. Partition S − {v} (the remaining elements in S) into two disjoint groups: S1 = {x ∈
S − {v}|x ≤ v}, and S2 = {x ∈ S − {v}|x ≥ v}.

4. Return {quicksort(S1) followed by v followed by quicksort(S2)}.

Since the partition step ambiguously describes what to do with elements equal to the
pivot, this becomes a design decision. Part of a good implementation is handling this case
as efficiently as possible. Intuitively, we would hope that about half the keys that are equal
to the pivot go into S1 and the other half into S2, much as we like binary search trees to be
balanced.

Figure 7.12 shows the action of quicksort on a set of numbers. The pivot is chosen
(by chance) to be 65. The remaining elements in the set are partitioned into two smaller
sets. Recursively sorting the set of smaller numbers yields 0, 13, 26, 31, 43, 57 (by rule 3
of recursion). The set of large numbers is similarly sorted. The sorted arrangement of the
entire set is then trivially obtained.

It should be clear that this algorithm works, but it is not clear why it is any faster
than mergesort. Like mergesort, it recursively solves two subproblems and requires linear
additional work (step 3), but, unlike mergesort, the subproblems are not guaranteed to
be of equal size, which is potentially bad. The reason that quicksort is faster is that the
partitioning step can actually be performed in place and very efficiently. This efficiency can
more than make up for the lack of equal-sized recursive calls.

The algorithm as described so far lacks quite a few details, which we now fill in.
There are many ways to implement steps 2 and 3; the method presented here is the result
of extensive analysis and empirical study and represents a very efficient way to imple-
ment quicksort. Even the slightest deviations from this method can cause surprisingly bad
results.

7.7.1 Picking the Pivot
Although the algorithm as described works no matter which element is chosen as the pivot,
some choices are obviously better than others.

A Wrong Way
The popular, uninformed choice is to use the first element as the pivot. This is acceptable
if the input is random, but if the input is presorted or in reverse order, then the pivot
provides a poor partition, because either all the elements go into S1 or they go into S2.
Worse, this happens consistently throughout the recursive calls. The practical effect is that
if the first element is used as the pivot and the input is presorted, then quicksort will
take quadratic time to do essentially nothing at all, which is quite embarrassing. Moreover,
presorted input (or input with a large presorted section) is quite frequent, so using the first
element as the pivot is an absolutely horrible idea and should be discarded immediately. An
alternative is choosing the larger of the first two distinct elements as the pivot, but this
has the same bad properties as merely choosing the first element. Do not use that pivoting
strategy either.

www.manaraa.com

7.7 Quicksort 291

13

81 0

92

43

65

31 57 75

26

13

81 0

92

43

65

31 57 75

26

select pivot

partition

quicksort large

65

65

13
0

26

43

57

31 75
81

92

quicksort small

0 13 26 31 43 57

0 13 26 31 43 57 65 75 81 92

75 81 92

Figure 7.12 The steps of quicksort illustrated by example

A Safe Maneuver
A safe course is merely to choose the pivot randomly. This strategy is generally perfectly
safe, unless the random number generator has a flaw (which is not as uncommon as you
might think), since it is very unlikely that a random pivot would consistently provide a
poor partition. On the other hand, random number generation is generally an expensive
commodity and does not reduce the average running time of the rest of the algorithm
at all.

www.manaraa.com

292 Chapter 7 Sorting

Median-of-Three Partitioning
The median of a group of N numbers is the �N/2� th largest number. The best choice
of pivot would be the median of the array. Unfortunately, this is hard to calculate and
would slow down quicksort considerably. A good estimate can be obtained by picking
three elements randomly and using the median of these three as the pivot. The randomness
turns out not to help much, so the common course is to use as the pivot the median of the
left, right, and center elements. For instance, with input 8, 1, 4, 9, 6, 3, 5, 2, 7, 0 as before,
the left element is 8, the right element is 0, and the center (in position
(left + right)/2�)
element is 6. Thus, the pivot would be v = 6. Using median-of-three partitioning clearly
eliminates the bad case for sorted input (the partitions become equal in this case) and
actually reduces the number of comparisons by 14 percent.

7.7.2 Partitioning Strategy
There are several partitioning strategies used in practice, but the one described here is
known to give good results. It is very easy, as we shall see, to do this wrong or inefficiently,
but it is safe to use a known method. The first step is to get the pivot element out of
the way by swapping it with the last element. i starts at the first element and j starts at
the next-to-last element. If the original input was the same as before, the following figure
shows the current situation.

8 1 4 9 0 3 5 2 7 6
↑ ↑
i j

For now we will assume that all the elements are distinct. Later on we will worry about
what to do in the presence of duplicates. As a limiting case, our algorithm must do the
proper thing if all of the elements are identical. It is surprising how easy it is to do the
wrong thing.

What our partitioning stage wants to do is to move all the small elements to the left
part of the array and all the large elements to the right part. “Small” and “large” are, of
course, relative to the pivot.

While i is to the left of j, we move i right, skipping over elements that are smaller than
the pivot. We move j left, skipping over elements that are larger than the pivot. When i
and j have stopped, i is pointing at a large element and j is pointing at a small element. If
i is to the left of j, those elements are swapped. The effect is to push a large element to the
right and a small element to the left. In the example above, i would not move and j would
slide over one place. The situation is as follows.

8 1 4 9 0 3 5 2 7 6
↑ ↑
i j

www.manaraa.com

7.7 Quicksort 293

We then swap the elements pointed to by i and j and repeat the process until i and j
cross.

After First Swap

2 1 4 9 0 3 5 8 7 6
↑ ↑
i j

Before Second Swap

2 1 4 9 0 3 5 8 7 6
↑ ↑
i j

After Second Swap

2 1 4 5 0 3 9 8 7 6
↑ ↑
i j

Before Third Swap

2 1 4 5 0 3 9 8 7 6
↑ ↑
j i

At this stage, i and j have crossed, so no swap is performed. The final part of the
partitioning is to swap the pivot element with the element pointed to by i.

After Swap with Pivot

2 1 4 5 0 3 6 8 7 9
↑ ↑
i pivot

When the pivot is swapped with i in the last step, we know that every element in a
position p < i must be small. This is because either position p contained a small element
to start with, or the large element originally in position p was replaced during a swap. A
similar argument shows that elements in positions p > i must be large.

One important detail we must consider is how to handle elements that are equal to
the pivot. The questions are whether or not i should stop when it sees an element equal
to the pivot and whether or not j should stop when it sees an element equal to the pivot.
Intuitively, i and j ought to do the same thing, since otherwise the partitioning step is
biased. For instance, if i stops and j does not, then all elements that are equal to the pivot
will wind up in S2.

www.manaraa.com

294 Chapter 7 Sorting

To get an idea of what might be good, we consider the case where all the elements in
the array are identical. If both i and j stop, there will be many swaps between identical
elements. Although this seems useless, the positive effect is that i and j will cross in the
middle, so when the pivot is replaced, the partition creates two nearly equal subarrays. The
mergesort analysis tells us that the total running time would then be O(N log N).

If neither i nor j stops, and code is present to prevent them from running off the end of
the array, no swaps will be performed. Although this seems good, a correct implementation
would then swap the pivot into the last spot that i touched, which would be the next-to-
last position (or last, depending on the exact implementation). This would create very
uneven subarrays. If all the elements are identical, the running time is O(N2). The effect is
the same as using the first element as a pivot for presorted input. It takes quadratic time to
do nothing!

Thus, we find that it is better to do the unnecessary swaps and create even subarrays
than to risk wildly uneven subarrays. Therefore, we will have both i and j stop if they
encounter an element equal to the pivot. This turns out to be the only one of the four
possibilities that does not take quadratic time for this input.

At first glance it may seem that worrying about an array of identical elements is silly.
After all, why would anyone want to sort 50,000 identical elements? However, recall that
quicksort is recursive. Suppose there are 1,000,000 elements, of which 50,000 are identical
(or, more likely, complex elements whose sort keys are identical). Eventually, quicksort will
make the recursive call on only these 50,000 elements. Then it really will be important to
make sure that 50,000 identical elements can be sorted efficiently.

7.7.3 Small Arrays
For very small arrays (N ≤ 20), quicksort does not perform as well as insertion sort.
Furthermore, because quicksort is recursive, these cases will occur frequently. A common
solution is not to use quicksort recursively for small arrays, but instead use a sorting algo-
rithm that is efficient for small arrays, such as insertion sort. Using this strategy can actually
save about 15 percent in the running time (over doing no cutoff at all). A good cutoff range
is N = 10, although any cutoff between 5 and 20 is likely to produce similar results. This
also saves nasty degenerate cases, such as taking the median of three elements when there
are only one or two.

7.7.4 Actual Quicksort Routines
The driver for quicksort is shown in Figure 7.13.

The general form of the routines will be to pass the array and the range of the array
(left and right) to be sorted. The first routine to deal with is pivot selection. The easi-
est way to do this is to sort a[left], a[right], and a[center] in place. This has the extra
advantage that the smallest of the three winds up in a[left], which is where the partition-
ing step would put it anyway. The largest winds up in a[right], which is also the correct
place, since it is larger than the pivot. Therefore, we can place the pivot in a[right-1] and
initialize i and j to left+1 and right-2 in the partition phase. Yet another benefit is that
because a[left] is smaller than the pivot, it will act as a sentinel for j. Thus, we do not need

www.manaraa.com

7.7 Quicksort 295

1 /**
2 * Quicksort algorithm.
3 * @param a an array of Comparable items.
4 */
5 public static <AnyType extends Comparable<? super AnyType>>
6 void quicksort(AnyType [] a)
7 {
8 quicksort(a, 0, a.length - 1);
9 }

Figure 7.13 Driver for quicksort

1 /**
2 * Return median of left, center, and right.
3 * Order these and hide the pivot.
4 */
5 private static <AnyType extends Comparable<? super AnyType>>
6 AnyType median3(AnyType [] a, int left, int right)
7 {
8 int center = (left + right) / 2;
9 if(a[center].compareTo(a[left]) < 0)

10 swapReferences(a, left, center);
11 if(a[right].compareTo(a[left]) < 0)
12 swapReferences(a, left, right);
13 if(a[right].compareTo(a[center]) < 0)
14 swapReferences(a, center, right);
15
16 // Place pivot at position right - 1
17 swapReferences(a, center, right - 1);
18 return a[right - 1];
19 }

Figure 7.14 Code to perform median-of-three partitioning

to worry about j running past the end. Since i will stop on elements equal to the pivot,
storing the pivot in a[right-1] provides a sentinel for i. The code in Figure 7.14 does the
median-of-three partitioning with all the side effects described. It may seem that it is only
slightly inefficient to compute the pivot by a method that does not actually sort a[left],
a[center], and a[right], but, surprisingly, this produces bad results (see Exercise 7.51).

The real heart of the quicksort routine is in Figure 7.15. It includes the partitioning
and recursive calls. There are several things worth noting in this implementation. Line 16
initializes i and j to 1 past their correct values, so that there are no special cases to consider.
This initialization depends on the fact that median-of-three partitioning has some side

www.manaraa.com

296 Chapter 7 Sorting

1 /**
2 * Internal quicksort method that makes recursive calls.
3 * Uses median-of-three partitioning and a cutoff of 10.
4 * @param a an array of Comparable items.
5 * @param left the left-most index of the subarray.
6 * @param right the right-most index of the subarray.
7 */
8 private static <AnyType extends Comparable<? super AnyType>>
9 void quicksort(AnyType [] a, int left, int right)

10 {
11 if(left + CUTOFF <= right)
12 {
13 AnyType pivot = median3(a, left, right);
14
15 // Begin partitioning
16 int i = left, j = right - 1;
17 for(; ;)
18 {
19 while(a[++i].compareTo(pivot) < 0) { }
20 while(a[--j].compareTo(pivot) > 0) { }
21 if(i < j)
22 swapReferences(a, i, j);
23 else
24 break;
25 }
26
27 swapReferences(a, i, right - 1); // Restore pivot
28
29 quicksort(a, left, i - 1); // Sort small elements
30 quicksort(a, i + 1, right); // Sort large elements
31 }
32 else // Do an insertion sort on the subarray
33 insertionSort(a, left, right);
34 }

Figure 7.15 Main quicksort routine

effects; this program will not work if you try to use it without change with a simple pivoting
strategy, because i and j start in the wrong place and there is no longer a sentinel for j.

The swapping action at line 22 is sometimes written explicitly, for speed purposes. For
the algorithm to be fast, it may be necessary to force the compiler to compile this code
inline. Many compilers will do this automatically if swapReferences is a final method, but
for those that do not, the difference can be significant.

www.manaraa.com

7.7 Quicksort 297

16 int i = left + 1, j = right ;
17 for(; ;)
18 {
19 while(a[i].compareTo(pivot) < 0) i++;
20 while(a[j].compareTo(pivot) > 0) j--
21 if(i < j)
22 swapReferences(a, i, j);
23 else
24 break;
25 }

Figure 7.16 A small change to quicksort, which breaks the algorithm

Finally, lines 19 and 20 show why quicksort is so fast. The inner loop of the algorithm
consists of an increment/decrement (by 1, which is fast), a test, and a jump. There is no
extra juggling as there is in mergesort. This code is still surprisingly tricky. It is tempting
to replace lines 16 through 25 with the statements in Figure 7.16. This does not work,
because there would be an infinite loop if a[i] = a[j] = pivot.

7.7.5 Analysis of Quicksort
Like mergesort, quicksort is recursive, and hence, its analysis requires solving a recurrence
formula. We will do the analysis for a quicksort, assuming a random pivot (no median-
of-three partitioning) and no cutoff for small arrays. We will take T(0) = T(1) = 1, as in
mergesort. The running time of quicksort is equal to the running time of the two recursive
calls plus the linear time spent in the partition (the pivot selection takes only constant
time). This gives the basic quicksort relation

T(N) = T(i) + T(N − i − 1) + cN (7.1)

where i = |S1| is the number of elements in S1. We will look at three cases.

Worst-Case Analysis
The pivot is the smallest element, all the time. Then i = 0 and if we ignore T(0) = 1,
which is insignificant, the recurrence is

T(N) = T(N − 1) + cN, N > 1 (7.2)

We telescope, using Equation (7.2) repeatedly. Thus

T(N − 1) = T(N − 2) + c(N − 1) (7.3)

T(N − 2) = T(N − 3) + c(N − 2) (7.4)
...

T(2) = T(1) + c(2) (7.5)

www.manaraa.com

298 Chapter 7 Sorting

Adding up all these equations yields

T(N) = T(1) + c
N∑

i=2

i = �(N2) (7.6)

as claimed earlier. To see that this is the worst possible case, note that the total cost of all
the partitions in recursive calls at depth d must be at most N. Since the recursion depth is
at most N, this gives as O(N2) worst-case bound for quicksort.

Best-Case Analysis
In the best case, the pivot is in the middle. To simplify the math, we assume that the two
subarrays are each exactly half the size of the original, and although this gives a slight
overestimate, this is acceptable because we are only interested in a Big-Oh answer.

T(N) = 2T(N/2) + cN (7.7)

Divide both sides of Equation (7.7) by N.

T(N)

N
= T(N/2)

N/2
+ c (7.8)

We will telescope using this equation.

T(N/2)

N/2
= T(N/4)

N/4
+ c (7.9)

T(N/4)

N/4
= T(N/8)

N/8
+ c (7.10)

...
T(2)

2
= T(1)

1
+ c (7.11)

We add all the equations from (7.8) to (7.11) and note that there are log N of them:

T(N)

N
= T(1)

1
+ c log N (7.12)

which yields

T(N) = cN log N + N = �(N log N) (7.13)

Notice that this is the exact same analysis as mergesort, hence we get the same answer.
That this is the best case is implied by results in Section 7.8.

Average-Case Analysis
This is the most difficult part. For the average case, we assume that each of the sizes for S1

is equally likely, and hence has probability 1/N. This assumption is actually valid for our
pivoting and partitioning strategy, but it is not valid for some others. Partitioning strategies
that do not preserve the randomness of the subarrays cannot use this analysis. Interestingly,
these strategies seem to result in programs that take longer to run in practice.

www.manaraa.com

7.7 Quicksort 299

With this assumption, the average value of T(i), and hence T(N − i − 1), is
(1/N)

∑N−1
j=0 T(j). Equation (7.1) then becomes

T(N) = 2

N

⎡
⎣N−1∑

j=0

T(j)

⎤
⎦ + cN (7.14)

If Equation (7.14) is multiplied by N, it becomes

NT(N) = 2

⎡
⎣N−1∑

j=0

T(j)

⎤
⎦ + cN2 (7.15)

We need to remove the summation sign to simplify matters. We note that we can telescope
with one more equation.

(N − 1)T(N − 1) = 2

⎡
⎣N−2∑

j=0

T(j)

⎤
⎦ + c(N − 1)2 (7.16)

If we subtract Equation (7.16) from Equation (7.15), we obtain

NT(N) − (N − 1)T(N − 1) = 2T(N − 1) + 2cN − c (7.17)

We rearrange terms and drop the insignificant −c on the right, obtaining

NT(N) = (N + 1)T(N − 1) + 2cN (7.18)

We now have a formula for T(N) in terms of T(N − 1) only. Again the idea is to telescope,
but Equation (7.18) is in the wrong form. Divide Equation (7.18) by N (N + 1):

T(N)

N + 1
= T(N − 1)

N
+ 2c

N + 1
(7.19)

Now we can telescope.

T(N − 1)

N
= T(N − 2)

N − 1
+ 2c

N
(7.20)

T(N − 2)

N − 1
= T(N − 3)

N − 2
+ 2c

N − 1
(7.21)

...
T(2)

3
= T(1)

2
+ 2c

3
(7.22)

www.manaraa.com

300 Chapter 7 Sorting

Adding Equations (7.19) through (7.22) yields

T(N)

N + 1
= T(1)

2
+ 2c

N+1∑
i=3

1

i
(7.23)

The sum is about loge(N + 1) + γ − 3
2 , where γ ≈ 0.577 is known as Euler’s constant, so

T(N)

N + 1
= O(log N) (7.24)

And so

T(N) = O(N log N) (7.25)

Although this analysis seems complicated, it really is not—the steps are natural once
you have seen some recurrence relations. The analysis can actually be taken further. The
highly optimized version that was described above has also been analyzed, and this result
gets extremely difficult, involving complicated recurrences and advanced mathematics. The
effect of equal elements has also been analyzed in detail, and it turns out that the code
presented does the right thing.

7.7.6 A Linear-Expected-Time Algorithm for Selection
Quicksort can be modified to solve the selection problem, which we have seen in Chapters 1
and 6. Recall that by using a priority queue, we can find the kth largest (or smallest) element
in O(N + k log N). For the special case of finding the median, this gives an O(N log N)
algorithm.

Since we can sort the array in O(N log N) time, one might expect to obtain a better time
bound for selection. The algorithm we present to find the kth smallest element in a set S is
almost identical to quicksort. In fact, the first three steps are the same. We will call this algo-
rithm quickselect. Let |Si| denote the number of elements in Si. The steps of quickselect are

1. If |S| = 1, then k = 1 and return the element in S as the answer. If a cutoff for small
arrays is being used and |S| ≤ CUTOFF, then sort S and return the kth smallest element.

2. Pick a pivot element, v ∈ S.

3. Partition S − {v} into S1 and S2, as was done with quicksort.

4. If k ≤ |S1|, then the kth smallest element must be in S1. In this case, return quickselect
(S1, k). If k = 1+|S1|, then the pivot is the kth smallest element and we can return it as
the answer. Otherwise, the kth smallest element lies in S2, and it is the (k − |S1| − 1)st
smallest element in S2. We make a recursive call and return quickselect (S2, k−|S1|−1).

In contrast to quicksort, quickselect makes only one recursive call instead of two. The
worst case of quickselect is identical to that of quicksort and is O(N2). Intuitively, this is
because quicksort’s worst case is when one of S1 and S2 is empty; thus, quickselect is not
really saving a recursive call. The average running time, however, is O(N). The analysis is
similar to quicksort’s and is left as an exercise.

www.manaraa.com

7.7 Quicksort 301

The implementation of quickselect is even simpler than the abstract description might
imply. The code to do this is shown in Figure 7.17. When the algorithm terminates, the
kth smallest element is in position k − 1 (because arrays start at index 0). This destroys the
original ordering; if this is not desirable, then a copy must be made.

1 /**
2 * Internal selection method that makes recursive calls.
3 * Uses median-of-three partitioning and a cutoff of 10.
4 * Places the kth smallest item in a[k-1].
5 * @param a an array of Comparable items.
6 * @param left the left-most index of the subarray.
7 * @param right the right-most index of the subarray.
8 * @param k the desired index (1 is minimum) in the entire array.
9 */

10 private static <AnyType extends Comparable<? super AnyType>>
11 void quickSelect(AnyType [] a, int left, int right, int k)
12 {
13 if(left + CUTOFF <= right)
14 {
15 AnyType pivot = median3(a, left, right);
16
17 // Begin partitioning
18 int i = left, j = right - 1;
19 for(; ;)
20 {
21 while(a[++i].compareTo(pivot) < 0) { }
22 while(a[--j].compareTo(pivot) > 0) { }
23 if(i < j)
24 swapReferences(a, i, j);
25 else
26 break;
27 }
28
29 swapReferences(a, i, right - 1); // Restore pivot
30
31 if(k <= i)
32 quickSelect(a, left, i - 1, k);
33 else if(k > i + 1)
34 quickSelect(a, i + 1, right, k);
35 }
36 else // Do an insertion sort on the subarray
37 insertionSort(a, left, right);
38 }

Figure 7.17 Main quickselect routine

www.manaraa.com

302 Chapter 7 Sorting

Using a median-of-three pivoting strategy makes the chance of the worst case occurring
almost negligible. By carefully choosing the pivot, however, we can eliminate the quadratic
worst case and ensure an O(N) algorithm. The overhead involved in doing this is consid-
erable, so the resulting algorithm is mostly of theoretical interest. In Chapter 10, we will
examine the linear-time worst-case algorithm for selection, and we shall also see an inter-
esting technique of choosing the pivot that results in a somewhat faster selection algorithm
in practice.

7.8 A General Lower Bound for Sorting
Although we have O(N log N) algorithms for sorting, it is not clear that this is as good as we
can do. In this section, we prove that any algorithm for sorting that uses only comparisons
requires � (N log N) comparisons (and hence time) in the worst case, so that mergesort and
heapsort are optimal to within a constant factor. The proof can be extended to show that
� (N log N) comparisons are required, even on average, for any sorting algorithm that uses
only comparisons, which means that quicksort is optimal on average to within a constant
factor.

Specifically, we will prove the following result: Any sorting algorithm that uses only
comparisons requires �log(N!)� comparisons in the worst case and log(N!) comparisons
on average. We will assume that all N elements are distinct, since any sorting algorithm
must work for this case.

7.8.1 Decision Trees
A decision tree is an abstraction used to prove lower bounds. In our context, a decision
tree is a binary tree. Each node represents a set of possible orderings, consistent with
comparisons that have been made, among the elements. The results of the comparisons
are the tree edges.

The decision tree in Figure 7.18 represents an algorithm that sorts the three elements
a, b, and c. The initial state of the algorithm is at the root. (We will use the terms state
and node interchangeably.) No comparisons have been done, so all orderings are legal. The
first comparison that this particular algorithm performs compares a and b. The two results
lead to two possible states. If a < b, then only three possibilities remain. If the algorithm
reaches node 2, then it will compare a and c. Other algorithms might do different things;
a different algorithm would have a different decision tree. If a > c, the algorithm enters
state 5. Since there is only one ordering that is consistent, the algorithm can terminate and
report that it has completed the sort. If a < c, the algorithm cannot do this, because there
are two possible orderings and it cannot possibly be sure which is correct. In this case, the
algorithm will require one more comparison.

Every algorithm that sorts by using only comparisons can be represented by a decision
tree. Of course, it is only feasible to draw the tree for extremely small input sizes. The
number of comparisons used by the sorting algorithm is equal to the depth of the deepest
leaf. In our case, this algorithm uses three comparisons in the worst case. The average

www.manaraa.com

7.8 A General Lower Bound for Sorting 303

a < b < c

a < b

a < c c < a c < b

b < a

b < c

a < c < b

a < b < c

a < c < b

a < b < c

b < c

a < b < c

a < c < b

c < b

a < c < b

b < a < c

b < c < a

b < a < c

c < b < a

b < c < a

b < a < c

a < c

b < a < c

b < c < a

c < a

b < c < a

c < a < b

c < a < b

c < a < b

c < b < a

c < b < a

1

2

5 7

4

8 9 10 11

6

3

Figure 7.18 A decision tree for three-element sort

number of comparisons used is equal to the average depth of the leaves. Since a decision
tree is large, it follows that there must be some long paths. To prove the lower bounds, all
that needs to be shown are some basic tree properties.

Lemma 7.1.
Let T be a binary tree of depth d. Then T has at most 2d leaves.

Proof.
The proof is by induction. If d = 0, then there is at most one leaf, so the basis is true.
Otherwise, we have a root, which cannot be a leaf, and a left and right subtree, each
of depth at most d − 1. By the induction hypothesis, they can each have at most 2d−1

leaves, giving a total of at most 2d leaves. This proves the lemma.

Lemma 7.2.
A binary tree with L leaves must have depth at least �log L�.

Proof.
Immediate from the preceding lemma.

www.manaraa.com

304 Chapter 7 Sorting

Theorem 7.6.
Any sorting algorithm that uses only comparisons between elements requires at least
�log(N!)� comparisons in the worst case.

Proof.
A decision tree to sort N elements must have N! leaves. The theorem follows from the
preceding lemma.

Theorem 7.7.
Any sorting algorithm that uses only comparisons between elements requires
� (N log N) comparisons.

Proof.
From the previous theorem, log(N!) comparisons are required.

log(N!) = log(N(N − 1)(N − 2) · · · (2)(1))

= log N + log(N − 1) + log(N − 2) + · · · + log 2 + log 1

≥ log N + log(N − 1) + log(N − 2) + · · · + log(N/2)

≥ N

2
log

N

2

≥ N

2
log N − N

2
= � (N log N)

This type of lower-bound argument, when used to prove a worst-case result, is some-
times known as an information-theoretic lower bound. The general theorem says that
if there are P different possible cases to distinguish, and the questions are of the form
YES/NO, then �log P� questions are always required in some case by any algorithm to solve
the problem. It is possible to prove a similar result for the average-case running time of any
comparison-based sorting algorithm. This result is implied by the following lemma, which
is left as an exercise: Any binary tree with L leaves has an average depth of at least log L.

Note that log(N!) is roughly N log N − O(N) (Exercise 7.34).

7.9 Decision-Tree Lower Bounds for Selection
Problems

Section 7.8 employed a decision tree argument to show the fundamental lower bound
that any comparison-based sorting algorithm must use roughly N log N comparisons. In
this section we show additional lower bounds for selection in an N-element collection,
specifically

1. N − 1 comparisons are necessary to find the smallest item

2. N + �log N� − 2 comparisons are necessary to find the two smallest items

3. �3N/2� − O(log N) comparisons are necessary to find the median

www.manaraa.com

7.9 Decision-Tree Lower Bounds for Selection Problems 305

The lower bounds for all these problems, with the exception of finding the median,
are tight: Algorithms exist that use exactly the specified number of comparisons. In all our
proofs, we assume all items are unique.

Lemma 7.3.
If all the leaves in a decision tree are at depth d or higher, the decision tree must have
at least 2d leaves.

Proof.
Note that all nonleaf nodes in a decision tree have two children. The proof is by
induction and follows Lemma 7.1.

The first lower bound, for finding the smallest item, is the easiest and most trivial to
show.

Theorem 7.8.
Any comparison-based algorithm to find the smallest element must use at least N − 1
comparisons.

Proof.
Every element, x, except the smallest element, must be involved in a comparison with
some other element y, in which x is declared larger than y. Otherwise, if there were
two different elements that had not been declared larger than any other elements, then
either could be the smallest.

Lemma 7.4.
The decision tree for finding the smallest of N elements must have at least 2N − 1 leaves.

Proof.
By Theorem 7.8, all leaves in this decision tree are at depth N − 1 or higher. Then this
lemma follows from Lemma 7.3.

The bound for selection is a little more complicated and requires looking at the struc-
ture of the decision tree. It will allow us to prove lower bounds for problems 2 and 3 on
our list.

Lemma 7.5.
The decision tree for finding the kth smallest of N elements must have at least(

N
k − 1

)
2N − k leaves.

Proof.
Observe that any algorithm that correctly identifies the kth smallest element t must
be able to prove that all other elements x are either larger than or smaller than t.
Otherwise, it would be giving the same answer regardless of whether x was larger or
smaller than t, and the answer cannot be the same in both circumstances. Thus each

www.manaraa.com

306 Chapter 7 Sorting

b < f
yes no

TY TN TY

TREE T TREE T ′

Figure 7.19 Smallest three elements are S = { a, b, c }; largest four elements are R =
{ d, e, f , g }; the comparison between b and f for this choice of R and S can be eliminated
when forming tree T′

leaf in the tree, in addition to representing the kth smallest element, also represents the
k − 1 smallest items that have been identified.

Let T be the decision tree, and consider two sets: S = { x1, x2, . . . , xk − 1 }, repre-
senting the k − 1 smallest items, and R which are the remaining items, including the
kth smallest. Form a new decision tree T′, by purging any comparisons in T between
an element in S and an element in R. Since any element in S is smaller than an element
in R, the comparison tree node and its right subtree may be removed from T, without
any loss of information. Figure 7.19 shows how nodes can be pruned.

Any permutation of R that is fed into T′ follows the same path of nodes and leads to
the same leaf as a corresponding sequence consisting of a permutation of S followed by
the same permutation of R. Since T identifies the overall kth smallest element, and the
smallest element in R is that element, it follows that T′ identifies the smallest element
in R. Thus T′ must have at least 2|R|−1 = 2N − k leaves. These leaves in T′ directly

correspond to 2N − k leaves representing S. Since there are

(
N

k − 1

)
choices for S,

there must be at least

(
N

k − 1

)
2N − k leaves in T.

A direct application of Lemma 7.5 allows us to prove the lower bounds for finding the
second smallest element, and also the median.

Theorem 7.9.
Any comparison-based algorithm to find the kth smallest element must use at least

N − k +
⌈

log

(
N

k − 1

)⌉
comparisons.

Proof.
Immediate from Lemma 7.5 and Lemma 7.2.

www.manaraa.com

7.10 Adversary Lower Bounds 307

Theorem 7.10.
Any comparison-based algorithm to find the second smallest element must use at least
N + �log N� − 2 comparisons.

Proof.
Applying Theorem 7.9, with k = 2 yields N − 2 + �log N�.

Theorem 7.11.
Any comparison-based algorithm to find the median must use at least �3N/2� −
O(log N) comparisons.

Proof.
Apply Theorem 7.9, with k = �N/2�.

The lower bound for selection is not tight, nor is it the best known; see the references
for details.

7.10 Adversary Lower Bounds
Although decision-tree arguments allowed us to show lower bounds for sorting and some
selection problems, generally the bounds that result are not that tight, and sometimes are
trivial.

For instance, consider the problem of finding the minimum item. Since there are N
possible choices for the minimum, the information theory lower bound that is produced
by a decision-tree argument is only log N. In Theorem 7.8, we were able to show the N −1
bound by using what is essentially an adversary argument. In this section, we expand on
this argument and use it to prove the following lower bound:

4. �3N/2� − 2 comparisons are necessary to find both the smallest and largest item

Recall our proof that any algorithm to find the smallest item requires at least N − 1
comparisons:

Every element, x, except the smallest element, must be involved in a comparison with some
other element y, in which x is declared larger than y. Otherwise, if there were two different elements
that had not been declared larger than any other elements, then either could be the smallest.

This is the underlying idea of an adversary argument which has some basic steps:

1. Establish that some basic amount of information must be obtained by any algorithm
that solves a problem

2. In each step of the algorithm, the adversary will maintain an input that is consistent
with all the answers that have been provided by the algorithm thus far

3. Argue that with insufficient steps, there are multiple consistent inputs that would pro-
vide different answers to the algorithm; hence the algorithm has not done enough
steps, because if the algorithm were to provide an answer at that point, the adversary
would be able to show an input for which the answer is wrong.

www.manaraa.com

308 Chapter 7 Sorting

To see how this works, we will reprove the lower bound for finding the smallest
element using this proof template.

Theorem 7.8. (restated)
Any comparison-based algorithm to find the smallest element must use at least N − 1
comparisons.

New Proof.
Begin by marking each item as U (for unknown). When an item is declared larger than
another item, we will change its marking to E (for eliminated). This change represents
one unit of information. Initially each unknown item has a value of 0, but there have
been no comparisons, so this ordering is consistent with prior answers.

A comparison between two items is either between two unknowns, or it involves
at least one item eliminated from being the minimum. Figure 7.20 shows how our
adversary will construct the input values, based on the questioning.

If the comparison is between two unknowns, the first is declared the smaller, and
the second is automatically eliminated, providing one unit of information. We then
assign it (irrevocably) a number larger than 0; the most convenient is the number of
eliminated items. If a comparison is between an eliminated number and an unknown,
the eliminated number (which is larger than 0 by the prior sentence) will be declared
larger, and there will be no changes, no eliminations, and no information obtained. If
two eliminated numbers are compared, then they will be different, and a consistent
answer can be provided, again with no changes, and no information provided.

At the end, we need to obtain N−1 units of information, and each comparison provides
only 1 unit at the most; hence, at least N − 1 comparisons are necessary.

Lower Bound for Finding the Minimum and Maximum
We can use this same technique to establish a lower bound for finding both the minimum
and maximum item. Observe that all but one item must be eliminated from being the
smallest, and all but one item must be eliminated from being the largest; thus the total
information that any algorithm must acquire is 2N − 2. However, a comparison x < y,
eliminates both x from being the maximum and y from being the minimum; thus a com-
parison can provide two units of information. Consequently, this argument yields only the

x y Answer Information New x New y

Mark y as E
U U x < y 1 No change Change y to

#elim

All others Consistently 0 No change No change

Figure 7.20 Adversary constructs input for finding the minimum as algorithm runs

www.manaraa.com

7.10 Adversary Lower Bounds 309

trivial N − 1 lower bound. Our adversary needs to do more work to ensure that it does not
give out two units of information more than it needs to.

To achieve this, each item will initially be unmarked. If it “wins” a comparison (i.e.,
it is declared larger than some item), it obtains a W. If it “loses” a comparison (i.e., it is
declared smaller than some item), it obtains an L. At the end, all but two items will be WL.
Our adversary will ensure that it only hands out two units of information if it is comparing
two unmarked items. That can happen only
N/2� times; then the remaining information
has to be obtained one unit at a time, which will establish the bound.

Theorem 7.12.
Any comparison-based algorithm to find the minimum and maximum must use at least
�3N/2� − 2 comparisons.

Proof.
The basic idea if that if two items are unmarked, the adversary must give out two
pieces of information. Otherwise, one of the items has either a W or an L (perhaps
both). In that case, with reasonable care, the adversary should be able to avoid giving
out two units of information. For instance, if one item, x, has a W and the other item,
y, is unmarked, the adversary lets x win again by saying x > y. This gives one unit of
information for y, but no new information for x. It is easy to see that in principle, there
is no reason that the adversary should have to give more than one unit of information
out if there is at least one unmarked item involved in the comparison.

It remains to show that the adversary can maintain values that are consistent with
its answers. If both items are unmarked, then obviously they can be safely assigned
values consistent with the comparison answer; this case yields two units of information.

Otherwise, if one of the items involved in a comparison is unmarked, it can be
assigned a value the first time, consistent with the other item in the comparison. This
case yields one unit of information.

Otherwise both items involved in the comparison are marked. If both are WL, then
we can answer consistently with the current assignment, yielding no information.2

Otherwise at least one of the items has only an L or only a W. We will allow that
item to compare redundantly (if it is an L then it loses again, if it is a W then it wins
again), and its value can be easily adjusted if needed, based on the other item in the
comparison (an L can be lowered as needed; a W can be raised as needed). This yields
at most one unit of information for the other item in the comparison, possibly zero.
Figure 7.21 summarizes the action of the adversary, making y the primary element
whose value changes in all cases.

At most
N/2� comparisons yield two units of information, meaning that the
remaining information, namely 2N − 2 − 2
N/2� units, must each be obtained one
comparison at a time. Thus the total number of comparisons that are needed is at least
2N − 2 −
N/2� = �3N/2� − 2.

2 It is possible that the current assignment for both items has the same number; in such a case we can
increase all items whose current value is larger than y by 2, and then add 1 to y to break the tie.

www.manaraa.com

310 Chapter 7 Sorting

x y Answer Information New x New y

– – x < y 2
L W

0 1

L – x < y 1
L W

unchanged x + 1

W or WL – x > y 1
W or WL L

unchanged x − 1

W or WL W x < y 1 or 0
WL W

unchanged max(x + 1, y)

L or W or L x > y 1 or 0 or 0 WL or W or WL L
WL unchanged min(x − 1, y)

WL WL consistent 0 unchanged unchanged

– W

– WL

– L
SYMMETRIC TO AN ABOVE CASE

L W

L WL

W WL

Figure 7.21 Adversary constructs input for finding the maximum and minimum as
algorithm runs

It is easy to see that this bound is achievable. Pair up the elements, and perform a com-
parison between each pair. Then find the maximum among the winners, and the minimum
amoung the losers.

7.11 Linear-Time Sorts: Bucket Sort
and Radix Sort

Although we proved in Section 7.8 that any general sorting algorithm that uses only com-
parisons requires �(N log N) time in the worst case, recall that it is still possible to sort in
linear time in some special cases.

A simple example is bucket sort. For bucket sort to work, extra information must
be available. The input A1, A2, . . . , AN must consist of only positive integers smaller than
M. (Obviously extensions to this are possible.) If this is the case, then the algorithm is
simple: Keep an array called count, of size M, which is initialized to all 0’s. Thus, count
has M cells, or buckets, which are initially empty. When Ai is read, increment count[Ai]
by 1. After all the input is read, scan the count array, printing out a representation of the

www.manaraa.com

7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 311

sorted list. This algorithm takes O(M + N); the proof is left as an exercise. If M is O(N),
then the total is O(N).

Although this algorithm seems to violate the lower bound, it turns out that it does not
because it uses a more powerful operation than simple comparisons. By incrementing the
appropriate bucket, the algorithm essentially performs an M-way comparison in unit time.
This is similar to the strategy used in extendible hashing (Section 5.9). This is clearly not
in the model for which the lower bound was proven.

This algorithm does, however, question the validity of the model used in proving the
lower bound. The model actually is a strong model, because a general-purpose sorting algo-
rithm cannot make assumptions about the type of input it can expect to see, but must
make decisions based on ordering information only. Naturally, if there is extra information
available, we should expect to find a more efficient algorithm, since otherwise the extra
information would be wasted.

Although bucket sort seems like much too trivial an algorithm to be useful, it turns out
that there are many cases where the input is only small integers, so that using a method
like quicksort is really overkill. One such example is radix sort.

Radix sort is sometimes known as card sort because it was used until the advent of
modern computers to sort old-style punch cards. Suppose we have 10 numbers in the
range 0 to 999 that we would like to sort. In general this is N numbers in the range 0 to
b p −1 for some constant p. Obviously we cannot use bucket sort; there would be too many
buckets. The trick is to use several passes of bucket sort. The natural algorithm would be
to bucket sort by the most significant “digit” (digit is taken to base b), then next most
significant, and so on. But a simpler idea is to perform bucket sorts in the reverse order,
starting with the least significant “digit” first. Of course, more than one number could fall
into the same bucket, and unlike the original bucket sort, these numbers could be different,
so we keep them in a list. Each pass is stable: Items that agree in the current digit retain the
ordering determined in prior passes. The trace in Figure 7.22 shows the result of sorting
64, 8, 216, 512, 27, 729, 0, 1, 343, 125, which is the first ten cubes arranged randomly
(we use 0’s to make clear the tens and hundreds digits). After the first pass, the items are
sorted and in general, after the kth pass, the items are sorted on the k least significant digits.
So at the end, the items are completely sorted. To see that the algorithm works, notice that
the only possible failure would occur if two numbers came out of the same bucket in the
wrong order. But the previous passes ensure that when several numbers enter a bucket,
they enter in sorted order. The running time is O (p(N + b)) where p is the number of
passes, N is the number of elements to sort, and b is the number of buckets.

One application of radix sort is sorting strings. If all the strings have the same length
L, then by using buckets for each character, we can implement a radix sort in O (NL)

INITIAL ITEMS: 064, 008, 216, 512, 027, 729, 000, 001, 343, 125

SORTED BY 1’s digit: 000, 001, 512, 343, 064, 125, 216, 027, 008, 729

SORTED BY 10’s digit: 000, 001, 008, 512, 216, 125, 027, 729, 343, 064

SORTED BY 100’s digit: 000, 001, 008, 027, 064, 125, 216, 343, 512, 729

Figure 7.22 Radix sort trace

www.manaraa.com

312 Chapter 7 Sorting

1 /*
2 * Radix sort an array of Strings
3 * Assume all are all ASCII
4 * Assume all have same length
5 */
6 public static void radixSortA(String [] arr, int stringLen)
7 {
8 final int BUCKETS = 256;
9 ArrayList<String> [] buckets = new ArrayList<>[BUCKETS];

10
11 for(int i = 0; i < BUCKETS; i++)
12 buckets[i] = new ArrayList<>();
13
14 for(int pos = stringLen - 1; pos >= 0; pos--)
15 {
16 for(String s : arr)
17 buckets[s.charAt(pos)].add(s);
18
19 int idx = 0;
20 for(ArrayList<String> thisBucket : buckets)
21 {
22 for(String s : thisBucket)
23 arr[idx++] = s;
24
25 thisBucket.clear();
26 }
27 }
28 }

Figure 7.23 Simple implementation of radix sort for strings, using an ArrayList
of buckets

time. The most straightforward way of doing this is shown in Figure 7.23. In our code,
we assume that all characters are ASCII, residing in the first 256 positions of the Unicode
character set. In each pass, we add an item to the appropriate bucket, and then after all the
buckets are populated, we step through the buckets dumping everything back to the array.
Notice that when a bucket is populated and emptied in the next pass, the order from the
current pass is preserved.

Counting radix sort is an alternative implementation of radix sort that avoids using
ArrayLists. Instead, we maintain a count of how many items would go in each bucket;
this information can go into an array count, so that count[k] is the number of items that
are in bucket k. Then we can use another array offset, so that offset[k] represents the
number of items whose value is strictly smaller than k. Then when we see a value k for
the first time in the final scan, offset[k] tells us a valid array spot where it can be written
to (but we have to use a temporary array for the write), and after that is done, offset[k]

www.manaraa.com

7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 313

1 /*
2 * Counting radix sort an array of Strings
3 * Assume all are all ASCII
4 * Assume all have same length
5 */
6 public static void countingRadixSort(String [] arr, int stringLen)
7 {
8 final int BUCKETS = 256;
9

10 int N = arr.length;
11 String [] buffer = new String [N];
12
13 String [] in = arr;
14 String [] out = buffer;
15
16 for(int pos = stringLen - 1; pos >= 0; pos--)
17 {
18 int [] count = new int [BUCKETS + 1];
19
20 for(int i = 0; i < N; i++)
21 count[in[i].charAt(pos) + 1]++;
22
23 for(int b = 1; b <= BUCKETS; b++)
24 count[b] += count[b - 1];
25
26 for(int i = 0; i < N; i++)
27 out[count[in[i].charAt(pos)]++] = in[i];
28
29 // swap in and out roles
30 String [] tmp = in;
31 in = out;
32 out = tmp;
33 }
34
35 // if odd number of passes, in is buffer, out is arr; so copy back
36 if(stringLen % 2 == 1)
37 for(int i = 0; i < arr.length; i++)
38 out[i] = in[i];
39 }

Figure 7.24 Counting radix sort for fixed-length strings

www.manaraa.com

314 Chapter 7 Sorting

1 /*
2 * Radix sort an array of Strings
3 * Assume all are all ASCII
4 * Assume all have length bounded by maxLen
5 */
6 public static void radixSort(String [] arr, int maxLen)
7 {
8 final int BUCKETS = 256;
9

10 ArrayList<String> [] wordsByLength = new ArrayList<>[maxLen + 1];
11 ArrayList<String> [] buckets = new ArrayList<>[BUCKETS];
12
13 for(int i = 0; i < wordsByLength.length; i++)
14 wordsByLength[i] = new ArrayList<>();
15
16 for(int i = 0; i < BUCKETS; i++)
17 buckets[i] = new ArrayList<>();
18
19 for(String s : arr)
20 wordsByLength[s.length()].add(s);
21
22 int idx = 0;
23 for(ArrayList<String> wordList : wordsByLength)
24 for(String s : wordList)
25 arr[idx++] = s;
26
27 int startingIndex = arr.length;
28 for(int pos = maxLen - 1; pos >= 0; pos--)
29 {
30 startingIndex -= wordsByLength[pos + 1].size();
31
32 for(int i = startingIndex; i < arr.length; i++)
33 buckets[arr[i].charAt(pos)].add(arr[i]);
34
35 idx = startingIndex;
36 for(ArrayList<String> thisBucket : buckets)
37 {
38 for(String s : thisBucket)
39 arr[idx++] = s;
40
41 thisBucket.clear();
42 }
43 }
44 }

Figure 7.25 Radix sort for variable length strings

www.manaraa.com

7.12 External Sorting 315

can be incremented. Counting radix sort thus avoids the need to keep lists. As a further
optimization, we can avoid using offset, by reusing the count array. The modification
is that we initially have count[k+1] represent the number of items that are in bucket k.
Then after that information is computed, we can scan the count array from the smallest
to largest index, and increment count[k] by count[k-1]. It is easy to verify that after this
scan, the count array stores exactly the same information that would have been stored
in offset.

Figure 7.24 shows an implementation of counting radix sort. Lines 18 to 27 implement
the logic above, assuming that the items are stored in array in, and the result of a single pass
is placed in array out. Initially, in represents arr and out represents the temporary array,
buffer. After each pass, we switch the roles of in and out. If there are an even number of
passes, then at the end, out is referencing arr, so the sort is complete. Otherwise, we have
to copy from the buffer back into arr.

Generally, counting radix sort is prefereable to using ArrayLists, but it can suffer from
poor locality (out is filled in non-sequentially) and thus surprisingly, it is not always faster
than using an array of ArrayLists.

We can extend either version of radix sort to work with variable-length strings. The
basic algorithm is to first sort the strings by their length. Instead of looking at all the strings,
we can then look only at strings that we know are long enough. Since the string lengths
are small numbers, the initial sort by length can be done by—bucket sort! Figure 7.25
shows this implementation of radix sort, with ArrayLists. Here, the words are grouped
into buckets by length at lines 19–20, and then placed back into the array at lines 22–25.
Lines 32–33 look at only those strings that have a character at position pos, by making use
of the variable startingIndex, which is maintained at lines 27 and 30. Except for that, lines
27–43 in Figure 7.25 are the same as lines 14–27 in Figure 7.23.

The running time of this version of radix sort is linear in the total number of
characters in all the strings (each character appears exactly once at line 33, and the
statement at line 39 executes precisiely as many times as the line 33). Radix sort for
strings will perform especially well when the characters in the string are drawn from
a reasonably small alphabet, and when the strings either are relatively short or are
very similar. Because the O(N log N) comparison-based sorting algorithms will generally
look only at a small number of characters in each string comparison, once the aver-
age string length starts getting large, radix sort’s advantage is minimized or evaporates
completely.

7.12 External Sorting
So far, all the algorithms we have examined require that the input fit into main memory.
There are, however, applications where the input is much too large to fit into memory. This
section will discuss external sorting algorithms, which are designed to handle very large
inputs.

www.manaraa.com

316 Chapter 7 Sorting

7.12.1 Why We Need New Algorithms
Most of the internal sorting algorithms take advantage of the fact that memory is directly
addressable. Shellsort compares elements a[i] and a[i-hk] in one time unit. Heapsort
compares elements a[i] and a[i * 2+1] in one time unit. Quicksort, with median-of-three
partitioning, requires comparing a[left], a[center], and a[right] in a constant number
of time units. If the input is on a tape, then all these operations lose their efficiency, since
elements on a tape can only be accessed sequentially. Even if the data is on a disk, there is
still a practical loss of efficiency because of the delay required to spin the disk and move
the disk head.

To see how slow external accesses really are, create a random file that is large, but not
too big to fit in main memory. Read the file in and sort it using an efficient algorithm. The
time it takes to read the input is certain to be significant compared to the time to sort the
input, even though sorting is an O(N log N) operation and reading the input is only O(N).

7.12.2 Model for External Sorting
The wide variety of mass storage devices makes external sorting much more device depen-
dent than internal sorting. The algorithms that we will consider work on tapes, which
are probably the most restrictive storage medium. Since access to an element on tape is
done by winding the tape to the correct location, tapes can be efficiently accessed only in
sequential order (in either direction).

We will assume that we have at least three tape drives to perform the sorting. We need
two drives to do an efficient sort; the third drive simplifies matters. If only one tape drive
is present, then we are in trouble: Any algorithm will require � (N2) tape accesses.

7.12.3 The Simple Algorithm
The basic external sorting algorithm uses the merging algorithm from mergesort. Suppose
we have four tapes, Ta1, Ta2, Tb1, Tb2, which are two input and two output tapes.
Depending on the point in the algorithm, the a and b tapes are either input tapes or output
tapes. Suppose the data are initially on Ta1. Suppose further that the internal memory can
hold (and sort) M records at a time. A natural first step is to read M records at a time from
the input tape, sort the records internally, and then write the sorted records alternately to
Tb1 and Tb2. We will call each set of sorted records a run. When this is done, we rewind
all the tapes. Suppose we have the same input as our example for Shellsort.

Ta1 81 94 11 96 12 35 17 99 28 58 41 75 15
Ta2

Tb1

Tb2

If M = 3, then after the runs are constructed, the tapes will contain the data indicated in
the following figure.

www.manaraa.com

7.12 External Sorting 317

Ta1

Ta2

Tb1 11 81 94 17 28 99 15
Tb2 12 35 96 41 58 75

Now Tb1 and Tb2 contain a group of runs. We take the first run from each tape and
merge them, writing the result, which is a run twice as long, onto Ta1. Recall that merging
two sorted lists is simple; we need almost no memory, since the merge is performed as Tb1
and Tb2 advance. Then we take the next run from each tape, merge these, and write the
result to Ta2. We continue this process, alternating between Ta1 and Ta2, until either Tb1 or
Tb2 is empty. At this point either both are empty or there is one run left. In the latter case,
we copy this run to the appropriate tape. We rewind all four tapes and repeat the same
steps, this time using the a tapes as input and the b tapes as output. This will give runs of
4M. We continue the process until we get one run of length N.

This algorithm will require �log(N/M)� passes, plus the initial run-constructing pass.
For instance, if we have 10 million records of 128 bytes each, and four megabytes of
internal memory, then the first pass will create 320 runs. We would then need nine more
passes to complete the sort. Our example requires �log 13/3� = 3 more passes, which are
shown in the following figures.

Ta1 11 12 35 81 94 96 15
Ta2 17 28 41 58 75 99
Tb1

Tb2

Ta1

Ta2

Tb1 11 12 17 28 35 41 58 75 81 94 96 99
Tb2 15

Ta1 11 12 15 17 28 35 41 58 75 81 94 96 99
Ta2

Tb1

Tb2

7.12.4 Multiway Merge
If we have extra tapes, then we can expect to reduce the number of passes required to sort
our input. We do this by extending the basic (two-way) merge to a k-way merge.

Merging two runs is done by winding each input tape to the beginning of each run.
Then the smaller element is found, placed on an output tape, and the appropriate input

www.manaraa.com

318 Chapter 7 Sorting

tape is advanced. If there are k input tapes, this strategy works the same way, the only
difference being that it is slightly more complicated to find the smallest of the k elements.
We can find the smallest of these elements by using a priority queue. To obtain the next
element to write on the output tape, we perform a deleteMin operation. The appropriate
input tape is advanced, and if the run on the input tape is not yet completed, we insert
the new element into the priority queue. Using the same example as before, we distribute
the input onto the three tapes.

Ta1

Ta2

Ta3

Tb1 11 81 94 41 58 75
Tb2 12 35 96 15
Tb3 17 28 99

We then need two more passes of three-way merging to complete the sort.

Ta1 11 12 17 28 35 81 94 96 99
Ta2 15 41 58 75
Ta3

Tb1

Tb2

Tb3

Ta1

Ta2

Ta3

Tb1 11 12 15 17 28 35 41 58 75 81 94 96 99
Tb2

Tb3

After the initial run construction phase, the number of passes required using k-way
merging is �logk (N/M)�, because the runs get k times as large in each pass. For the example
above, the formula is verified, since �log3(13/3)� = 2. If we have 10 tapes, then k = 5,
and our large example from the previous section would require �log5 320� = 4 passes.

7.12.5 Polyphase Merge
The k-way merging strategy developed in the last section requires the use of 2k tapes. This
could be prohibitive for some applications. It is possible to get by with only k + 1 tapes.
As an example, we will show how to perform two-way merging using only three tapes.

www.manaraa.com

7.12 External Sorting 319

Suppose we have three tapes, T1, T2, and T3, and an input file on T1 that will produce
34 runs. One option is to put 17 runs on each of T2 and T3. We could then merge this
result onto T1, obtaining one tape with 17 runs. The problem is that since all the runs are
on one tape, we must now put some of these runs on T2 to perform another merge. The
logical way to do this is to copy the first eight runs from T1 onto T2 and then perform the
merge. This has the effect of adding an extra half pass for every pass we do.

An alternative method is to split the original 34 runs unevenly. Suppose we put 21 runs
on T2 and 13 runs on T3. We would then merge 13 runs onto T1 before T3 was empty.
At this point, we could rewind T1 and T3 and merge T1, with 13 runs, and T2, which has
8 runs, onto T3. We could then merge 8 runs until T2 was empty, which would leave 5 runs
left on T1 and 8 runs on T3. We could then merge T1 and T3, and so on. The following
table shows the number of runs on each tape after each pass.

Run After After After After After After After
Const. T3 + T2 T1 + T2 T1 + T3 T2 + T3 T1 + T2 T1 + T3 T2 + T3

T1 0 13 5 0 3 1 0 1
T2 21 8 0 5 2 0 1 0
T3 13 0 8 3 0 2 1 0

The original distribution of runs makes a great deal of difference. For instance, if 22
runs are placed on T2, with 12 on T3, then after the first merge, we obtain 12 runs on T3

and 10 runs on T2. After another merge, there are 10 runs on T1 and 2 runs on T3. At
this point the going gets slow, because we can only merge two sets of runs before T3 is
exhausted. Then T1 has 8 runs and T2 has 2 runs. Again, we can only merge two sets of
runs, obtaining T1 with 6 runs and T3 with 2 runs. After three more passes, T2 has two
runs and the other tapes are empty. We must copy one run to another tape, and then we
can finish the merge.

It turns out that the first distribution we gave is optimal. If the number of runs is
a Fibonacci number FN, then the best way to distribute them is to split them into two
Fibonacci numbers FN−1 and FN−2. Otherwise, it is necessary to pad the tape with dummy
runs in order to get the number of runs up to a Fibonacci number. We leave the details of
how to place the initial set of runs on the tapes as an exercise.

We can extend this to a k-way merge, in which case we need kth order Fibonacci
numbers for the distribution, where the kth order Fibonacci number is defined as F(k)(N) =
F(k)(N − 1) + F(k)(N − 2) + · · · + F(k)(N − k), with the appropriate initial conditions
F(k)(N) = 0, 0 ≤ N ≤ k − 2, F(k)(k − 1) = 1.

7.12.6 Replacement Selection
The last item we will consider is construction of the runs. The strategy we have used so far
is the simplest possible: We read as many records as possible and sort them, writing the
result to some tape. This seems like the best approach possible, until one realizes that as
soon as the first record is written to an output tape, the memory it used becomes available

www.manaraa.com

320 Chapter 7 Sorting

for another record. If the next record on the input tape is larger than the record we have
just output, then it can be included in the run.

Using this observation, we can give an algorithm for producing runs. This technique is
commonly referred to as replacement selection. Initially, M records are read into memory
and placed in a priority queue. We perform a deleteMin, writing the smallest (valued)
record to the output tape. We read the next record from the input tape. If it is larger
than the record we have just written, we can add it to the priority queue. Otherwise, it
cannot go into the current run. Since the priority queue is smaller by one element, we can
store this new element in the dead space of the priority queue until the run is completed
and use the element for the next run. Storing an element in the dead space is similar
to what is done in heapsort. We continue doing this until the size of the priority queue
is zero, at which point the run is over. We start a new run by building a new priority
queue, using all the elements in the dead space. Figure 7.26 shows the run construction
for the small example we have been using, with M = 3. Dead elements are indicated by an
asterisk.

In this example, replacement selection produces only three runs, compared with the
five runs obtained by sorting. Because of this, a three-way merge finishes in one pass
instead of two. If the input is randomly distributed, replacement selection can be shown
to produce runs of average length 2M. For our large example, we would expect 160 runs
instead of 320 runs, so a five-way merge would require four passes. In this case, we have
not saved a pass, although we might if we get lucky and have 125 runs or less. Since
external sorts take so long, every pass saved can make a significant difference in the running
time.

3 Elements in Heap Array Output Next Element Read
h[1] h[2] h[3]

Run 1 11 94 81 11 96

81 94 96 81 12*

94 96 12* 94 35*

96 35* 12* 96 17*

17* 35* 12* End of Run Rebuild Heap

Run 2 12 35 17 12 99

17 35 99 17 28

28 99 35 28 58

35 99 58 35 41

41 99 58 41 15*

58 99 15* 58 End of Tape

99 15* 99

15* End of Run Rebuild Heap

Run 3 15 15

Figure 7.26 Example of run construction

www.manaraa.com

Exercises 321

As we have seen, it is possible for replacement selection to do no better than the stan-
dard algorithm. However, the input is frequently sorted or nearly sorted to start with, in
which case replacement selection produces only a few very long runs. This kind of input
is common for external sorts and makes replacement selection extremely valuable.

Summary

Sorting is one of the oldest and most well studied problems in computing. For most general
internal sorting applications, an insertion sort, Shellsort, mergesort, or quicksort is the
method of choice. The decision regarding which to use depends on the size of the input
and on the underlying environment. Insertion sort is appropriate for very small amounts
of input. Shellsort is a good choice for sorting moderate amounts of input. With a proper
increment sequence, it gives excellent performance and uses only a few lines of code.
Mergesort has O(N log N) worst-case performance but requires additional space. However,
the number of comparisons that are used is nearly optimal, because any algorithm that
sorts by using only element comparisons must use at least �log (N!)� comparisons for some
input sequence. Quicksort does not by itself provide this worst-case guarantee and is tricky
to code. However, it has almost certain O(N log N) performance and can be combined with
heapsort to give an O(N log N) worst-case guarantee. Strings can be sorted in linear time
using radix sort, and this may be a practical alternative to comparison-based sorts in some
instances.

Exercises

7.1 Sort the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 using insertion sort.

7.2 What is the running time of insertion sort if all elements are equal?

7.3 Suppose we exchange elements a[i] and a[i+k], which were originally out of order.
Prove that at least 1 and at most 2k − 1 inversions are removed.

7.4 Show the result of running Shellsort on the input 9, 8, 7, 6, 5, 4, 3, 2, 1 using the
increments {1, 3, 7}.

7.5 a. What is the running time of Shellsort using the two-increment sequence {1, 2}?
b. Show that for any N, there exists a three-increment sequence such that Shellsort

runs in O(N5/3) time.
c. Show that for any N, there exists a six-increment sequence such that Shellsort

runs in O(N3/2) time.

7.6 �a. Prove that the running time of Shellsort is �(N2) using increments of the form
1, c, c2, . . . , ci for any integer c.

��b. Prove that for these increments, the average running time is �(N3/2).
�7.7 Prove that if a k-sorted file is then h-sorted, it remains k-sorted.

www.manaraa.com

322 Chapter 7 Sorting

��7.8 Prove that the running time of Shellsort, using the increment sequence suggested
by Hibbard, is �(N3/2) in the worst case. Hint: You can prove the bound by consid-
ering the special case of what Shellsort does when all elements are either 0 or 1. Set
a[i] = 1 if i is expressible as a linear combination of ht, ht−1, . . . , h
t/2�+1 and 0
otherwise.

7.9 Determine the running time of Shellsort for
a. sorted input

�b. reverse-ordered input

7.10 Do either of the following modifications to the Shellsort routine coded in Figure 7.4
affect the worst-case running time?
a. Before line 11, subtract one from gap if it is even.
b. Before line 11, add one to gap if it is even.

7.11 Show how heapsort processes the input 142, 543, 123, 65, 453, 879, 572, 434,
111, 242, 811, 102.

7.12 What is the running time of heapsort for presorted input?
�7.13 Show that there are inputs that force every percolateDown in heapsort to go all the

way to a leaf. (Hint: Work backward.)

7.14 Rewrite heapsort so that it sorts only items that are in the range low to high which
are passed as additional parameters.

7.15 Sort 3, 1, 4, 1, 5, 9, 2, 6 using mergesort.

7.16 How would you implement mergesort without using recursion?

7.17 Determine the running time of mergesort for
a. sorted input
b. reverse-ordered input
c. random input

7.18 In the analysis of mergesort, constants have been disregarded. Prove that the num-
ber of comparisons used in the worst case by mergesort is N�log N� − 2�log N� + 1.

7.19 Sort 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 using quicksort with median-of-three partitioning
and a cutoff of 3.

7.20 Using the quicksort implementation in this chapter, determine the running time of
quicksort for
a. sorted input
b. reverse-ordered input
c. random input

7.21 Repeat Exercise 7.20 when the pivot is chosen as
a. the first element
b. the larger of the first two distinct elements
c. a random element

�d. the average of all elements in the set

www.manaraa.com

Exercises 323

7.22 a. For the quicksort implementation in this chapter, what is the running time when
all keys are equal?

b. Suppose we change the partitioning strategy so that neither i nor j stops when
an element with the same key as the pivot is found. What fixes need to be made
in the code to guarantee that quicksort works, and what is the running time,
when all keys are equal?

c. Suppose we change the partitioning strategy so that i stops at an element with
the same key as the pivot, but j does not stop in a similar case. What fixes need
to be made in the code to guarantee that quicksort works, and when all keys are
equal, what is the running time of quicksort?

7.23 Suppose we choose the element in the middle position of the array as the pivot.
Does this make it unlikely that quicksort will require quadratic time?

7.24 Construct a permutation of 20 elements that is as bad as possible for quicksort
using median-of-three partitioning and a cutoff of 3.

7.25 The quicksort in the text uses two recursive calls. Remove one of the calls as follows:
a. Rewrite the code so that the second recursive call is unconditionally the last

line in quicksort. Do this by reversing the if/else and returning after the call to
insertionSort.

b. Remove the tail recursion by writing a while loop and altering left.

7.26 Continuing from Exercise 7.25, after part (a),
a. Perform a test so that the smaller subarray is processed by the first recursive call,

while the larger subarray is processed by the second recursive call.
b. Remove the tail recursion by writing a while loop and altering left or right, as

necessary.
c. Prove that the number of recursive calls is logarithmic in the worst case.

7.27 Suppose the recursive quicksort receives an int parameter, depth, from the driver
that is initially approximately 2 log N.
a. Modify the recursive quicksort to call heapsort on its current subarray if the level

of recursion has reached depth. (Hint: Decrement depth as you make recursive
calls; when it is 0, switch to heapsort.)

b. Prove that the worst-case running time of this algorithm is O(N log N).
c. Conduct experiments to determine how often heapsort gets called.
d. Implement this technique in conjunction with tail-recursion removal in

Exercise 7.25.
e. Explain why the technique in Exercise 7.26 would no longer be needed.

7.28 When implementing quicksort, if the array contains lots of duplicates, it may
be better to perform a three-way partition (into elements less than, equal to,
and greater than the pivot), to make smaller recursive calls. Assume three-way
comparisons, as provided by the compareTo method.
a. Give an algorithm that performs a three-way in-place partition of an N-element

subarray using only N − 1 three-way comparisons. If there are d items equal
to the pivot, you may use d additional Comparable swaps, above and beyond

www.manaraa.com

324 Chapter 7 Sorting

the two-way partitioning algorithm. (Hint: As i and j move toward each other,
maintain five groups of elements as shown below):

EQUAL SMALL UNKNOWN LARGE EQUAL
i j

b. Prove that using the algorithm above, sorting an N-element array that contains
only d different values, takes O(dN) time.

7.29 Write a program to implement the selection algorithm.

7.30 Solve the following recurrence:

T(N) = (1/N)

[
N−1∑
i=0

T(i)

]
+ cN, T(0) = 0.

7.31 A sorting algorithm is stable if elements with equal keys are left in the same order
as they occur in the input. Which of the sorting algorithms in this chapter are stable
and which are not? Why?

7.32 Suppose you are given a sorted list of N elements followed by f(N) randomly
ordered elements. How would you sort the entire list if
a. f(N) = O(1)?
b. f(N) = O(log N)?
c. f(N) = O(

√
N)?

�d. How large can f(N) be for the entire list still to be sortable in O(N) time?

7.33 Prove that any algorithm that finds an element X in a sorted list of N elements
requires �(log N) comparisons.

7.34 Using Stirling’s formula, N! ≈ (N/e)N
√

2πN, give a precise estimate for log(N!).
7.35 �a. In how many ways can two sorted arrays of N elements be merged?

�b. Give a nontrivial lower bound on the number of comparisons required to merge
two sorted lists of N elements, by taking the logarithm of your answer in part (a).

7.36 Prove that merging two sorted arrays of N items requires at least 2N − 1 compar-
isons. You must show that if two elements in the merged list are consecutive and
from different lists, then they must be compared.

7.37 Consider the following algorithm for sorting six numbers:

� Sort the first three numbers using Algorithm A.
� Sort the second three numbers using Algorithm B.
� Merge the two sorted groups using Algorithm C.

Show that this algorithm is suboptimal, regardless of the choices for Algorithms A,
B, and C.

7.38 Write a program that reads N points in a plane and outputs any group of four
or more colinear points (i.e., points on the same line). The obvious brute-force
algorithm requires O(N4) time. However, there is a better algorithm that makes use
of sorting and runs in O(N2 log N) time.

www.manaraa.com

Exercises 325

7.39 Show that the two smallest elements among N can be found in N + �log N� − 2
comparisons.

7.40 The following divide-and-conquer algorithm is proposed for finding the simultane-
ous maximum and minimum: If there is one item, it is the maximum and minimum,
and if there are two items, then compare them and in one comparison you can find
the maximum and minimum. Otherwise, split the input into two halves, divided
as evenly as possibly (if N is odd, one of the two halves will have one more element
than the other). Recursively find the maximum and minimum of each half, and
then in two additional comparisons produce the maximum and minimum for the
entire problem.
a. Suppose N is a power of 2. What is the exact number of comparisons used by

this algorithm?
b. Suppose N is of the form 3 · 2k. What is the exact number of comparisons used

by this algorithm?
c. Modify the algorithm as follows: When N is even, but not divisible by four, split

the input into sizes of N/2 − 1 and N/2 + 1. What is the exact number of
comparisons used by this algorithm?

7.41 Suppose we want to partition N items into G equal-sized groups of size N/G, such
that the smallest N/G items are in group 1, the next smallest N/G items are in
group 2, and so on. The groups themselves do not have to be sorted. For simplicity,
you may assume that N and G are powers of two.
a. Give an O(N log G) algorithm to solve this problem.
b. Prove an �(N log G) lower bound to solve this problem using comparison-based

algorithms.

�7.42 Give a linear-time algorithm to sort N fractions, each of whose numerators and
denominators are integers between 1 and N.

7.43 Suppose arrays A and B are both sorted and both contain N elements. Give an
O(log N) algorithm to find the median of A ∪ B.

7.44 Suppose you have an array of N elements containing only two distinct keys, true
and false. Give an O(N) algorithm to rearrange the list so that all false elements
precede the true elements. You may use only constant extra space.

7.45 Suppose you have an array of N elements, containing three distinct keys, true,
false, and maybe. Give an O(N) algorithm to rearrange the list so that all false
elements precede maybe elements, which in turn precede true elements. You may
use only constant extra space.

7.46 a. Prove that any comparison-based algorithm to sort 4 elements requires 5
comparisons.

b. Give an algorithm to sort 4 elements in 5 comparisons.

7.47 a. Prove that 7 comparisons are required to sort 5 elements using any comparison-
based algorithm.

�b. Give an algorithm to sort 5 elements with 7 comparisons.

www.manaraa.com

326 Chapter 7 Sorting

7.48 Write an efficient version of Shellsort and compare performance when the following
increment sequences are used:
a. Shell’s original sequence
b. Hibbard’s increments
c. Knuth’s increments: hi = 1

2 (3i + 1)

d. Gonnet’s increments: ht =
 N
2.2�, and hk =
 hk+1

2.2 � (with h1 = 1 if h2 = 2)
e. Sedgewick’s increments.

7.49 Implement an optimized version of quicksort and experiment with combinations
of the following:
a. Pivot: first element, middle element, random element, median of three, median

of five.
b. Cutoff values from 0 to 20.

7.50 Write a routine that reads in two alphabetized files and merges them together,
forming a third, alphabetized, file.

7.51 Suppose we implement the median of three routine as follows: Find the median of
a[left], a[center], a[right], and swap it with a[right]. Proceed with the normal
partitioning step starting i at left and j at right-1 (instead of left+1 and right-2).
a. Suppose the input is 2, 3, 4, . . . , N − 1, N, 1. For this input, what is the running

time of this version of quicksort?
b. Suppose the input is in reverse order. For this input, what is the running time

of this version of quicksort?

7.52 Prove that any comparison-based sorting algorithm requires �(N log N) compar-
isons on average.

7.53 We are given an array that contains N numbers. We want to determine if there are
two numbers whose sum equals a given number K. For instance, if the input is 8, 4,
1, 6, and K is 10, then the answer is yes (4 and 6). A number may be used twice.
Do the following:
a. Give an O(N2) algorithm to solve this problem.
b. Give an O(N log N) algorithm to solve this problem. (Hint: Sort the items first.

After that is done, you can solve the problem in linear time.)
c. Code both solutions and compare the running times of your algorithms.

7.54 Repeat Exercise 7.53 for four numbers. Try to design an O(N2 log N) algorithm.
(Hint: Compute all possible sums of two elements. Sort these possible sums. Then
proceed as in Exercise 7.53.)

7.55 Repeat Exercise 7.53 for three numbers. Try to design an O(N2) algorithm.

7.56 Consider the following strategy for percolateDown. We have a hole at node X. The
normal routine is to compare X’s children and then move the child up to X if it is
larger (in the case of a (max)heap) than the element we are trying to place, thereby
pushing the hole down; we stop when it is safe to place the new element in the
hole. The alternative strategy is to move elements up and the hole down as far as
possible, without testing whether the new cell can be inserted. This would place

www.manaraa.com

References 327

the new cell in a leaf and probably violate the heap order; to fix the heap order,
percolate the new cell up in the normal manner. Write a routine to include this
idea, and compare the running time with a standard implementation of heapsort.

7.57 Propose an algorithm to sort a large file using only two tapes.

7.58 a. Show that a lower bound of N!/22N on the number of heaps is implied by the
fact that buildHeap uses at most 2N comparisons.

b. Use Stirling’s formula to expand this bound.

7.59 M is an N-by-N matrix in which the entries in each rows are in increasing order
and the entries in each column are in increasing order (reading top to bottom).
Consider the problem of determining if x is in M using three-way comparisons
(i.e., one comparison of x with M[i][j] tells you either that x is less than, equal to,
or greater than M[i][j]).
a. Give an algorithm that uses at most 2N − 1 comparisons.
b. Prove that any algorithm must use at least 2N − 1 comparisons.

7.60 There is a prize hidden in a box; the value of the prize is a positive integer between
1 and N, and you are given N. To win the prize, you have to guess its value. Your
goal is to do it in as few guesses as possible; however, among those guesses, you
may only make at most g guesses that are too high. The value g will be specified at
the start of the game, and if you make more than g guesses that are too high, you
lose. So, for example, if g = 0, you then can win in N guesses by simply guessing
the sequence 1, 2, 3,
a. Suppose g = �log N�. What strategy minimizes the number of guesses?
b. Suppose g = 1. Show that you can always win in O (N1/2) guesses.
c. Suppose g = 1. Show that any algorithm that wins the prize must use � (N1/2)

guesses.
�d. Give an algorithm and matching lower bound for any constant g.

References

Knuth’s book [16] is a comprehensive reference for sorting. Gonnet and Baeza-Yates [5]
has some more results, as well as a huge bibliography.

The original paper detailing Shellsort is [29]. The paper by Hibbard [9] suggested the
use of the increments 2k − 1 and tightened the code by avoiding swaps. Theorem 7.4
is from [19]. Pratt’s lower bound, which uses a more complex method than that sug-
gested in the text, can be found in [22]. Improved increment sequences and upper bounds
appear in [13], [28], and [31]; matching lower bounds have been shown in [32]. It has
been shown that no increment sequence gives an O(N log N) worst-case running time [20].
The average-case running time for Shellsort is still unresolved. Yao [34] has performed an
extremely complex analysis for the three-increment case. The result has yet to be extended
to more increments, but has been slightly improved [14]. The paper by Jiang, Li, and
Vityani [15] has shown an �(p N1+1/p) lower bound on the average-case running time of
p-pass Shellsort. Experiments with various increment sequences appear in [30].

www.manaraa.com

328 Chapter 7 Sorting

Heapsort was invented by Williams [33]; Floyd [4] provided the linear-time algorithm
for heap construction. Theorem 7.5 is from [23].

An exact average-case analysis of mergesort has been described in [7]. An algorithm to
perform merging in linear time without extra space is described in [12].

Quicksort is from Hoare [10]. This paper analyzes the basic algorithm, describes most
of the improvements, and includes the selection algorithm. A detailed analysis and empir-
ical study was the subject of Sedgewick’s dissertation [27]. Many of the important results
appear in the three papers [24], [25], and [26]. [1] provides a detailed C implementation
with some additional improvements, and points out that many implementations of the UNIX

qsort library routine are easily driven to quadratic behavior. Exercise 7.27 is from [18].
Decision trees and sorting optimality are discussed in Ford and Johnson [5]. This paper

also provides an algorithm that almost meets the lower bound in terms of number of
comparisons (but not other operations). This algorithm was eventually shown to be slightly
suboptimal by Manacher [17].

The selection lower bounds obtained in Theorem 7.9 are from [6]. The lower bound
for finding the maximum and minimum simultaneously is from Pohl [21]. The current
best lower bound for finding the median is slightly above 2N comparisons due to Dor and
Zwick [3]; they also have the best upper bound, which is roughly 2.95N comparisons [2].

External sorting is covered in detail in [16]. Stable sorting, described in Exercise 7.31,
has been addressed by Horvath [11].

1. J. L. Bentley and M. D. McElroy, “Engineering a Sort Function,” Software—Practice and
Experience, 23 (1993), 1249–1265.

2. D. Dor and U. Zwick, “Selecting the Median,” SIAM Journal on Computing, 28 (1999),
1722–1758.

3. D. Dor and U. Zwick, “Median Selection Requires (2+ ε)n Comparisons,” SIAM Journal on
Discrete Math, 14 (2001), 312–325.

4. R. W. Floyd, “Algorithm 245: Treesort 3,” Communications of the ACM, 7 (1964), 701.
5. L. R. Ford and S. M. Johnson, “A Tournament Problem,” American Mathematics Monthly,

66 (1959), 387–389.
6. F. Fussenegger and H. Gabow, “A Counting Approach to Lower Bounds for Selection

Problems,” Journal of the ACM, 26 (1979), 227–238.
7. M. Golin and R. Sedgewick, “Exact Analysis of Mergesort,” Fourth SIAM Conference on

Discrete Mathematics, 1988.
8. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, 2d ed.,

Addison-Wesley, Reading, Mass., 1991.
9. T. H. Hibbard, “An Empirical Study of Minimal Storage Sorting,” Communications of the

ACM, 6 (1963), 206–213.
10. C. A. R. Hoare, “Quicksort,” Computer Journal, 5 (1962), 10–15.
11. E. C. Horvath, “Stable Sorting in Asymptotically Optimal Time and Extra Space,” Journal

of the ACM, 25 (1978), 177–199.
12. B. Huang and M. Langston, “Practical In-place Merging,” Communications of the ACM, 31

(1988), 348–352.
13. J. Incerpi and R. Sedgewick, “Improved Upper Bounds on Shellsort,” Journal of Computer

and System Sciences, 31 (1985), 210–224.

www.manaraa.com

References 329

14. S. Janson and D. E. Knuth, “Shellsort with Three Increments,” Random Structures and
Algorithms, 10 (1997), 125–142.

15. T. Jiang, M. Li, and P. Vitanyi, “A Lower Bound on the Average-Case Complexity of
Shellsort,” Journal of the ACM, 47 (2000), 905–911.

16. D. E. Knuth, The Art of Computer Programming. Volume 3: Sorting and Searching, 2d ed.,
Addison-Wesley, Reading, Mass., 1998.

17. G. K. Manacher, “The Ford-Johnson Sorting Algorithm Is Not Optimal,” Journal of the
ACM, 26 (1979), 441–456.

18. D. R. Musser, “Introspective Sorting and Selection Algorithms,” Software—Practice and
Experience, 27 (1997), 983–993.

19. A. A. Papernov and G. V. Stasevich, “A Method of Information Sorting in Computer
Memories,” Problems of Information Transmission, 1 (1965), 63–75.

20. C. G. Plaxton, B. Poonen, and T. Suel, “Improved Lower Bounds for Shellsort,” Proceedings
of the Thirty-third Annual Symposium on the Foundations of Computer Science (1992),
226–235.

21. I. Pohl, “A Sorting Problem and Its Complexity,” Communications of the ACM, 15 (1972),
462–464.

22. V. R. Pratt, Shellsort and Sorting Networks, Garland Publishing, New York, 1979. (Originally
presented as the author’s Ph.D. thesis, Stanford University, 1971.)

23. R. Schaffer and R. Sedgewick, “The Analysis of Heapsort,” Journal of Algorithms, 14 (1993),
76–100.

24. R. Sedgewick, “Quicksort with Equal Keys,” SIAM Journal on Computing, 6 (1977),
240–267.

25. R. Sedgewick, “The Analysis of Quicksort Programs,” Acta Informatica, 7 (1977), 327–355.
26. R. Sedgewick, “Implementing Quicksort Programs,” Communications of the ACM, 21

(1978), 847–857.
27. R. Sedgewick, Quicksort, Garland Publishing, New York, 1978. (Originally presented as

the author’s Ph.D. thesis, Stanford University, 1975.)
28. R. Sedgewick, “A New Upper Bound for Shellsort,” Journal of Algorithms, 7 (1986),

159–173.
29. D. L. Shell, “A High-Speed Sorting Procedure,” Communications of the ACM, 2 (1959),

30–32.
30. M. A. Weiss, “Empirical Results on the Running Time of Shellsort,” Computer Journal, 34

(1991), 88–91.
31. M. A. Weiss and R. Sedgewick, “More on Shellsort Increment Sequences,” Information

Processing Letters, 34 (1990), 267–270.
32. M. A. Weiss and R. Sedgewick, “Tight Lower Bounds for Shellsort,” Journal of Algorithms,

11 (1990), 242–251.
33. J. W. J. Williams, “Algorithm 232: Heapsort,” Communications of the ACM, 7 (1964),

347–348.
34. A. C. Yao, “An Analysis of (h, k, 1) Shellsort,” Journal of Algorithms, 1 (1980), 14–50.

www.manaraa.com

This page intentionally left blank

www.manaraa.com

C H A P T E R 8

The Disjoint Set Class

In this chapter, we describe an efficient data structure to solve the equivalence problem.
The data structure is simple to implement. Each routine requires only a few lines of code,
and a simple array can be used. The implementation is also extremely fast, requiring
constant average time per operation. This data structure is also very interesting from a
theoretical point of view, because its analysis is extremely difficult; the functional form of
the worst case is unlike any we have yet seen. For the disjoint set data structure, we will

� Show how it can be implemented with minimal coding effort.
� Greatly increase its speed, using just two simple observations.
� Analyze the running time of a fast implementation.
� See a simple application.

8.1 Equivalence Relations
A relation R is defined on a set S if for every pair of elements (a, b), a, b ∈ S, a R b is either
true or false. If a R b is true, then we say that a is related to b.

An equivalence relation is a relation R that satisfies three properties:

1. (Reflexive) a R a, for all a ∈ S.

2. (Symmetric) a R b if and only if b R a.

3. (Transitive) a R b and b R c implies that a R c.

We will consider several examples.
The ≤ relationship is not an equivalence relationship. Although it is reflexive, since

a ≤ a, and transitive, since a ≤ b and b ≤ c implies a ≤ c, it is not symmetric, since a ≤ b
does not imply b ≤ a.

Electrical connectivity, where all connections are by metal wires, is an equivalence
relation. The relation is clearly reflexive, as any component is connected to itself. If a is
electrically connected to b, then b must be electrically connected to a, so the relation is
symmetric. Finally, if a is connected to b and b is connected to c, then a is connected to c.
Thus electrical connectivity is an equivalence relation.

Two cities are related if they are in the same country. It is easily verified that this is an
equivalence relation. Suppose town a is related to b if it is possible to travel from a to b by
taking roads. This relation is an equivalence relation if all the roads are two-way. 331

www.manaraa.com

332 Chapter 8 The Disjoint Set Class

8.2 The Dynamic Equivalence Problem
Given an equivalence relation ∼, the natural problem is to decide, for any a and b, if a ∼ b.
If the relation is stored as a two-dimensional array of Boolean variables, then, of course,
this can be done in constant time. The problem is that the relation is usually not explicitly,
but rather implicitly, defined.

As an example, suppose the equivalence relation is defined over the five-element set
{a1, a2, a3, a4, a5}. Then there are 25 pairs of elements, each of which is either related or
not. However, the information a1 ∼ a2, a3 ∼ a4, a5 ∼ a1, a4 ∼ a2 implies that all pairs
are related. We would like to be able to infer this quickly.

The equivalence class of an element a ∈ S is the subset of S that contains all the ele-
ments that are related to a. Notice that the equivalence classes form a partition of S: Every
member of S appears in exactly one equivalence class. To decide if a ∼ b, we need only
to check whether a and b are in the same equivalence class. This provides our strategy to
solve the equivalence problem.

The input is initially a collection of N sets, each with one element. This initial repre-
sentation is that all relations (except reflexive relations) are false. Each set has a different
element, so that Si ∩ Sj = Ø; this makes the sets disjoint.

There are two permissible operations. The first is find, which returns the name of the
set (that is, the equivalence class) containing a given element. The second operation adds
relations. If we want to add the relation a ∼ b, then we first see if a and b are already
related. This is done by performing finds on both a and b and checking whether they are
in the same equivalence class. If they are not, then we apply union. This operation merges
the two equivalence classes containing a and b into a new equivalence class. From a set
point of view, the result of ∪ is to create a new set Sk = Si ∪ Sj, destroying the originals and
preserving the disjointness of all the sets. The algorithm to do this is frequently known as
the disjoint set union/find algorithm for this reason.

This algorithm is dynamic because, during the course of the algorithm, the sets can
change via the union operation. The algorithm must also operate online: When a find is
performed, it must give an answer before continuing. Another possibility would be an
off-line algorithm. Such an algorithm would be allowed to see the entire sequence of
unions and finds. The answer it provides for each find must still be consistent with all the
unions that were performed up until the find, but the algorithm can give all its answers
after it has seen all the questions. The difference is similar to taking a written exam (which
is generally off-line—you only have to give the answers before time expires), and an oral
exam (which is online, because you must answer the current question before proceeding
to the next question).

Notice that we do not perform any operations comparing the relative values of elements
but merely require knowledge of their location. For this reason, we can assume that all the
elements have been numbered sequentially from 0 to N − 1 and that the numbering can
be determined easily by some hashing scheme. Thus, initially we have Si = {i} for i = 0
through N − 1.1

1 This reflects the fact that array indices start at 0.

www.manaraa.com

8.3 Basic Data Structure 333

Our second observation is that the name of the set returned by find is actually fairly
arbitrary. All that really matters is that find(a)==find(b) is true if and only if a and b are in
the same set.

These operations are important in many graph theory problems and also in compilers
that process equivalence (or type) declarations. We will see an application later.

There are two strategies to solve this problem. One ensures that the find instruction can
be executed in constant worst-case time, and the other ensures that the union instruction
can be executed in constant worst-case time. It has been shown that both cannot be done
simultaneously in constant worst-case time.

We will now briefly discuss the first approach. For the find operation to be fast, we
could maintain, in an array, the name of the equivalence class for each element. Then find
is just a simple O(1) lookup. Suppose we want to perform union(a,b). Suppose that a is in
equivalence class i and b is in equivalence class j. Then we scan down the array, changing
all i’s to j. Unfortunately, this scan takes �(N). Thus, a sequence of N − 1 unions (the
maximum, since then everything is in one set) would take �(N2) time. If there are �(N2)
find operations, this performance is fine, since the total running time would then amount
to O(1) for each union or find operation over the course of the algorithm. If there are fewer
finds, this bound is not acceptable.

One idea is to keep all the elements that are in the same equivalence class in a linked
list. This saves time when updating, because we do not have to search through the entire
array. This by itself does not reduce the asymptotic running time, because it is still possible
to perform �(N2) equivalence class updates over the course of the algorithm.

If we also keep track of the size of each equivalence class, and when performing unions
we change the name of the smaller equivalence class to the larger, then the total time
spent for N − 1 merges is O(N log N). The reason for this is that each element can have
its equivalence class changed at most log N times, since every time its class is changed, its
new equivalence class is at least twice as large as its old. Using this strategy, any sequence
of M finds and up to N − 1 unions takes at most O(M + N log N) time.

In the remainder of this chapter, we will examine a solution to the union/find problem
that makes unions easy but finds hard. Even so, the running time for any sequence of at
most M finds and up to N − 1 unions will be only a little more than O(M + N).

8.3 Basic Data Structure
Recall that the problem does not require that a find operation return any specific name,
just that finds on two elements return the same answer if and only if they are in the same
set. One idea might be to use a tree to represent each set, since each element in a tree has
the same root. Thus, the root can be used to name the set. We will represent each set by a
tree. (Recall that a collection of trees is known as a forest.) Initially, each set contains one
element. The trees we will use are not necessarily binary trees, but their representation is
easy, because the only information we will need is a parent link. The name of a set is given
by the node at the root. Since only the name of the parent is required, we can assume that
this tree is stored implicitly in an array: Each entry s[i] in the array represents the parent

www.manaraa.com

334 Chapter 8 The Disjoint Set Class

0 1 2 3 4 5 6 7

Figure 8.1 Eight elements, initially in different sets

0 1 2 3 4 6 7

5

Figure 8.2 After union(4,5)

0 1 2 3 4 6

75

Figure 8.3 After union(6,7)

of element i. If i is a root, then s[i] = −1. In the forest in Figure 8.1, s[i] = −1 for
0 ≤ i < 8. As with binary heaps, we will draw the trees explicitly, with the understanding
that an array is being used. Figure 8.1 shows the explicit representation. We will draw the
root’s parent link vertically for convenience.

To perform a union of two sets, we merge the two trees by making the parent link of
one tree’s root link to the root node of the other tree. It should be clear that this operation
takes constant time. Figures 8.2, 8.3, and 8.4 represent the forest after each of union(4,5),
union(6,7), union(4,6), where we have adopted the convention that the new root after the
union(x,y) is x. The implicit representation of the last forest is shown in Figure 8.5.

A find(x) on element x is performed by returning the root of the tree containing x.
The time to perform this operation is proportional to the depth of the node representing x,
assuming, of course, that we can find the node representing x in constant time. Using the
strategy above, it is possible to create a tree of depth N − 1, so the worst-case running
time of a find is �(N). Typically, the running time is computed for a sequence of M
intermixed instructions. In this case, M consecutive operations could take �(MN) time in
the worst case.

www.manaraa.com

8.3 Basic Data Structure 335

0 1 2 3 4

6

7

5

Figure 8.4 After union(4,6)

–1 –1 –1 –1 –1 4 4 6

0 1 2 3 4 5 6 7

Figure 8.5 Implicit representation of previous tree

1 public class DisjSets
2 {
3 public DisjSets(int numElements)
4 { /* Figure 8.7 */ }
5 public void union(int root1, int root2)
6 { /* Figures 8.8 and 8.14 */ }
7 public int find(int x)
8 { /* Figures 8.9 and 8.16 */ }
9

10 private int [] s;
11 }

Figure 8.6 Disjoint set class skeleton

The code in Figures 8.6 through 8.9 represents an implementation of the basic algo-
rithm, assuming that error checks have already been performed. In our routine, unions are
performed on the roots of the trees. Sometimes the operation is performed by passing any
two elements, and having the union perform two finds to determine the roots.

The average-case analysis is quite hard to do. The least of the problems is that the
answer depends on how to define average (with respect to the union operation). For
instance, in the forest in Figure 8.4, we could say that since there are five trees, there are
5 · 4 = 20 equally likely results of the next union (as any two different trees can be unioned).
Of course, the implication of this model is that there is only a 2

5 chance that the next
union will involve the large tree. Another model might say that all unions between any two

www.manaraa.com

336 Chapter 8 The Disjoint Set Class

1 /**
2 * Construct the disjoint sets object.
3 * @param numElements the initial number of disjoint sets.
4 */
5 public DisjSets(int numElements)
6 {
7 s = new int [numElements];
8 for(int i = 0; i < s.length; i++)
9 s[i] = -1;

10 }

Figure 8.7 Disjoint set initialization routine

1 /**
2 * Union two disjoint sets.
3 * For simplicity, we assume root1 and root2 are distinct
4 * and represent set names.
5 * @param root1 the root of set 1.
6 * @param root2 the root of set 2.
7 */
8 public void union(int root1, int root2)
9 {

10 s[root2] = root1;
11 }

Figure 8.8 union (not the best way)

1 /**
2 * Perform a find.
3 * Error checks omitted again for simplicity.
4 * @param x the element being searched for.
5 * @return the set containing x.
6 */
7 public int find(int x)
8 {
9 if(s[x] < 0)

10 return x;
11 else
12 return find(s[x]);
13 }

Figure 8.9 A simple disjoint set find algorithm

www.manaraa.com

8.4 Smart Union Algorithms 337

elements in different trees are equally likely, so a larger tree is more likely to be involved in
the next union than a smaller tree. In the example above, there is an 8

11 chance that the large
tree is involved in the next union, since (ignoring symmetries) there are 6 ways in which to
merge two elements in {0, 1, 2, 3}, and 16 ways to merge an element in {4, 5, 6, 7} with an
element in {0, 1, 2, 3}. There are still more models and no general agreement on which is
the best. The average running time depends on the model; �(M), �(M log N), and �(MN)
bounds have actually been shown for three different models, although the latter bound is
thought to be more realistic.

Quadratic running time for a sequence of operations is generally unacceptable.
Fortunately, there are several ways of easily ensuring that this running time does not occur.

8.4 Smart Union Algorithms
The unions above were performed rather arbitrarily, by making the second tree a subtree of
the first. A simple improvement is always to make the smaller tree a subtree of the larger,
breaking ties by any method; we call this approach union-by-size. The three unions in the
preceding example were all ties, and so we can consider that they were performed by size.
If the next operation were union(3,4), then the forest in Figure 8.10 would form. Had the
size heuristic not been used, a deeper tree would have been formed (Figure 8.11).

We can prove that if unions are done by size, the depth of any node is never more than
log N. To see this, note that a node is initially at depth 0. When its depth increases as a
result of a union, it is placed in a tree that is at least twice as large as before. Thus, its depth
can be increased at most log N times. (We used this argument in the quick-find algorithm at
the end of Section 8.2.) This implies that the running time for a find operation is O(log N),
and a sequence of M operations takes O(M log N). The tree in Figure 8.12 shows the worst
tree possible after 16 unions and is obtained if all unions are between equal-sized trees (the
worst-case trees are binomial trees, discussed in Chapter 6).

To implement this strategy, we need to keep track of the size of each tree. Since we are
really just using an array, we can have the array entry of each root contain the negative of

0 1 2 4

3 6

7

5

Figure 8.10 Result of union-by-size

www.manaraa.com

338 Chapter 8 The Disjoint Set Class

0 1 2 3

4

6

7

5

Figure 8.11 Result of an arbitrary union

0

1 2 4

3 6

7

5

8

9 10

11

12

13 14

15

Figure 8.12 Worst-case tree for N = 16

the size of its tree. Thus, initially the array representation of the tree is all −1’s. When a
union is performed, check the sizes; the new size is the sum of the old. Thus, union-by-size
is not at all difficult to implement and requires no extra space. It is also fast, on average.
For virtually all reasonable models, it has been shown that a sequence of M operations
requires O(M) average time if union-by-size is used. This is because when random unions
are performed, generally very small (usually one-element) sets are merged with large sets
throughout the algorithm.

An alternative implementation, which also guarantees that all the trees will have depth
at most O(log N), is union-by-height. We keep track of the height, instead of the size,
of each tree and perform unions by making the shallow tree a subtree of the deeper tree.
This is an easy algorithm, since the height of a tree increases only when two equally deep
trees are joined (and then the height goes up by one). Thus, union-by-height is a trivial
modification of union-by-size. Since heights of zero would not be negative, we actually
store the negative of height, minus an additional 1. Initially, all entries are −1.

Figure 8.13 show a forest and its implicit representation for both union-by-size and
union-by-height. The code in Figure 8.14 implements union-by-height.

www.manaraa.com

8.4 Smart Union Algorithms 339

0 1 2 4

3 6

7

5

–1 –1 –1 4 –3

–5

4 4 6

0 1 2 3 4 5 6 7

–1 –1 –1 4 - 4 4 6

0 1 2 3 4 5 6 7

Figure 8.13 Forest with implicit representation for union-by-size and union-by-height

1 /**
2 * Union two disjoint sets using the height heuristic.
3 * For simplicity, we assume root1 and root2 are distinct
4 * and represent set names.
5 * @param root1 the root of set 1.
6 * @param root2 the root of set 2.
7 */
8 public void union(int root1, int root2)
9 {

10 if(s[root2] < s[root1]) // root2 is deeper
11 s[root1] = root2; // Make root2 new root
12 else
13 {
14 if(s[root1] == s[root2])
15 s[root1]--; // Update height if same
16 s[root2] = root1; // Make root1 new root
17 }
18 }

Figure 8.14 Code for union-by-height (rank)

www.manaraa.com

340 Chapter 8 The Disjoint Set Class

8.5 Path Compression
The union/find algorithm, as described so far, is quite acceptable for most cases. It is very
simple and linear on average for a sequence of M instructions (under all models). However,
the worst case of O(M log N) can occur fairly easily and naturally. For instance, if we put
all the sets on a queue and repeatedly dequeue the first two sets and enqueue the union,
the worst case occurs. If there are many more finds than unions, this running time is worse
than that of the quick-find algorithm. Moreover, it should be clear that there are probably
no more improvements possible for the union algorithm. This is based on the observation
that any method to perform the unions will yield the same worst-case trees, since it must
break ties arbitrarily. Therefore, the only way to speed the algorithm up, without reworking
the data structure entirely, is to do something clever on the find operation.

The clever operation is known as path compression. Path compression is performed
during a find operation and is independent of the strategy used to perform unions. Suppose
the operation is find(x). Then the effect of path compression is that every node on the path
from x to the root has its parent changed to the root. Figure 8.15 shows the effect of path
compression after find(14) on the generic worst tree of Figure 8.12.

The effect of path compression is that with an extra two link changes, nodes 12 and 13
are now one position closer to the root and nodes 14 and 15 are now two positions closer.
Thus, the fast future accesses on these nodes will pay (we hope) for the extra work to do
the path compression.

As the code in Figure 8.16 shows, path compression is a trivial change to the basic
find algorithm. The only change to the find routine is that s[x] is made equal to the value
returned by find; thus after the root of the set is found recursively, x’s parent link references
it. This occurs recursively to every node on the path to the root, so this implements path
compression.

When unions are done arbitrarily, path compression is a good idea, because there is
an abundance of deep nodes and these are brought near the root by path compression.
It has been proven that when path compression is done in this case, a sequence of M

0

1 2 4

3 6

7

5

8

9 10

11

12

13

14

15

Figure 8.15 An example of path compression

www.manaraa.com

8.6 Worst Case for Union-by-Rank and Path Compression 341

1 /**
2 * Perform a find with path compression.
3 * Error checks omitted again for simplicity.
4 * @param x the element being searched for.
5 * @return the set containing x.
6 */
7 public int find(int x)
8 {
9 if(s[x] < 0)

10 return x;
11 else
12 return s[x] = find(s[x]);
13 }

Figure 8.16 Code for the disjoint set find with path compression

operations requires at most O(M log N) time. It is still an open problem to determine what
the average-case behavior is in this situation.

Path compression is perfectly compatible with union-by-size, and thus both routines
can be implemented at the same time. Since doing union-by-size by itself is expected
to execute a sequence of M operations in linear time, it is not clear that the extra pass
involved in path compression is worthwhile on average. Indeed, this problem is still open.
However, as we shall see later, the combination of path compression and a smart union
rule guarantees a very efficient algorithm in all cases.

Path compression is not entirely compatible with union-by-height, because path com-
pression can change the heights of the trees. It is not at all clear how to recompute them
efficiently. The answer is do not!! Then the heights stored for each tree become estimated
heights (sometimes known as ranks), but it turns out that union-by-rank (which is what
this has now become) is just as efficient in theory as union-by-size. Furthermore, heights
are updated less often than sizes. As with union-by-size, it is not clear whether path com-
pression is worthwhile on average. What we will show in the next section is that with either
union heuristic, path compression significantly reduces the worst-case running time.

8.6 Worst Case for Union-by-Rank and Path
Compression

When both heuristics are used, the algorithm is almost linear in the worst case. Specifically,
the time required in the worst case is �(Mα(M, N)) (provided M ≥ N), where α(M, N) is
an incredibly slowly growing function that for all intents and purposes is at most 5 for any
problem instance. However, α(M, N) is not a constant, so the running time is not linear.

In the remainder of this section, we first look at some very slow-growing functions, and
then in Sections 8.6.2 to 8.6.4, we establish a bound on the worst-case for a sequence of at

www.manaraa.com

342 Chapter 8 The Disjoint Set Class

most N − 1 unions, and M find operations in an N-element universe in which union is
by rank and finds use path compression. The same bound holds if union-by-rank is
replaced with union-by-size.

8.6.1 Slowly Growing Functions
Consider the recurrence:

T(N) =
{

0 N ≤ 1
T(
f(N)�) + 1 N > 1

(8.1)

In this equation, T(N) represents the number of times, starting at N, that we must iteratively
apply f(N) until we reach 1 (or less). We assume that f(N) is a nicely defined function that
reduces N. Call the solution to the equation f∗(N).

We have already encountered this recurrence when analyzing binary search. There,
f(N) = N/2; each step halves N. We know that this can happen at most log N times until
N reaches 1; hence we have f∗(N) = log N (we ignore low-order terms, etc.). Observe that
in this case, f∗(N) is much less than f(N).

Figure 8.17 shows the solution for T(N), for various f(N). In our case, we are most
interested in f(N) = log N. The solution T(N) = log∗ N is known as the iterated logarithm.
The iterated logarithm, which represents the number of times the logarithm needs to be
iteratively applied until we reach one, is a very slowly growing function. Observe that
log∗ 2 = 1, log∗ 4 = 2, log∗ 16 = 3, log∗ 65536 = 4, and log∗ 265536 = 5. But keep in
mind that 265536 is a 20,000-digit number. So while log∗ N is a growing function, for all
intents and purposes, it is at most 5. But we can still produce even more slowly growing
functions. For instance, if f(N) = log∗ N, then T(N) = log∗∗ N. In fact, we can add stars at
will to produce functions that grow slower and slower.

f(N) f∗(N)

N−1 N−1

N−2 N/2

N−c N/c

N/2 log N

N/c logc N
√

N log log N

log N log∗ N

log∗ N log∗∗ N

log∗∗ N log∗∗∗ N

Figure 8.17 Different values of the iterated function

www.manaraa.com

8.6 Worst Case for Union-by-Rank and Path Compression 343

8.6.2 An Analysis By Recursive Decomposition
We now establish a tight bound on the running time of a sequence of M = �(N) union/find
operations. The unions and finds may occur in any order, but unions are done by rank and
finds are done with path compression.

We begin by establishing two lemmas concerning the properties of the ranks.
Figure 8.18 gives a visual picture of both lemmas.

Lemma 8.1.
When executing a sequence of union instructions, a node of rank r > 0 must have at
least one child of rank 0, 1, . . . , r − 1.

Proof.
By induction. The basis r = 1 is clearly true. When a node grows from rank r − 1
to rank r, it obtains a child of rank r − 1. By the inductive hypothesis, it already has
children of ranks 0, 1, . . . , r − 2, thus establishing the lemma.

The next lemma seems somewhat obvious but is used implicitly in the analysis.

Lemma 8.2.
At any point in the union/find algorithm, the ranks of the nodes on a path from the
leaf to a root increase monotonically.

Proof.
The lemma is obvious if there is no path compression. If, after path compression, some
node v is a descendant of w, then clearly v must have been a descendant of w when
only unions were considered. Hence the rank of v is less than the rank of w.

Suppose we have two algorithms A and B. Algorithm A works and computes all the
answers correctly, but algorithm B does not compute correctly, or even produce useful
answers. Suppose, however, that every step in algorithm A can be mapped to an equivalent
step in algorithm B. Then it is easy to see that the running time for algorithm B describes
the running time for algorithm A, exactly.

5

0 1

0

2

0 1

0

3

0 1

0

2

0 1

0

4

0 1

0

2

0 1

0

3

0 1

0

2

0 1

0

Figure 8.18 A large disjoint set tree (numbers below nodes are ranks)

www.manaraa.com

344 Chapter 8 The Disjoint Set Class

We can use this idea to analyze the running time of the disjoint sets data structure. We
will describe an algorithm B whose running time is exactly the same as the disjoint sets
structure, and then algorithm C, whose running time is exactly the same as algorithm B.
Thus any bound for algorithm C will be a bound for the disjoint sets data structure.

Partial Path Compression
Algorithm A is our standard sequence of union-by-rank and find with path compression
operations. We design an algorithm B that will perform the exact same sequence of path
compression operations as algorithm A. In algorithm B, we perform all the unions prior to
any find. Then each find operation in algorithm A is replaced by a partial find operation
in algorithm B. A partial find operation specifies the search item and the node up to which
the path compression is performed. The node that will be used is the node that would have
been the root at the time the matching find was performed in algorithm A.

Figure 8.19 shows that algorithm A and algorithm B will get equivalent trees (forests) at
the end, and it is easy to see that the exact same amount of parent changes are performed
by algorithm A’s finds, compared to algorithm B’s partial finds. But algorithm B should
be simpler to analyze, since we have removed the mixing of unions and finds from the
equation. The basic quantity to analyze is the number of parent changes that can occur
in any sequence of partial finds, since all but the top two nodes in any find with path
compression will obtain new parents.

A Recursive Decomposition
What we would like to do next is to divide each tree into two halves: a top half and a
bottom half. We would then like to ensure that the number of partial find operations in
the top half plus the number of partial find operations in the bottom half is exactly the
same as the total number of partial find operations. We would then like to write a formula
for the total path compression cost in the tree in terms of the path compression cost in the
top half plus the path compression cost in the bottom half. Without specifying how we

ggc

hc

c e

c g

e

g

c

a

e

gc

b

da

f

he

b

da

f

ge

f

he

b

da

da

f

hb

f

hb

d

f

hb

Find (c)

⇒
Union (b, f)

⇒

Union (b, f)

⇒
Partial find (c, b)

⇒
da

Figure 8.19 Sequences of union and find operations replaced with equivalent cost of
union and partial find operations

www.manaraa.com

8.6 Worst Case for Union-by-Rank and Path Compression 345

TOP

BOTTOM

x

y

Figure 8.20 Recursive decomposition, Case 1: Partial find is entirely in bottom

TOP

BOTTOM

x

y

Figure 8.21 Recursive decomposition, Case 2: Partial find is entirely in top

decide which nodes are in the top half, and which nodes are in the bottom half, we can
look at Figures 8.20, 8.21, and 8.22, to see how most of what we want to do can work
immediately.

In Figure 8.20, the partial find resides entirely in the bottom half. Thus one partial
find in the bottom half corresponds to one original partial find, and the charges can be
recursively assigned to the bottom half.

In Figure 8.21, the partial find resides entirely in the top half. Thus one partial find
in the top half corresponds to one original partial find, and the charges can be recursively
assigned to the top half.

However, we run into lots of trouble when we reach Figure 8.22. Here x is in the
bottom half, and y is in the top half. The path compression would require that all nodes
from x to y’s child acquire y as its parent. For nodes in the top half, that is no problem,
but for nodes in the bottom half this is a deal breaker: Any recursive charges to the bottom

www.manaraa.com

346 Chapter 8 The Disjoint Set Class

TOP

BOTTOM

y

x

Figure 8.22 Recursive decomposition, Case 3: Partial find goes from bottom to top

TOP

BOTTOM
x

z

y

Figure 8.23 Recursive decomposition, Case 3: Path compression can be performed on
the top nodes, but the bottom nodes must get new parents; the parents cannot be top
parents, and they cannot be other bottom nodes

have to keep everything in the bottom. So as Figure 8.23 shows, we can perform the path
compression on the top, but while some nodes in the bottom will need new parents, it is
not clear what to do, because the new parents for those bottom nodes cannot be top nodes,
and the new parents cannot be other bottom nodes.

The only option is to make a loop where these nodes’ parents are themselves and make
sure these parent changes are correctly charged in our accounting. Although this is a new
algorithm because it can no longer be used to generate an identical tree, we don’t need
identical trees; we only need to be sure that each original partial find can be mapped into a
new partial find operation, and that the charges are identical. Figure 8.24 shows what the
new tree will look like, and so the big remaining issue is the accounting.

www.manaraa.com

8.6 Worst Case for Union-by-Rank and Path Compression 347

TOP

BOTTOM
x

w

z

y

Figure 8.24 Recursive decomposition, Case 3: The bottom node new parents are the
nodes themselves

Looking at Figure 8.24, we see that the path compression charges from x to y can be
split into three parts. First there is the path compression from z (the first top node on the
upward path) to y. Clearly those charges are already accounted for recursively. Then there
is the charge from the topmost-bottom node w to z. But that is only one unit, and there can
be at most one of those per partial find operation. In fact, we can do a little better: There
can be at most one of those per partial find operation on the top half. But how do we
account for the parent changes on the path from x to w? One idea would be to argue that
those changes would be exactly the same cost as if there were a partial find from x to w. But
there is a big problem with that argument: It converts an original partial find into a partial
find on the top plus a partial find on the bottom, which means the number of operations,
M, would no longer be the same. Fortunately, there is a simpler argument: Since each node
on the bottom can have its parent set to itself only once, the number of charges are limited
by the number of nodes on the bottom, whose parents are also in the bottom (i.e. w is
excluded).

There is one important detail that we must verify. Can we get in trouble on a subsequent
partial find given that our reformulation detaches the nodes between x and w from the path
to y? The answer is no. In the original partial find, suppose any of the nodes between x and
w are involved in a subsequent original partial find. In that case, it will be with one of y’s
ancestors, and when that happens, any of those nodes will be the topmost “bottom node”
in our reformulation. Thus on the subsequent partial find, the original partial find’s parent
change will have a corresponding one unit charge in our reformulation.

We can now proceed with the analysis. Let M be the total number of original partial find
operations. Let Mt be the total number of partial find operations performed exclusively on
the top half, and let Mb be the total number of partial find operations performed exclusively
on the bottom half. Let N be the total number of nodes. Let Nt be the total number of top-
half nodes, and let Nb be the total number of bottom half nodes, and let Nnrb be the total
number of non-root bottom nodes (i.e the number of bottom nodes whose parents are also
bottom nodes prior to any partial finds).

www.manaraa.com

348 Chapter 8 The Disjoint Set Class

Lemma 8.3.
M = Mt + Mb.

Proof.
In cases 1 and 3, each original partial find operation is replaced by a partial find on the
top half, and in case 2, it is replaced by a partial find on the bottom half. Thus each
partial find is replaced by exactly one partial find operation on one of the halves.

Our basic idea is that we are going to partition the nodes so that all nodes with rank
s or lower are in the bottom, and the remaining nodes are in the top. The choice of s will
be made later in the proof. The next lemma shows that we can provide a recursive formula
for the number of parent changes, by splitting the charges into the top and bottom groups.
One of the key ideas is that a recursive formula is written not only in terms of M and N,
which would be obvious, but also in terms of the maximum rank in the group.

Lemma 8.4.
Let C(M, N, r) be the number of parent changes for a sequence of M finds with path
compression on N items, whose maximum rank is r. Suppose we partition so that all
nodes with rank at s or lower are in the bottom, and the remaining nodes are in the
top. Assuming appropriate initial conditions,

C(M, N, r) < C(Mt, Nt, r) + C(Mb, Nb, s) + Mt + Nnrb

.
Proof.
The path compression that is performed in each of the three cases is covered by
C(Mt, Nt, r) + C(Mb, Nb, s). Node w in case 3 is accounted for by Mt. Finally, all the
other bottom nodes on the path are non-root nodes that can have their parent set to
themselves at most once in the entire sequence of compressions. They are accounted
for by Nnrb.

If union-by-rank is used, then by Lemma 8.1, every top node has children of ranks
0, 1, . . ., s prior to the commencement of the partial find operations. Each of those children
are definitely root nodes in the bottom (their parent is a top node). So for each top node,
s + 2 nodes (the s + 1 children plus the top node itself) are definitely not included in Nnrb.
Thus, we can refomulate Lemma 8.4 as follows:

Lemma 8.5.
Let C(M, N, r) be the number of parent changes for a sequence of M finds with path
compression on N items, whose maximum rank is r. Suppose we partition so that all
nodes with rank at s or lower are in the bottom, and the remaining nodes are in the
top. Assuming appropriate initial conditions,

C(M, N, r) < C(Mt, Nt, r) + C(Mb, Nb, s) + Mt + N − (s + 2)Nt

.
Proof.
Substitute Nnrb < N − (s + 2)Nt into Lemma 8.4.

www.manaraa.com

8.6 Worst Case for Union-by-Rank and Path Compression 349

If we look at Lemma 8.5, we see that C(M, N, r) is recursively defined in terms of
two smaller instances. Our basic goal at this point is to remove one of these instances,
by providing a bound for it. What we would like to do is to remove C(Mt, Nt, r). Why?
Because, if we do so, what is left is C(Mb, Nb, s). In that case, we have a recursive formula in
which r is reduced to s. If s is small enough, we can make use of a variation of Equation 8.1,
namely that the solution to

T(N) =
{

0 N ≤ 1
T(
f(N)�) + M N > 1

(8.2)

is O(M f∗(N)). So, let’s start with a simple bound for C(M, N, r):

Theorem 8.1.
C(M, N, r) < M + N log r.

Proof.
We start with Lemmas 8.5:

C(M, N, r) < C(Mt, Nt, r) + C(Mb, Nb, s) + Mt + N − (s + 2)Nt (8.3)

Observe that in the top half, there are only nodes of rank s+1, s+2, . . . , r, and thus no
node can have its parent change more than (r−s−2) times. This yields a trivial bound
of Nt(r−s−2) for C(Mt, Nt, r). Thus,

C(M, N, r) < Nt(r − s − 2) + C(Mb, Nb, s) + Mt + N − (s + 2)Nt (8.4)

Combining terms,

C(M, N, r) < Nt(r − 2s − 4) + C(Mb, Nb, s) + Mt + N (8.5)

Select s =
r/2�. Then r − 2s − 4 < 0, so

C(M, N, r) < C(Mb, Nb,
r/2�) + Mt + N (8.6)

Equivalently, since according to Lemma 8.3, M = Mb+Mt (the proof falls apart without
this),

C(M, N, r) − M < C(Mb, Nb,
r/2�) − Mb + N (8.7)

Let D(M, N, r) = C(M, N, r) − M; then

D(M, N, r) < D(Mb, Nb,
r/2�) + N (8.8)

which implies D(M, N, r) < N log r. This yields C(M, N, r) < M + N log r.

Theorem 8.2.
Any sequence of N − 1 unions and M finds with path compression makes at most
M + N log log N parent changes during the finds.

Proof.
The bound is immediate from Theorem 8.1 since r ≤ log N.

www.manaraa.com

350 Chapter 8 The Disjoint Set Class

8.6.3 An O(M log * N) Bound
The bound in Theorem 8.2 is pretty good, but with a little work, we can do even better.
Recall, that a central idea of the recursive decomposition is choosing s to be as small as
possible. But to do this, the other terms must also be small, and as s gets smaller, we would
expect C(Mt, Nt, r) to get larger. But the bound for C(Mt, Nt, r) used a primitive estimate,
and Theorem 8.1 itself can now be used to give a better estimate for this term. Since the
C(Mt, Nt, r) estimate will now be lower, we will be able to use a lower s.

Theorem 8.3.
C(M, N, r) < 2M + N log∗ r.

Proof.
From Lemma 8.5 we have,

C(M, N, r) < C(Mt, Nt, r) + C(Mb, Nb, s) + Mt + N − (s + 2)Nt (8.9)

and by Theorem 8.1, C(Mt, Nt, r) < Mt + Nt log r. Thus,

C(M, N, r) < Mt + Nt log r + C(Mb, Nb, s) + Mt + N − (s + 2)Nt (8.10)

Rearranging and combining terms yields

C(M, N, r) < C(Mb, Nb, s) + 2Mt + N − (s − log r + 2)Nt (8.11)

So choose s =
log r�. Clearly, this choice implies that (s − log r + 2) > 0, and thus we
obtain

C(M, N, r) < C(Mb, Nb,
log r�) + 2Mt + N (8.12)

Rearranging as in Theorem 8.1, we obtain,

C(M, N, r) − 2M < C(Mb, Nb,
log r�) − 2Mb + N (8.13)

This time, let D(M, N, r) = C(M, N, r) − 2M; then

D(M, N, r) < D(Mb, Nb,
log r�) + N (8.14)

which implies D(M, N, r) < N log∗ r. This yields C(M, N, r) < 2M + N log∗ r.

8.6.4 An O(M α(M, N)) Bound
Not surprisingly, we can now use Theorem 8.3 to improve Theorem 8.3:

Theorem 8.4.
C(M, N, r) < 3M + N log∗∗ r.

Proof.
Following the steps in the proof of Theorem 8.3, we have

www.manaraa.com

8.6 Worst Case for Union-by-Rank and Path Compression 351

C(M, N, r) < C(Mt, Nt, r) + C(Mb, Nb, s) + Mt + N − (s + 2)Nt (8.15)

and by Theorem 8.3, C(Mt, Nt, r) < 2Mt + Nt log∗ r. Thus,

C(M, N, r) < 2Mt + Nt log∗ r + C(Mb, Nb, s) + Mt + N − (s + 2)Nt (8.16)

Rearranging and combining terms yields

C(M, N, r) < C(Mb, Nb, s) + 3Mt + N − (s − log∗ r + 2)Nt (8.17)

So choose s = log∗ r to obtain

C(M, N, r) < C(Mb, Nb, log∗ r) + 3Mt + N (8.18)

Rearranging as in Theorems 8.1 and 8.3, we obtain,

C(M, N, r) − 3M < C(Mb, Nb, log∗ r) − 3Mb + N (8.19)

This time, let D(M, N, r) = C(M, N, r) − 3M; then

D(M, N, r) < D(Mb, Nb, log∗ r) + N (8.20)

which implies D(M, N, r) < N log∗∗ r. This yields C(M, N, r) < 3M + N log∗∗ r.

Needless to say, we could continue this ad-infinitim. Thus with a bit of math, we get a
progression of bounds:

C(M, N, r) < 2M + N log∗ r

C(M, N, r) < 3M + N log∗∗ r

C(M, N, r) < 4M + N log∗∗∗ r

C(M, N, r) < 5M + N log∗∗∗∗ r

C(M, N, r) < 6M + N log∗∗∗∗∗ r

Each of these bounds would seem to be better than the previous since, after all, the
more ∗s the slower log∗∗...∗∗r grows. However, this ignores the fact that while log∗∗∗∗∗r is
smaller than log∗∗∗∗r, the 6M term is NOT smaller than the 5M term.

Thus what we would like to do is to optimize the number of ∗s that are used.
Define α(M, N) to represent the optimal number of ∗s that will be used. Specifically,

α(M, N) = min

⎧⎪⎨
⎪⎩i ≥ 1

∣∣∣ log

i times︷︸︸︷∗∗∗∗ (log N) ≤ (M/N)

⎫⎪⎬
⎪⎭

Then, the running time of the union/find algorithm can be bounded by O(Mα(M, N)).

Theorem 8.5.
Any sequence of N − 1 unions and M finds with path compression makes at most

(i + 1)M + N log

i times︷︸︸︷∗∗∗∗ (log N)

parent changes during the finds.

www.manaraa.com

352 Chapter 8 The Disjoint Set Class

Proof.
This follows from the above discussion, and the fact that r ≤ log N.

Theorem 8.6.
Any sequence of N − 1 unions and M finds with path compression makes at most
Mα(M, N) + 2M parent changes during the finds.

Proof.
In Theorem 8.5, choose i to be α(M, N); thus we obtain a bound of (i+1)M+N(M/N),
or Mα(M, N) + 2M.

8.7 An Application
An example of the use of the union/find data structure is the generation of mazes, such
as the one shown in Figure 8.25. In Figure 8.25, the starting point is the top-left corner,
and the ending point is the bottom-right corner. We can view the maze as a 50-by-88
rectangle of cells in which the top-left cell is connected to the bottom-right cell, and cells
are separated from their neighboring cells via walls.

A simple algorithm to generate the maze is to start with walls everywhere (except for
the entrance and exit). We then continually choose a wall randomly, and knock it down if
the cells that the wall separates are not already connected to each other. If we repeat this
process until the starting and ending cells are connected, then we have a maze. It is actually

Figure 8.25 A 50-by-88 maze

www.manaraa.com

8.7 An Application 353

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20} {21}
{22} {23} {24}

Figure 8.26 Initial state: all walls up, all cells in their own set

better to continue knocking down walls until every cell is reachable from every other cell
(this generates more false leads in the maze).

We illustrate the algorithm with a 5-by-5 maze. Figure 8.26 shows the initial configu-
ration. We use the union/find data structure to represent sets of cells that are connected to
each other. Initially, walls are everywhere, and each cell is in its own equivalence class.

Figure 8.27 shows a later stage of the algorithm, after a few walls have been knocked
down. Suppose, at this stage, the wall that connects cells 8 and 13 is randomly targeted.
Because 8 and 13 are already connected (they are in the same set), we would not remove
the wall, as it would simply trivialize the maze. Suppose that cells 18 and 13 are randomly
targeted next. By performing two find operations, we see that these are in different sets;

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0, 1} {2} {3} {4, 6, 7, 8, 9, 13, 14} {5} {10, 11, 15} {12} {16, 17, 18, 22} {19} {20} {21} {23} {24}

Figure 8.27 At some point in the algorithm: Several walls down, sets have merged; if at
this point the wall between 8 and 13 is randomly selected, this wall is not knocked down,
because 8 and 13 are already connected

www.manaraa.com

354 Chapter 8 The Disjoint Set Class

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0, 1} {2} {3} {4, 6, 7, 8, 9, 13, 14, 16, 17, 18, 22} {5} {10, 11, 15} {12} {19} {20} {21} {23} {24}

Figure 8.28 Wall between squares 18 and 13 is randomly selected in Figure 8.22; this
wall is knocked down, because 18 and 13 are not already connected; their sets are merged

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

Figure 8.29 Eventually, 24 walls are knocked down; all elements are in the same set

thus 18 and 13 are not already connected. Therefore, we knock down the wall that sep-
arates them, as shown in Figure 8.28. Notice that as a result of this operation, the sets
containing 18 and 13 are combined via a union operation. This is because everything that
was connected to 18 is now connected to everything that was connected to 13. At the end
of the algorithm, depicted in Figure 8.29, everything is connected, and we are done.

The running time of the algorithm is dominated by the union/find costs. The size of
the union/find universe is equal to the number of cells. The number of find operations is
proportional to the number of cells, since the number of removed walls is one less than
the number of cells, while with care, we see that there are only about twice the number of
walls as cells in the first place. Thus, if N is the number of cells, since there are two finds
per randomly targeted wall, this gives an estimate of between (roughly) 2N and 4N find
operations throughout the algorithm. Therefore, the algorithm’s running time can be taken
as O(N log∗ N), and this algorithm quickly generates a maze.

www.manaraa.com

Exercises 355

Summary

We have seen a very simple data structure to maintain disjoint sets. When the union oper-
ation is performed, it does not matter, as far as correctness is concerned, which set retains
its name. A valuable lesson that should be learned here is that it can be very important to
consider the alternatives when a particular step is not totally specified. The union step is
flexible; by taking advantage of this, we are able to get a much more efficient algorithm.

Path compression is one of the earliest forms of self-adjustment, which we have seen
elsewhere (splay trees, skew heaps). Its use is extremely interesting, especially from a the-
oretical point of view, because it was one of the first examples of a simple algorithm with a
not-so-simple worst-case analysis.

Exercises

8.1 Show the result of the following sequence of instructions: union(1,2), union(3,4),
union(3,5), union(1,7), union(3,6), union(8,9), union(1,8), union(3,10),
union (3,11), union(3,12), union(3,13), union(14,15), union(16,0), union(14,16),
union (1,3), union(1, 14) when the unions are:
a. Performed arbitrarily.
b. Performed by height.
c. Performed by size.

8.2 For each of the trees in the previous exercise, perform a find with path compression
on the deepest node.

8.3 Write a program to determine the effects of path compression and the various
unioning strategies. Your program should process a long sequence of equivalence
operations using all six of the possible strategies.

8.4 Show that if unions are performed by height, then the depth of any tree is O(log N).

8.5 Suppose f(N) is a nicely defined function that reduces N to a smaller integer. What
is the solution to the recurrence T(N) = N

f(N) T(f(N)) + N with appropriate initial
conditions?

8.6 a. Show that if M = N2, then the running time of M union/find operations is O(M).
b. Show that if M = N log N, then the running time of M union/find operations is

O(M).
�c. Suppose M = �(N log log N). What is the running time of M union/find

operations?
�d. Suppose M = �(N log∗ N). What is the running time of M union/find

operations?

www.manaraa.com

356 Chapter 8 The Disjoint Set Class

8.7 Tarjan’s original bound for the union/find algorithm defined

α(M, N) = min{i ≥ 1
∣∣∣(A (i,
M/N�) > log N)}, where

A(1, j) = 2j j ≥ 1

A(i, 1) = A(i − 1, 2) i ≥ 2

A(i, j) = A(i − 1, A(i, j − 1)) i, j ≥ 2

Here, A(m, n) is one version of the Ackermann function. Are the two definitions
of α asymptotically equivalent?

8.8 Prove that for the mazes generated by the algorithm in Section 8.7, the path from
the starting to ending points is unique.

8.9 Design an algorithm that generates a maze that contains no path from start to finish
but has the property that the removal of a prespecified wall creates a unique path.

�8.10 Suppose we want to add an extra operation, deunion, which undoes the last union
operation that has not been already undone.
a. Show that if we do union-by-height and finds without path compression, then

deunion is easy and a sequence of M union, find, and deunion operations takes
O(M log N) time.

b. Why does path compression make deunion hard?
��c. Show how to implement all three operations so that the sequence of M

operations takes O(M log N/log log N) time.

�8.11 Suppose we want to add an extra operation, remove(x), which removes x from its
current set and places it in its own. Show how to modify the union/find algorithm
so that the running time of a sequence of M union, find, and remove operations is
O(Mα(M, N)).

�8.12 Show that if all of the unions precede the finds, then the disjoint set algorithm with
path compression requires linear time, even if the unions are done arbitrarily.

��8.13 Prove that if unions are done arbitrarily, but path compression is performed on the
finds, then the worst-case running time is �(M log N).

�8.14 Prove that if unions are done by size and path compression is performed, the worst-
case running time is O(Mα(M, N)).

8.15 The disjoint sets analysis in Section 8.6 can be refined to provide tight bounds for
small N.
a. Show that C(M, N, 0) and C(M, N, 1) are both 0.
b. Show that C(M, N, 2) is at most M.
c. Let r ≤ 8. Choose s = 2 and show that C(M, N, r) is at most M + N.

8.16 Suppose we implement partial path compression on find(i) by making every other
node on the path from i to the root link to its grandparent (where this makes sense).
This is known as path halving.
a. Write a procedure to do this.
b. Prove that if path halving is performed on the finds and either union-by-height

or union-by-size is used, the worst-case running time is O(Mα(M, N)).
8.17 Write a program that generates mazes of arbitrary size. Use Swing to generate a

maze similar to that in Figure 8.25.

www.manaraa.com

References 357

References

Various solutions to the union/find problem can be found in [6], [9], and [11]. Hopcroft
and Ullman showed an O(M log∗ N) bound using a nonrecursive decomposition. Tarjan
[16] obtained the bound O(Mα(M, N)), where α(M, N) is as defined in Exercise 8.7. A
more precise (but asymptotically identical) bound for M < N appears in [2] and [19]. The
analysis in Section 8.6 is due to Seidel and Sharir [15]. Various other strategies for path
compression and unions also achieve the same bound; see [19] for details.

A lower bound showing that under certain restrictions �(Mα(M, N)) time is required
to process M union/find operations was given by Tarjan [17]. Identical bounds under less
restrictive conditions have been shown in [7] and [14].

Applications of the union/find data structure appear in [1] and [10]. Certain special
cases of the union/find problem can be solved in O(M) time [8]. This reduces the running
time of several algorithms, such as [1], graph dominance, and reducibility (see references
in Chapter 9) by a factor of α(M, N). Others, such as [10] and the graph connectivity
problem in this chapter, are unaffected. The paper lists 10 examples. Tarjan has used path
compression to obtain efficient algorithms for several graph problems [18].

Average case results for the union/find problem appear in [5], [12], [22], and [3].
Results bounding the running time of any single operation (as opposed to the entire
sequence) appear in [4] and [13].

Exercise 8.10 is solved in [21]. A general union/find structure, supporting more
operations, is given in [20].

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “On Finding Lowest Common Ancestors in
Trees,” SIAM Journal on Computing, 5 (1976), 115–132.

2. L. Banachowski, “A Complement to Tarjan’s Result about the Lower Bound on the
Complexity of the Set Union Problem,” Information Processing Letters, 11 (1980), 59–65.

3. B. Bollobás and I. Simon, “Probabilistic Analysis of Disjoint Set Union Algorithms,” SIAM
Journal on Computing, 22 (1993), 1053–1086.

4. N. Blum, “On the Single-Operation Worst-Case Time Complexity of the Disjoint Set Union
Problem,” SIAM Journal on Computing, 15 (1986), 1021–1024.

5. J. Doyle and R. L. Rivest, “Linear Expected Time of a Simple Union Find Algorithm,”
Information Processing Letters, 5 (1976), 146–148.

6. M. J. Fischer, “Efficiency of Equivalence Algorithms,” in Complexity of Computer
Computation (eds. R. E. Miller and J. W. Thatcher), Plenum Press, New York, 1972,
153–168.

7. M. L. Fredman and M. E. Saks, “The Cell Probe Complexity of Dynamic Data Structures,”
Proceedings of the Twenty-first Annual Symposium on Theory of Computing (1989), 345–354.

8. H. N. Gabow and R. E. Tarjan, “A Linear-Time Algorithm for a Special Case of Disjoint Set
Union,” Journal of Computer and System Sciences, 30 (1985), 209–221.

9. B. A. Galler and M. J. Fischer, “An Improved Equivalence Algorithm,” Communications of
the ACM, 7 (1964), 301–303.

10. J. E. Hopcroft and R. M. Karp, “An Algorithm for Testing the Equivalence of Finite
Automata,” Technical Report TR-71-114, Department of Computer Science, Cornell
University, Ithaca, N.Y., 1971.

www.manaraa.com

358 Chapter 8 The Disjoint Set Class

11. J. E. Hopcroft and J. D. Ullman, “Set Merging Algorithms,” SIAM Journal on Computing, 2
(1973), 294–303.

12. D. E. Knuth and A. Schonhage, “The Expected Linearity of a Simple Equivalence
Algorithm,” Theoretical Computer Science, 6 (1978), 281–315.

13. J. A. LaPoutre, “New Techniques for the Union-Find Problem,” Proceedings of the First
Annual ACM–SIAM Symposium on Discrete Algorithms (1990), 54–63.

14. J. A. LaPoutre, “Lower Bounds for the Union-Find and the Split-Find Problem on Pointer
Machines,” Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing
(1990), 34–44.

15. R. Seidel and M. Sharir, “Top-Down Analysis of Path Compression,” SIAM Journal on
Computing, 34 (2005), 515–525.

16. R. E. Tarjan, “Efficiency of a Good but Not Linear Set Union Algorithm,” Journal of the
ACM, 22 (1975), 215–225.

17. R. E. Tarjan, “A Class of Algorithms Which Require Nonlinear Time to Maintain Disjoint
Sets,” Journal of Computer and System Sciences, 18 (1979), 110–127.

18. R. E. Tarjan, “Applications of Path Compression on Balanced Trees,” Journal of the ACM,
26 (1979), 690–715.

19. R. E. Tarjan and J. van Leeuwen, “Worst Case Analysis of Set Union Algorithms,” Journal
of the ACM, 31 (1984), 245–281.

20. M. J. van Kreveld and M. H. Overmars, “Union-Copy Structures and Dynamic Segment
Trees,” Journal of the ACM, 40 (1993), 635–652.

21. J. Westbrook and R. E. Tarjan, “Amortized Analysis of Algorithms for Set Union with
Back-tracking,” SIAM Journal on Computing, 18 (1989), 1–11.

22. A. C. Yao, “On the Average Behavior of Set Merging Algorithms,” Proceedings of Eighth
Annual ACM Symposium on the Theory of Computation (1976), 192–195.

www.manaraa.com

C H A P T E R 9

Graph Algorithms

In this chapter we discuss several common problems in graph theory. Not only are these
algorithms useful in practice, they are also interesting because in many real-life applications
they are too slow unless careful attention is paid to the choice of data structures. We will

� Show several real-life problems, which can be converted to problems on graphs.
� Give algorithms to solve several common graph problems.
� Show how the proper choice of data structures can drastically reduce the running time

of these algorithms.
� See an important technique, known as depth-first search, and show how it can be used

to solve several seemingly nontrivial problems in linear time.

9.1 Definitions
A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E. Each edge is a pair
(v, w), where v, w ∈ V. Edges are sometimes referred to as arcs. If the pair is ordered, then
the graph is directed. Directed graphs are sometimes referred to as digraphs. Vertex w is
adjacent to v if and only if (v, w) ∈ E. In an undirected graph with edge (v, w), and hence
(w, v), w is adjacent to v and v is adjacent to w. Sometimes an edge has a third component,
known as either a weight or a cost.

A path in a graph is a sequence of vertices w1, w2, w3, . . . , wN such that (wi, wi+1) ∈ E
for 1 ≤ i < N. The length of such a path is the number of edges on the path, which is
equal to N − 1. We allow a path from a vertex to itself; if this path contains no edges, then
the path length is 0. This is a convenient way to define an otherwise special case. If the
graph contains an edge (v, v) from a vertex to itself, then the path v, v is sometimes referred
to as a loop. The graphs we will consider will generally be loopless. A simple path is a
path such that all vertices are distinct, except that the first and last could be the same.

A cycle in a directed graph is a path of length at least 1 such that w1 = wN; this cycle
is simple if the path is simple. For undirected graphs, we require that the edges be distinct.
The logic of these requirements is that the path u, v, u in an undirected graph should not
be considered a cycle, because (u, v) and (v, u) are the same edge. In a directed graph, these
are different edges, so it makes sense to call this a cycle. A directed graph is acyclic if it has
no cycles. A directed acyclic graph is sometimes referred to by its abbreviation, DAG. 359

www.manaraa.com

360 Chapter 9 Graph Algorithms

An undirected graph is connected if there is a path from every vertex to every other
vertex. A directed graph with this property is called strongly connected. If a directed
graph is not strongly connected, but the underlying graph (without direction to the arcs)
is connected, then the graph is said to be weakly connected. A complete graph is a graph
in which there is an edge between every pair of vertices.

An example of a real-life situation that can be modeled by a graph is the airport system.
Each airport is a vertex, and two vertices are connected by an edge if there is a nonstop
flight from the airports that are represented by the vertices. The edge could have a weight,
representing the time, distance, or cost of the flight. It is reasonable to assume that such
a graph is directed, since it might take longer or cost more (depending on local taxes,
for example) to fly in different directions. We would probably like to make sure that the
airport system is strongly connected, so that it is always possible to fly from any airport to
any other airport. We might also like to quickly determine the best flight between any two
airports. “Best” could mean the path with the fewest number of edges or could be taken
with respect to one, or all, of the weight measures.

Traffic flow can be modeled by a graph. Each street intersection represents a vertex,
and each street is an edge. The edge costs could represent, among other things, a speed
limit or a capacity (number of lanes). We could then ask for the shortest route or use this
information to find the most likely location for bottlenecks.

In the remainder of this chapter, we will see several more applications of graphs. Many
of these graphs can be quite large, so it is important that the algorithms we use be efficient.

9.1.1 Representation of Graphs
We will consider directed graphs (undirected graphs are similarly represented).

Suppose, for now, that we can number the vertices, starting at 1. The graph shown in
Figure 9.1 represents 7 vertices and 12 edges.

4

7

5

2

3

6

1

Figure 9.1 A directed graph

www.manaraa.com

9.1 Definitions 361

One simple way to represent a graph is to use a two-dimensional array. This is known as
an adjacency matrix representation. For each edge (u, v), we set A[u][v] to true; otherwise
the entry in the array is false. If the edge has a weight associated with it, then we can set
A[u][v] equal to the weight and use either a very large or a very small weight as a sentinel
to indicate nonexistent edges. For instance, if we were looking for the cheapest airplane
route, we could represent nonexistent flights with a cost of ∞. If we were looking, for some
strange reason, for the most expensive airplane route, we could use −∞ (or perhaps 0) to
represent nonexistent edges.

Although this has the merit of extreme simplicity, the space requirement is �(|V|2),
which can be prohibitive if the graph does not have very many edges. An adjacency matrix
is an appropriate representation if the graph is dense: |E| = �(|V|2). In most of the appli-
cations that we shall see, this is not true. For instance, suppose the graph represents a
street map. Assume a Manhattan-like orientation, where almost all the streets run either
north–south or east–west. Therefore, any intersection is attached to roughly four streets,
so if the graph is directed and all streets are two-way, then |E| ≈ 4|V|. If there are 3,000
intersections, then we have a 3,000-vertex graph with 12,000 edge entries, which would
require an array of size 9,000,000. Most of these entries would contain zero. This is intu-
itively bad, because we want our data structures to represent the data that are actually there
and not the data that are not present.

If the graph is not dense, in other words, if the graph is sparse, a better solution is
an adjacency list representation. For each vertex, we keep a list of all adjacent vertices.
The space requirement is then O(|E| + |V|), which is linear in the size of the graph.1 The
abstract representation should be clear from Figure 9.2. If the edges have weights, then
this additional information is also stored in the adjacency lists.

Adjacency lists are the standard way to represent graphs. Undirected graphs can be
similarly represented; each edge (u, v) appears in two lists, so the space usage essentially
doubles. A common requirement in graph algorithms is to find all vertices adjacent to some
given vertex v, and this can be done, in time proportional to the number of such vertices
found, by a simple scan down the appropriate adjacency list.

There are several alternatives for maintaining the adjacency lists. First, observe that the
lists themselves can be maintained in any kind of List, namely ArrayLists or LinkedLists.
However, for very sparse graphs, when using ArrayLists, the programmer may need to start
the ArrayLists with a smaller capacity than the default; otherwise there could be significant
wasted space.

Because it is important to be able to quickly obtain the list of adjacent vertices for any
vertex, the two basic options are to use a map in which the keys are vertices and the values
are adjacency lists, or to maintain each adjacency list as a data member of a Vertex class.
The first option is arguably simpler, but the second option can be faster, because it avoids
repeated lookups in the map.

In the second scenario, if the vertex is a String (for instance, an airport name, or the
name of a street intersection), then a map can be used in which the key is the vertex
name and the value is a Vertex and each Vertex object keeps a list of adjacent vertices, and
perhaps also the original String name.

1 When we speak of linear-time graph algorithms, O(|E| + |V|) is the running time we require.

www.manaraa.com

362 Chapter 9 Graph Algorithms

2, 4, 3

4, 5

6

6, 7, 3

4, 7

(empty)

6

1

2

3

4

5

6

7

Figure 9.2 An adjacency list representation of a graph

In most of the chapter, we present the graph algorithms using pseudocode. We will do
this to save space and, of course, to make the presentation of the algorithms much clearer.
At the end of Section 9.3, we provide a working Java implementation of a routine that
makes underlying use of a shortest-path algorithm to obtain its answers.

9.2 Topological Sort
A topological sort is an ordering of vertices in a directed acyclic graph, such that if there is
a path from vi to vj, then vj appears after vi in the ordering. The graph in Figure 9.3 repre-
sents the course prerequisite structure at a state university in Miami. A directed edge (v, w)
indicates that course v must be completed before course w may be attempted. A topologi-
cal ordering of these courses is any course sequence that does not violate the prerequisite
requirement.

It is clear that a topological ordering is not possible if the graph has a cycle, since
for two vertices v and w on the cycle, v precedes w and w precedes v. Furthermore, the
ordering is not necessarily unique; any legal ordering will do. In the graph in Figure 9.4,
v1, v2, v5, v4, v3, v7, v6 and v1, v2, v5, v4, v7, v3, v6 are both topological orderings.

A simple algorithm to find a topological ordering is first to find any vertex with no
incoming edges. We can then print this vertex, and remove it, along with its edges, from
the graph. Then we apply this same strategy to the rest of the graph.

To formalize this, we define the indegree of a vertex v as the number of edges (u, v).
We compute the indegrees of all vertices in the graph. Assuming that the indegree for each

www.manaraa.com

9.2 Topological Sort 363

MAC3311

COP3210

CAP3700

COP3337

COP3400

MAD2104

COP4555

CDA4101

COP3530

MAD3512

CDA4400

MAD3305

COP4225

COP4610

CIS4610

COP4540

COP5621

Figure 9.3 An acyclic graph representing course prerequisite structure

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.4 An acyclic graph

vertex is stored and that the graph is read into an adjacency list, we can then apply the
algorithm in Figure 9.5 to generate a topological ordering.

The method findNewVertexOfIndegreeZero scans the array looking for a vertex with
indegree 0 that has not already been assigned a topological number. It returns null if no
such vertex exists; this indicates that the graph has a cycle.

Because findNewVertexOfIndegreeZero is a simple sequential scan of the array of ver-
tices, each call to it takes O(|V|) time. Since there are |V| such calls, the running time of
the algorithm is O(|V|2).

By paying more careful attention to the data structures, it is possible to do better. The
cause of the poor running time is the sequential scan through the array of vertices. If the

www.manaraa.com

364 Chapter 9 Graph Algorithms

void topsort() throws CycleFoundException
{

for(int counter = 0; counter < NUM_VERTICES; counter++)
{

Vertex v = findNewVertexOfIndegreeZero();
if(v == null)

throw new CycleFoundException();
v.topNum = counter;
for each Vertex w adjacent to v

w.indegree--;
}

}

Figure 9.5 Simple topological sort pseudocode

Indegree Before Dequeue #

Vertex 1 2 3 4 5 6 7

v1 0 0 0 0 0 0 0

v2 1 0 0 0 0 0 0

v3 2 1 1 1 0 0 0

v4 3 2 1 0 0 0 0

v5 1 1 0 0 0 0 0

v6 3 3 3 3 2 1 0

v7 2 2 2 1 0 0 0

Enqueue v1 v2 v5 v4 v3, v7 v6

Dequeue v1 v2 v5 v4 v3 v7 v6

Figure 9.6 Result of applying topological sort to the graph in Figure 9.4

graph is sparse, we would expect that only a few vertices have their indegrees updated dur-
ing each iteration. However, in the search for a vertex of indegree 0, we look at (potentially)
all the vertices, even though only a few have changed.

We can remove this inefficiency by keeping all the (unassigned) vertices of indegree 0
in a special box. The findNewVertexOfIndegreeZero method then returns (and removes) any
vertex in the box. When we decrement the indegrees of the adjacent vertices, we check
each vertex and place it in the box if its indegree falls to 0.

To implement the box, we can use either a stack or a queue; we will use a queue. First,
the indegree is computed for every vertex. Then all vertices of indegree 0 are placed on an
initially empty queue. While the queue is not empty, a vertex v is removed, and all vertices
adjacent to v have their indegrees decremented. A vertex is put on the queue as soon as
its indegree falls to 0. The topological ordering then is the order in which the vertices
dequeue. Figure 9.6 shows the status after each phase.

www.manaraa.com

9.2 Topological Sort 365

void topsort() throws CycleFoundException
{

Queue<Vertex> q = new Queue<Vertex>();
int counter = 0;

for each Vertex v
if(v.indegree == 0)

q.enqueue(v);

while(!q.isEmpty())
{

Vertex v = q.dequeue();
v.topNum = ++counter; // Assign next number

for each Vertex w adjacent to v
if(--w.indegree == 0)

q.enqueue(w);
}
if(counter != NUM_VERTICES)

throw new CycleFoundException();
}

Figure 9.7 Pseudocode to perform topological sort

A pseudocode implementation of this algorithm is given in Figure 9.7. As before, we
will assume that the graph is already read into an adjacency list and that the indegrees
are computed and stored with the vertices. We also assume each vertex has a field named
topNum, in which to place its topological numbering.

The time to perform this algorithm is O(|E| + |V|) if adjacency lists are used. This is
apparent when one realizes that the body of the for loop is executed at most once per edge.
Computing the indegrees can be done with the following code; this same logic shows that
the cost of this computation is O(|E| + |V|), even though there are nested loops.

for each Vertex v
v.indegree = 0;

for each Vertex v
for each Vertex w adjacent to v

w.indegree++;

The queue operations are done at most once per vertex, and the other initialization steps,
including the computation of indegrees, also take time proportional to the size of the graph.

www.manaraa.com

366 Chapter 9 Graph Algorithms

9.3 Shortest-Path Algorithms
In this section we examine various shortest-path problems. The input is a weighted
graph: associated with each edge (vi, vj) is a cost ci,j to traverse the edge. The cost of

a path v1v2 . . . vN is
∑N−1

i=1 ci,i+1. This is referred to as the weighted path length. The
unweighted path length is merely the number of edges on the path, namely, N − 1.

Single-Source Shortest-Path Problem.
Given as input a weighted graph, G = (V, E), and a distinguished vertex, s, find the
shortest weighted path from s to every other vertex in G.

For example, in the graph in Figure 9.8, the shortest weighted path from v1 to v6 has
a cost of 6 and goes from v1 to v4 to v7 to v6. The shortest unweighted path between these
vertices is 2. Generally, when it is not specified whether we are referring to a weighted or
an unweighted path, the path is weighted if the graph is. Notice also that in this graph
there is no path from v6 to v1.

The graph in the preceding example has no edges of negative cost. The graph in
Figure 9.9 shows the problems that negative edges can cause. The path from v5 to v4

has cost 1, but a shorter path exists by following the loop v5, v4, v2, v5, v4, which has cost
−5. This path is still not the shortest, because we could stay in the loop arbitrarily long.
Thus, the shortest path between these two points is undefined. Similarly, the shortest path
from v1 to v6 is undefined, because we can get into the same loop. This loop is known as a
negative-cost cycle; when one is present in the graph, the shortest paths are not defined.
Negative-cost edges are not necessarily bad, as the cycles are, but their presence seems to
make the problem harder. For convenience, in the absence of a negative-cost cycle, the
shortest path from s to s is zero.

There are many examples where we might want to solve the shortest-path problem.
If the vertices represent computers; the edges represent a link between computers; and
the costs represent communication costs (phone bill per megabyte of data), delay costs
(number of seconds required to transmit a megabyte), or a combination of these and other

6

2

4 1 3 10

2

485

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.8 A directed graph G

www.manaraa.com

9.3 Shortest-Path Algorithms 367

6

2

4 1 3 –10

1

262

1

5

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.9 A graph with a negative-cost cycle

factors, then we can use the shortest-path algorithm to find the cheapest way to send
electronic news from one computer to a set of other computers.

We can model airplane or other mass transit routes by graphs and use a shortest-
path algorithm to compute the best route between two points. In this and many practical
applications, we might want to find the shortest path from one vertex, s, to only one other
vertex, t. Currently there are no algorithms in which finding the path from s to one vertex
is any faster (by more than a constant factor) than finding the path from s to all vertices.

We will examine algorithms to solve four versions of this problem. First, we will con-
sider the unweighted shortest-path problem and show how to solve it in O(|E|+|V|). Next,
we will show how to solve the weighted shortest-path problem if we assume that there are
no negative edges. The running time for this algorithm is O(|E| log |V|) when implemented
with reasonable data structures.

If the graph has negative edges, we will provide a simple solution, which unfortunately
has a poor time bound of O(|E| · |V|). Finally, we will solve the weighted problem for the
special case of acyclic graphs in linear time.

9.3.1 Unweighted Shortest Paths
Figure 9.10 shows an unweighted graph, G. Using some vertex, s, which is an input param-
eter, we would like to find the shortest path from s to all other vertices. We are only
interested in the number of edges contained on the path, so there are no weights on the
edges. This is clearly a special case of the weighted shortest-path problem, since we could
assign all edges a weight of 1.

For now, suppose we are interested only in the length of the shortest paths, not in the
actual paths themselves. Keeping track of the actual paths will turn out to be a matter of
simple bookkeeping.

Suppose we choose s to be v3. Immediately, we can tell that the shortest path from
s to v3 is then a path of length 0. We can mark this information, obtaining the graph in
Figure 9.11.

www.manaraa.com

368 Chapter 9 Graph Algorithms

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.10 An unweighted directed graph G

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

Figure 9.11 Graph after marking the start node as reachable in zero edges

Now we can start looking for all vertices that are a distance 1 away from s. These can
be found by looking at the vertices that are adjacent to s. If we do this, we see that v1 and
v6 are one edge from s. This is shown in Figure 9.12.

We can now find vertices whose shortest path from s is exactly 2, by finding all the
vertices adjacent to v1 and v6 (the vertices at distance 1), whose shortest paths are not
already known. This search tells us that the shortest path to v2 and v4 is 2. Figure 9.13
shows the progress that has been made so far.

Finally we can find, by examining vertices adjacent to the recently evaluated v2 and v4,
that v5 and v7 have a shortest path of three edges. All vertices have now been calculated,
and so Figure 9.14 shows the final result of the algorithm.

This strategy for searching a graph is known as breadth-first search. It operates by
processing vertices in layers: The vertices closest to the start are evaluated first, and the
most distant vertices are evaluated last. This is much the same as a level-order traversal for
trees.

Given this strategy, we must translate it into code. Figure 9.15 shows the initial
configuration of the table that our algorithm will use to keep track of its progress.

www.manaraa.com

9.3 Shortest-Path Algorithms 369

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

1

1

Figure 9.12 Graph after finding all vertices whose path length from s is 1

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

1

1

2

2

Figure 9.13 Graph after finding all vertices whose shortest path is 2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

0

1

1

2

2 3

3

Figure 9.14 Final shortest paths

www.manaraa.com

370 Chapter 9 Graph Algorithms

v known dv pv

v1 F ∞ 0

v2 F ∞ 0

v3 F 0 0

v4 F ∞ 0

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.15 Initial configuration of table used in unweighted shortest-path computation

For each vertex, we will keep track of three pieces of information. First, we will keep
its distance from s in the entry dv. Initially all vertices are unreachable except for s, whose
path length is 0. The entry in pv is the bookkeeping variable, which will allow us to print
the actual paths. The entry known is set to true after a vertex is processed. Initially, all
entries are not known, including the start vertex. When a vertex is marked known, we have
a guarantee that no cheaper path will ever be found, and so processing for that vertex is
essentially complete.

The basic algorithm can be described in Figure 9.16. The algorithm in Figure 9.16
mimics the diagrams by declaring as known the vertices at distance d = 0, then d = 1,
then d = 2, and so on, and setting all the adjacent vertices w that still have dw = ∞ to a
distance dw = d + 1.

By tracing back through the pv variable, the actual path can be printed. We will see
how when we discuss the weighted case.

The running time of the algorithm is O(|V|2), because of the doubly nested for loops.
An obvious inefficiency is that the outside loop continues until NUM_VERTICES − 1, even if
all the vertices become known much earlier. Although an extra test could be made to avoid
this, it does not affect the worst-case running time, as can be seen by generalizing what
happens when the input is the graph in Figure 9.17 with start vertex v9.

We can remove the inefficiency in much the same way as was done for topological sort.
At any point in time, there are only two types of unknown vertices that have dv �= ∞. Some
have dv = currDist and the rest have dv = currDist + 1. Because of this extra structure, it
is very wasteful to search through the entire table to find a proper vertex.

A very simple but abstract solution is to keep two boxes. Box #1 will have the unknown
vertices with dv = currDist, and box #2 will have dv = currDist + 1. The test to find an
appropriate vertex v can be replaced by finding any vertex in box #1. After updating w
(inside the innermost if block), we can add w to box #2. After the outermost for loop
terminates, box #1 is empty, and box #2 can be transferred to box #1 for the next pass of
the for loop.

We can refine this idea even further by using just one queue. At the start of the pass,
the queue contains only vertices of distance currDist. When we add adjacent vertices of
distance currDist + 1, since they enqueue at the rear, we are guaranteed that they will not
be processed until after all the vertices of distance currDist have been processed. After the

www.manaraa.com

9.3 Shortest-Path Algorithms 371

void unweighted(Vertex s)
{

for each Vertex v
{

v.dist = INFINITY;
v.known = false;

}

s.dist = 0;

for(int currDist = 0; currDist < NUM_VERTICES; currDist++)
for each Vertex v

if(!v.known && v.dist == currDist)
{

v.known = true;
for each Vertex w adjacent to v

if(w.dist == INFINITY)
{

w.dist = currDist + 1;
w.path = v;

}
}

}

Figure 9.16 Pseudocode for unweighted shortest-path algorithm

v 1v 2v 3v 4v 5v 6v 7v 8v 9

Figure 9.17 A bad case for unweighted shortest-path algorithm using Figure 9.16

last vertex at distance currDist dequeues and is processed, the queue only contains vertices
of distance currDist + 1, so this process perpetuates. We merely need to begin the process
by placing the start node on the queue by itself.

The refined algorithm is shown in Figure 9.18. In the pseudocode, we have assumed
that the start vertex, s, is passed as a parameter. Also, it is possible that the queue might
empty prematurely, if some vertices are unreachable from the start node. In this case, a
distance of INFINITY will be reported for these nodes, which is perfectly reasonable. Finally,
the known field is not used; once a vertex is processed it can never enter the queue again, so
the fact that it need not be reprocessed is implicitly marked. Thus, the known field can be
discarded. Figure 9.19 shows how the values on the graph we have been using are changed
during the algorithm. (it includes changes that would occur to known if we had kept it).

Using the same analysis as was performed for topological sort, we see that the running
time is O(|E| + |V|), as long as adjacency lists are used.

www.manaraa.com

372 Chapter 9 Graph Algorithms

void unweighted(Vertex s)
{

Queue<Vertex> q = new Queue<Vertex>();

for each Vertex v
v.dist = INFINITY;

s.dist = 0;
q.enqueue(s);

while(!q.isEmpty())
{

Vertex v = q.dequeue();

for each Vertex w adjacent to v
if(w.dist == INFINITY)
{

w.dist = v.dist + 1;
w.path = v;
q.enqueue(w);

}
}

}

Figure 9.18 Pseudocode for unweighted shortest-path algorithm

9.3.2 Dijkstra’s Algorithm
If the graph is weighted, the problem (apparently) becomes harder, but we can still use the
ideas from the unweighted case.

We keep all of the same information as before. Thus, each vertex is marked as either
known or unknown. A tentative distance dv is kept for each vertex, as before. This dis-
tance turns out to be the shortest path length from s to v using only known vertices as
intermediates. As before, we record pv, which is the last vertex to cause a change to dv.

The general method to solve the single-source shortest-path problem is known as
Dijkstra’s algorithm. This thirty-year-old solution is a prime example of a greedy algo-
rithm. Greedy algorithms generally solve a problem in stages by doing what appears to
be the best thing at each stage. For example, to make change in U.S. currency, most
people count out the quarters first, then the dimes, nickels, and pennies. This greedy algo-
rithm gives change using the minimum number of coins. The main problem with greedy
algorithms is that they do not always work. The addition of a 12-cent piece breaks the
coin-changing algorithm for returning 15 cents, because the answer it gives (one 12-cent
piece and three pennies) is not optimal (one dime and one nickel).

Dijkstra’s algorithm proceeds in stages, just like the unweighted shortest-path algo-
rithm. At each stage, Dijkstra’s algorithm selects a vertex v, which has the smallest dv

www.manaraa.com

9.3 Shortest-Path Algorithms 373

Initial State v3 Dequeued v1 Dequeued v6 Dequeued

v known dv pv known dv pv known dv pv known dv pv

v1 F ∞ 0 F 1 v3 T 1 v3 T 1 v3

v2 F ∞ 0 F ∞ 0 F 2 v1 F 2 v1

v3 F 0 0 T 0 0 T 0 0 T 0 0

v4 F ∞ 0 F ∞ 0 F 2 v1 F 2 v1

v5 F ∞ 0 F ∞ 0 F ∞ 0 F ∞ 0

v6 F ∞ 0 F 1 v3 F 1 v3 T 1 v3

v7 F ∞ 0 F ∞ 0 F ∞ 0 F ∞ 0

Q: v3 v1, v6 v6, v2, v4 v2, v4

v2 Dequeued v4 Dequeued v5 Dequeued v7 Dequeued

v known dv pv known dv pv known dv pv known dv pv

v1 T 1 v3 T 1 v3 T 1 v3 T 1 v3

v2 T 2 v1 T 2 v1 T 2 v1 T 2 v1

v3 T 0 0 T 0 0 T 0 0 T 0 0

v4 F 2 v1 T 2 v1 T 2 v1 T 2 v1

v5 F 3 v2 F 3 v2 T 3 v2 T 3 v2

v6 T 1 v3 T 1 v3 T 1 v3 T 1 v3

v7 F ∞ 0 F 3 v4 F 3 v4 T 3 v4

Q: v4, v5 v5, v7 v7 empty

Figure 9.19 How the data change during the unweighted shortest-path algorithm

among all the unknown vertices, and declares that the shortest path from s to v is known.
The remainder of a stage consists of updating the values of dw.

In the unweighted case, we set dw = dv + 1 if dw = ∞. Thus, we essentially lowered
the value of dw if vertex v offered a shorter path. If we apply the same logic to the weighted
case, then we should set dw = dv + cv,w if this new value for dw would be an improvement.
Put simply, the algorithm decides whether or not it is a good idea to use v on the path to w.
The original cost, dw, is the cost without using v; the cost calculated above is the cheapest
path using v (and only known vertices).

The graph in Figure 9.20 is our example. Figure 9.21 represents the initial configura-
tion, assuming that the start node, s, is v1. The first vertex selected is v1, with path length
0. This vertex is marked known. Now that v1 is known, some entries need to be adjusted.
The vertices adjacent to v1 are v2 and v4. Both these vertices get their entries adjusted, as
indicated in Figure 9.22.

Next, v4 is selected and marked known. Vertices v3, v5, v6, and v7 are adjacent, and it
turns out that all require adjusting, as shown in Figure 9.23.

www.manaraa.com

374 Chapter 9 Graph Algorithms

6

2

4 1 3 10

2

485

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.20 The directed graph G (again)

v known dv pv

v1 F 0 0

v2 F ∞ 0

v3 F ∞ 0

v4 F ∞ 0

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.21 Initial configuration of table used in Dijkstra’s algorithm

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F ∞ 0

v4 F 1 v1

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.22 After v1 is declared known

Next, v2 is selected. v4 is adjacent but already known, so no work is performed on it.
v5 is adjacent but not adjusted, because the cost of going through v2 is 2 + 10 = 12 and
a path of length 3 is already known. Figure 9.24 shows the table after these vertices are
selected.

www.manaraa.com

9.3 Shortest-Path Algorithms 375

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F 3 v4

v4 T 1 v1

v5 F 3 v4

v6 F 9 v4

v7 F 5 v4

Figure 9.23 After v4 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 F 3 v4

v4 T 1 v1

v5 F 3 v4

v6 F 9 v4

v7 F 5 v4

Figure 9.24 After v2 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 3 v4

v4 T 1 v1

v5 T 3 v4

v6 F 8 v3

v7 F 5 v4

Figure 9.25 After v5 and then v3 are declared known

The next vertex selected is v5 at cost 3. v7 is the only adjacent vertex, but it is not
adjusted, because 3 + 6 > 5. Then v3 is selected, and the distance for v6 is adjusted down
to 3 + 5 = 8. The resulting table is depicted in Figure 9.25.

Next v7 is selected; v6 gets updated down to 5 + 1 = 6. The resulting table is
Figure 9.26.

Finally, v6 is selected. The final table is shown in Figure 9.27. Figure 9.28 graphically
shows how edges are marked known and vertices updated during Dijkstra’s algorithm.

www.manaraa.com

376 Chapter 9 Graph Algorithms

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 3 v4

v4 T 1 v1

v5 T 3 v4

v6 F 6 v7

v7 T 5 v4

Figure 9.26 After v7 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 3 v4

v4 T 1 v1

v5 T 3 v4

v6 T 6 v7

v7 T 5 v4

Figure 9.27 After v6 is declared known and algorithm terminates

To print out the actual path from a start vertex to some vertex v, we can write a recursive
routine to follow the trail left in the p variables.

We now give pseudocode to implement Dijkstra’s algorithm. Each Vertex stores various
data fields that are used in the algorithm. This is shown in Figure 9.29.

The path can be printed out using the recursive routine in Figure 9.30. The routine
recursively prints the path all the way up to the vertex before v on the path and then just
prints v. This works because the path is simple.

Figure 9.31 shows the main algorithm, which is just a for loop to fill up the table using
the greedy selection rule.

A proof by contradiction will show that this algorithm always works as long as no
edge has a negative cost. If any edge has negative cost, the algorithm could produce the
wrong answer (see Exercise 9.7(a)). The running time depends on how the vertices are
manipulated, which we have yet to consider. If we use the obvious algorithm of sequentially
scanning the vertices to find the minimum dv, each phase will take O(|V|) time to find the
minimum, and thus O(|V|2) time will be spent finding the minimum over the course of the
algorithm. The time for updating dw is constant per update, and there is at most one update
per edge for a total of O(|E|). Thus, the total running time is O(|E|+ |V|2) = O(|V|2). If the
graph is dense, with |E| = �(|V|2), this algorithm is not only simple but also essentially
optimal, since it runs in time linear in the number of edges.

www.manaraa.com

9.3 Shortest-Path Algorithms 377

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

6

2

4 1 3 10

2

485

1

2

0 0 2

1

0 2

3 1 3

9 5

0 2

3 1 3

9 5

0 2

3 1 3

9 5

0 2

3 1 3

8 5

0 2

3 1 3

6 5

0 2

3 1 3

6 5

v 1 v 2

v 3 v 4 v 5

v 6 v 7

v 1* v 2

v 3 v 4 v 5

v 6 v 7

v 1* v 2

v 3 v 4* v 5

v 6 v 7

v 1* v 2*

v 3 v 4* v 5

v 6 v 7

v 1* v 2*

v 3 v 4* v 5*

v 6 v 7

v 1* v 2*

v 3* v 4* v 5*

v 6 v 7

v 1* v 2*

v 3* v 4* v 5*

v 6 v 7*

v 1* v 2*

v 3* v 4* v 5*

v 6* v 7*

∞ ∞

∞

∞ ∞ ∞ ∞

∞∞ ∞

Figure 9.28 Stages of Dijkstra’s algorithm

If the graph is sparse, with |E| = �(|V|), this algorithm is too slow. In this case, the
distances would need to be kept in a priority queue. There are actually two ways to do this;
both are similar.

Selection of the vertex v is a deleteMin operation, since once the unknown minimum
vertex is found, it is no longer unknown and must be removed from future consideration.
The update of w’s distance can be implemented two ways.

www.manaraa.com

378 Chapter 9 Graph Algorithms

class Vertex
{

public List adj; // Adjacency list
public boolean known;
public DistType dist; // DistType is probably int
public Vertex path;

// Other fields and methods as needed
}

Figure 9.29 Vertex class for Dijkstra’s algorithm

/*
* Print shortest path to v after dijkstra has run.

* Assume that the path exists.

*/
void printPath(Vertex v)
{

if(v.path != null)
{

printPath(v.path);
System.out.print(" to ");

}
System.out.print(v);

}

Figure 9.30 Routine to print the actual shortest path

One way treats the update as a decreaseKey operation. The time to find the minimum is
then O(log |V|), as is the time to perform updates, which amount to decreaseKey operations.
This gives a running time of O(|E| log |V| + |V| log |V|) = O(|E| log |V|), an improvement
over the previous bound for sparse graphs. Since priority queues do not efficiently support
the find operation, the location in the priority queue of each value of di will need to be
maintained and updated whenever di changes in the priority queue. If the priority queue
is implemented by a binary heap, this will be messy. If a pairing heap (Chapter 12) is used,
the code is not too bad.

An alternate method is to insert w and the new value dw into the priority queue every
time w’s distance changes. Thus, there may be more than one representative for each vertex
in the priority queue. When the deleteMin operation removes the smallest vertex from
the priority queue, it must be checked to make sure that it is not already known and, if
it is, it is simply ignored and another deleteMin is performed. Although this method is
superior from a software point of view, and is certainly much easier to code, the size of
the priority queue could get to be as large as |E|. This does not affect the asymptotic time
bounds, since |E| ≤ |V|2 implies that log |E| ≤ 2 log |V|. Thus, we still get an O(|E| log |V|)
algorithm. However, the space requirement does increase, and this could be important in

www.manaraa.com

9.3 Shortest-Path Algorithms 379

void dijkstra(Vertex s)
{

for each Vertex v
{

v.dist = INFINITY;
v.known = false;

}

s.dist = 0;

while(there is an unknown distance vertex)
{

Vertex v = smallest unknown distance vertex;

v.known = true;

for each Vertex w adjacent to v
if(!w.known)
{

DistType cvw = cost of edge from v to w;

if(v.dist + cvw < w.dist)
{

// Update w
decrease(w.dist to v.dist + cvw);
w.path = v;

}
}

}
}

Figure 9.31 Pseudocode for Dijkstra’s algorithm

some applications. Moreover, because this method requires |E| deleteMins instead of only
|V|, it is likely to be slower in practice.

Notice that for the typical problems, such as computer mail and mass transit com-
mutes, the graphs are typically very sparse because most vertices have only a couple of
edges, so it is important in many applications to use a priority queue to solve this problem.

There are better time bounds possible using Dijkstra’s algorithm if different data struc-
tures are used. In Chapter 11, we will see another priority queue data structure called the
Fibonacci heap. When this is used, the running time is O(|E|+|V| log |V|). Fibonacci heaps
have good theoretical time bounds but a fair amount of overhead, so it is not clear whether
using Fibonacci heaps is actually better in practice than Dijkstra’s algorithm with binary
heaps. To date, there are no meaningful average-case results for this problem.

www.manaraa.com

380 Chapter 9 Graph Algorithms

9.3.3 Graphs with Negative Edge Costs
If the graph has negative edge costs, then Dijkstra’s algorithm does not work. The problem
is that once a vertex u is declared known, it is possible that from some other, unknown vertex
v there is a path back to u that is very negative. In such a case, taking a path from s to v back
to u is better than going from s to u without using v. Exercise 9.7(a) asks you to construct
an explicit example.

A tempting solution is to add a constant to each edge cost, thus removing negative
edges, calculate a shortest path on the new graph, and then use that result on the original.
The naive implementation of this strategy does not work because paths with many edges
become more weighty than paths with few edges.

A combination of the weighted and unweighted algorithms will solve the problem, but
at the cost of a drastic increase in running time. We forget about the concept of known
vertices, since our algorithm needs to be able to change its mind. We begin by placing s
on a queue. Then, at each stage, we dequeue a vertex v. We find all vertices w adjacent
to v such that dw > dv + cv,w. We update dw and pw, and place w on a queue if it is not
already there. A bit can be set for each vertex to indicate presence in the queue. We repeat
the process until the queue is empty. Figure 9.32 (almost) implements this algorithm.

Although the algorithm works if there are no negative-cost cycles, it is no longer
true that the code in the inner for loop is executed once per edge. Each vertex can
dequeue at most |V| times, so the running time is O(|E| · |V|) if adjacency lists are used
(Exercise 9.7(b)). This is quite an increase from Dijkstra’s algorithm, so it is fortunate
that, in practice, edge costs are nonnegative. If negative-cost cycles are present, then the
algorithm as written will loop indefinitely. By stopping the algorithm after any vertex has
dequeued |V| + 1 times, we can guarantee termination.

9.3.4 Acyclic Graphs
If the graph is known to be acyclic, we can improve Dijkstra’s algorithm by changing
the order in which vertices are declared known, otherwise known as the vertex selection
rule. The new rule is to select vertices in topological order. The algorithm can be done in
one pass, since the selections and updates can take place as the topological sort is being
performed.

This selection rule works because when a vertex v is selected, its distance, dv, can
no longer be lowered, since by the topological ordering rule it has no incoming edges
emanating from unknown nodes.

There is no need for a priority queue with this selection rule; the running time is
O(|E| + |V|), since the selection takes constant time.

An acyclic graph could model some downhill skiing problem—we want to get from
point a to b but can only go downhill, so clearly there are no cycles. Another possible
application might be the modeling of (nonreversible) chemical reactions. We could have
each vertex represent a particular state of an experiment. Edges would represent a transi-
tion from one state to another, and the edge weights might represent the energy released.
If only transitions from a higher energy state to a lower are allowed, the graph is acyclic.

A more important use of acyclic graphs is critical path analysis. The graph in
Figure 9.33 will serve as our example. Each node represents an activity that must be

www.manaraa.com

9.3 Shortest-Path Algorithms 381

void weightedNegative(Vertex s)
{

Queue<Vertex> q = new Queue<Vertex>();

for each Vertex v
v.dist = INFINITY;

s.dist = 0;
q.enqueue(s);

while(!q.isEmpty())
{

Vertex v = q.dequeue();

for each Vertex w adjacent to v
if(v.dist + cvw < w.dist)
{

// Update w
w.dist = v.dist + cvw;
w.path = v;
if(w is not already in q)

q.enqueue(w);
}

}
}

Figure 9.32 Pseudocode for weighted shortest-path algorithm with negative edge costs

performed, along with the time it takes to complete the activity. This graph is thus known as
an activity-node graph. The edges represent precedence relationships: An edge (v, w) means
that activity v must be completed before activity w may begin. Of course, this implies that
the graph must be acyclic. We assume that any activities that do not depend (either directly
or indirectly) on each other can be performed in parallel by different servers.

This type of a graph could be (and frequently is) used to model construction projects.
In this case, there are several important questions which would be of interest to answer.
First, what is the earliest completion time for the project? We can see from the graph
that 10 time units are required along the path A, C, F, H. Another important question
is to determine which activities can be delayed, and by how long, without affecting the
minimum completion time. For instance, delaying any of A, C, F, or H would push the
completion time past 10 units. On the other hand, activity B is less critical and can be
delayed up to two time units without affecting the final completion time.

To perform these calculations, we convert the activity-node graph to an event-node
graph. Each event corresponds to the completion of an activity and all its dependent activ-
ities. Events reachable from a node v in the event-node graph may not commence until
after the event v is completed. This graph can be constructed automatically or by hand.
Dummy edges and nodes may need to be inserted in the case where an activity depends on

www.manaraa.com

382 Chapter 9 Graph Algorithms

start

A (3)

B (2)

C (3)

D (2)

E (1)

F (3)

G (2)

H (1)

K (4)

finish

Figure 9.33 Activity-node graph

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3

B/2

C/3

0

0

D/2

0

0

0

0
E/1

F/3

G/2

K/4

0

0

0

H/1

Figure 9.34 Event-node graph

several others. This is necessary in order to avoid introducing false dependencies (or false
lack of dependencies). The event-node graph corresponding to the graph in Figure 9.33 is
shown in Figure 9.34.

To find the earliest completion time of the project, we merely need to find the length of
the longest path from the first event to the last event. For general graphs, the longest-path
problem generally does not make sense, because of the possibility of positive-cost cycles.
These are the equivalent of negative-cost cycles in shortest-path problems. If positive-cost
cycles are present, we could ask for the longest simple path, but no satisfactory solution is
known for this problem. Since the event-node graph is acyclic, we need not worry about
cycles. In this case, it is easy to adapt the shortest-path algorithm to compute the earliest
completion time for all nodes in the graph. If ECi is the earliest completion time for node
i, then the applicable rules are

EC1 = 0

ECw = max
(v,w)∈E

(ECv + cv,w)

www.manaraa.com

9.3 Shortest-Path Algorithms 383

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3

B/2

C/3

0

0

D/2

0

0

0

0
E/1

F/3

G/2

K/4

0

0

0

H/1
0

3

2

3 5

6

3

6 9

5 7

7

9 10

Figure 9.35 Earliest completion times

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3

B/2

C/3

0

0

D/2

0

0

0

0
E/1

F/3

G/2

K/4

0

0

0

H/1

0

3

4

4 6

6

5

6 9

7 9

9

9 10

Figure 9.36 Latest completion times

Figure 9.35 shows the earliest completion time for each event in our example event-node
graph.

We can also compute the latest time, LCi, that each event can finish without affecting
the final completion time. The formulas to do this are

LCn = ECn

LCv = min
(v,w)∈E

(LCw − cv,w)

These values can be computed in linear time by maintaining, for each vertex, a list of all
adjacent and preceding vertices. The earliest completion times are computed for vertices by
their topological order, and the latest completion times are computed by reverse topological
order. The latest completion times are shown in Figure 9.36.

The slack time for each edge in the event-node graph represents the amount of time
that the completion of the corresponding activity can be delayed without delaying the
overall completion. It is easy to see that

Slack(v,w) = LCw − ECv − cv,w

Figure 9.37 shows the slack (as the third entry) for each activity in the event-node graph.
For each node, the top number is the earliest completion time and the bottom entry is the
latest completion time.

www.manaraa.com

384 Chapter 9 Graph Algorithms

1

2

3

6' 6

4

5

7' 7

8' 8

9

10' 10

A/3/0

B/2/2

C/3/0

D/2/1

E/1/2

F/3/0

G/2/2

K/4/2

H/1/0
0

3

2

3 5

6

3

6 9

5 7

7

9 10

0

3

4

4 6

6

5

6 9

7 9

9

9 10

Figure 9.37 Earliest completion time, latest completion time, and slack

Some activities have zero slack. These are critical activities, which must finish on sched-
ule. There is at least one path consisting entirely of zero-slack edges; such a path is a
critical path.

9.3.5 All-Pairs Shortest Path
Sometimes it is important to find the shortest paths between all pairs of vertices in the
graph. Although we could just run the appropriate single-source algorithm |V| times, we
might expect a somewhat faster solution, especially on a dense graph, if we compute all
the information at once.

In Chapter 10, we will see an O(|V|3) algorithm to solve this problem for weighted
graphs. Although, for dense graphs, this is the same bound as running a simple (non–
priority queue) Dijkstra’s algorithm |V| times, the loops are so tight that the specialized
all-pairs algorithm is likely to be faster in practice. On sparse graphs, of course, it is faster
to run |V| Dijkstra’s algorithms coded with priority queues.

9.3.6 Shortest-Path Example
In this section we write some Java routines to compute word ladders. In a word ladder each
word is formed by changing one character in the ladder’s previous word. For instance, we
can convert zero to five by a sequence of one-character substitutions as follows: zero hero
here hire fire five.

This is an unweighted shortest problem in which each word is a vertex, and two ver-
tices have edges (in both directions) between them if they can be converted to each other
with a one-character substitution.

In Section 4.8, we described and wrote a Java routine that would create a Map in
which the keys are words, and the values are Lists containing the words that can result
from a one-character transformation. As such, this Map represents the graph, in adjacency
list format, and we only need to write one routine to run the single-source unweighted
shortest-path algorithm and a second routine to output the sequence of words, after the
single-source shortest-path algorithm has completed. These two routines are both shown
in Figure 9.38.

www.manaraa.com

1 // Runs the shortest path calculation from the adjacency map, returns a List
2 // that contains the sequence of word changes to get from first to second.
3 // Returns null if no sequence can be found for any reason.
4 public static List<String>
5 findChain(Map<String,List<String>> adjacentWords, String first, String second)
6 {
7 Map<String,String> previousWord = new HashMap<String,String>();
8 LinkedList<String> q = new LinkedList<String>();
9

10 q.addLast(first);
11 while(!q.isEmpty())
12 {
13 String current = q.removeFirst();
14 List<String> adj = adjacentWords.get(current);
15
16 if(adj != null)
17 for(String adjWord : adj)
18 if(previousWord.get(adjWord) == null)
19 {
20 previousWord.put(adjWord, current);
21 q.addLast(adjWord);
22 }
23 }
24
25 previousWord.put(first, null);
26
27 return getChainFromPreviousMap(previousWord, first, second);
28 }
29
30 // After the shortest path calculation has run, computes the List that
31 // contains the sequence of word changes to get from first to second.
32 // Returns null if there is no path.
33 public static List<String> getChainFromPreviousMap(Map<String,String> prev,
34 String first, String second)
35 {
36 LinkedList<String> result = null;
37
38 if(prev.get(second) != null)
39 {
40 result = new LinkedList<String>();
41 for(String str = second; str != null; str = prev.get(str))
42 result.addFirst(str);
43 }
44
45 return result;
46 }

Figure 9.38 Java code to find word ladders

www.manaraa.com

386 Chapter 9 Graph Algorithms

The first routine is findChain, which takes the Map representing the adjacency lists and
the two words to be connected and returns a Map in which the keys are words, and the
corresponding value is the word prior to the key on the shortest ladder starting at first.
In other words, in the example above, if the starting word is zero, the value for key five is
fire, the value for key fire is hire, the value for key hire is here, and so on. Clearly this
provides enough information for the second routine, getChainFromPreviousMap, which can
work its way backward.

findChain is a direct implementation of the pseudocode in Figure 9.18. It assumes that
first is a valid word, which is an easily testable condition prior to the call. The basic loop
incorrectly assigns a previous entry for first (when the initial word adjacent to first is
processed), so at line 25 that entry is repaired.

getChainFromPrevMap uses the prev Map and second, which presumably is a key in the
Map and returns the words used to form the word ladder, by working its way backward
through prev. By using a LinkedList and inserting at the front, we obtain the word ladder
in the correct order.

It is possible to generalize this problem to allow single-character substitutions that
include the deletion of a character or the addition of a character. To compute the adjacency
list requires only a little more effort: in the last algorithm in Section 4.8, every time a
representative for word w in group g is computed, we check if the representative is a word
in group g − 1. If it is, then the representative is adjacent to w (it is a single-character
deletion), and w is adjacent to the representative (it is a single-character addition). It is also
possible to assign a cost to a character deletion or insertion (that is higher than a simple
substitution), and this yields a weighted shortest-path problem that can be solved with
Dijkstra’s algorithm.

9.4 Network Flow Problems
Suppose we are given a directed graph G = (V, E) with edge capacities cv,w. These
capacities could represent the amount of water that could flow through a pipe or the
amount of traffic that could flow on a street between two intersections. We have two
vertices: s, which we call the source, and t, which is the sink. Through any edge, (v, w),
at most cv,w units of “flow” may pass. At any vertex, v, that is not either s or t, the total
flow coming in must equal the total flow going out. The maximum flow problem is to
determine the maximum amount of flow that can pass from s to t. As an example, for the
graph in Figure 9.39 on the left the maximum flow is 5, as indicated by the graph on the
right. Although this example graph is acyclic, this is not a requirement; our (eventual)
algorithm will work even if the graph has a cycle.

As required by the problem statement, no edge carries more flow than its capacity.
Vertex a has three units of flow coming in, which it distributes to c and d. Vertex d takes
three units of flow from a and b and combines this, sending the result to t. A vertex can
combine and distribute flow in any manner that it likes, as long as edge capacities are not
violated and as long as flow conservation is maintained (what goes in must come out).

www.manaraa.com

9.4 Network Flow Problems 387

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

3

2 2

2

1

2

3

0

Figure 9.39 A graph (left) and its maximum flow

s

a b

c d

t

4 2

1

2 2
4

3 3

Figure 9.40 A cut in graph G partitions the vertices with s and t in different groups. The
total edge cost across the cut is 5, proving that a flow of 5 is maximum

Looking at the graph, we see that s has edges of capacities 4 and 2 leaving it, and t has
edges of capacities 3 and 3 entering it. So perhaps the maximum flow could be 6 instead
of 5. However, Figure 9.40 shows how we can prove that the maximum flow is 5. We
cut the graph into two parts; one part contains s and some other vertices; the other part
contains t. Since flow must cross through the cut, the total capacity of all edges (u, v) where
u is in s’s partition and v is in t’s partition is a bound on the maximum flow. These edges are
(a, c) and (d, t), with total capacity 5, so the maximum flow cannot exceed 5. Any graph
has a large number of cuts; the cut with minimum total capacity provides a bound on the
maximum flow, and as it turns out (but it is not immediately obvious), the minimum cut
capacity is exactly equal to the maximum flow.

www.manaraa.com

388 Chapter 9 Graph Algorithms

9.4.1 A Simple Maximum-Flow Algorithm
A first attempt to solve the problem proceeds in stages. We start with our graph, G, and
construct a flow graph Gf . Gf tells the flow that has been attained at any stage in the
algorithm. Initially all edges in Gf have no flow, and we hope that when the algorithm
terminates, Gf contains a maximum flow. We also construct a graph, Gr, called the residual
graph. Gr tells, for each edge, how much more flow can be added. We can calculate this
by subtracting the current flow from the capacity for each edge. An edge in Gr is known as
a residual edge.

At each stage, we find a path in Gr from s to t. This path is known as an augmenting
path. The minimum edge on this path is the amount of flow that can be added to every
edge on the path. We do this by adjusting Gf and recomputing Gr. When we find no path
from s to t in Gr, we terminate. This algorithm is nondeterministic, in that we are free to
choose any path from s to t; obviously some choices are better than others, and we will
address this issue later. We will run this algorithm on our example. The graphs below are
G, Gf , Gr, respectively. Keep in mind that there is a slight flaw in this algorithm. The initial
configuration is in Figure 9.41.

There are many paths from s to t in the residual graph. Suppose we select s, b, d, t.
Then we can send two units of flow through every edge on this path. We will adopt the
convention that once we have filled (saturated) an edge, it is removed from the residual
graph. We then obtain Figure 9.42.

Next, we might select the path s, a, c, t, which also allows two units of flow. Making the
required adjustments gives the graphs in Figure 9.43.

The only path left to select is s, a, d, t, which allows one unit of flow. The resulting
graphs are shown in Figure 9.44.

The algorithm terminates at this point, because t is unreachable from s. The resulting
flow of 5 happens to be the maximum. To see what the problem is, suppose that with
our initial graph, we chose the path s, a, d, t. This path allows three units of flow and thus
seems to be a good choice. The result of this choice, however, leaves only one path from
s to t in the residual graph; it allows one more unit of flow, and thus, our algorithm has

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

4

1

2 2

3

4

2

3

0 0

0

0 0
0

0 0

Figure 9.41 Initial stages of the graph, flow graph, and residual graph

www.manaraa.com

9.4 Network Flow Problems 389

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

4

1

2

3

4

1

0 2

0

0 2
0

0 2

Figure 9.42 G, Gf , Gr after two units of flow added along s, b, d, t

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

2

1

4

1
1

2 2

0

2 2
0

2 2

Figure 9.43 G, Gf , Gr after two units of flow added along s, a, c, t

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

1

1

3

1

3 2

0

2 2
1

2 3

Figure 9.44 G, Gf , Gr after one unit of flow added along s, a, d, t—algorithm terminates

www.manaraa.com

390 Chapter 9 Graph Algorithms

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

1

1

2 2
1

3

23 0

0

0 0
3

0 3

Figure 9.45 G, Gf , Gr if initial action is to add three units of flow along s, a, d,
t—algorithm terminates after one more step with suboptimal solution

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

3
1

1

2 2

3
1

3

3

23 0

0

0 0
3

0 3

Figure 9.46 Graphs after three units of flow added along s, a, d, t using correct algorithm

failed to find an optimal solution. This is an example of a greedy algorithm that does not
work. Figure 9.45 shows why the algorithm fails.

In order to make this algorithm work, we need to allow the algorithm to change its
mind. To do this, for every edge (v, w) with flow fv,w in the flow graph, we will add an edge
in the residual graph (w, v) of capacity fv,w. In effect, we are allowing the algorithm to undo
its decisions by sending flow back in the opposite direction. This is best seen by example.
Starting from our original graph and selecting the augmenting path s, a, d, t, we obtain the
graphs in Figure 9.46.

Notice that in the residual graph, there are edges in both directions between a and d.
Either one more unit of flow can be pushed from a to d, or up to three units can be pushed
back—we can undo flow. Now the algorithm finds the augmenting path s, b, d, a, c, t, of
flow 2. By pushing two units of flow from d to a, the algorithm takes two units of flow
away from the edge (a, d) and is essentially changing its mind. Figure 9.47 shows the new
graphs.

www.manaraa.com

9.4 Network Flow Problems 391

s

a b

c d

t

s

a b

c d

t

s

a b

c d

t

4 2

1

2 2
4

3 3

3

1

2 2

2

1

3

1

3

23 2

0

2 2
1

2 3

1

Figure 9.47 Graphs after two units of flow added along s, b, d, a, c, t using correct
algorithm

s

a b

c d

t

s

a b

c d

t

3

1

2 2

2

1

3

1

3

2
1

3 2

0

2 2
1

2 3

Figure 9.48 The vertices reachable from s in the residual graph form one side of a cut;
the unreachables form the other side of the cut.

There is no augmenting path in this graph, so the algorithm terminates. Note that the
same result would occur if at Figure 9.46, the augmenting path s, a, c, t was chosen which
allows one unit of flow, because then a subsequent augmenting path could be found.

It is easy to see that if the algorithm terminates, then it must terminate with a maximum
flow. Termination implies that there is no path from s to t in the residual graph. So cut the
residual graph, putting the vertices reachable from s on one side, and the unreachables
(which include t) on the other side. Figure 9.48 shows the cut. Clearly any edges in the
original graph G that cross the cut must be saturated; otherwise, there would be residual
flow remaining on one of the edges, which would then imply an edge that crosses the cut
(in the wrong disallowed direction) in Gr. But that means that the flow in G is exactly equal
to the capacity of a cut in G; hence we have a maximum flow.

If the edge costs in the graph are integers, then the algorithm must terminate; each
augmentation adds a unit of flow, so we eventually reach the maximum flow, though there

www.manaraa.com

392 Chapter 9 Graph Algorithms

s

a b

t

1000000 1000000

10000001000000

1

Figure 9.49 The classic bad case for augmenting

is no guarantee that this will be efficient. In particular, if the capacities are all integers and
the maximum flow is f , then, since each augmenting path increases the flow value by at
least 1, f stages suffice, and the total running time is O(f ·|E|), since an augmenting path can
be found in O(|E|) time by an unweighted shortest-path algorithm. The classic example of
why this is a bad running time is shown by the graph in Figure 9.49.

The maximum flow is seen by inspection to be 2,000,000 by sending 1,000,000 down
each side. Random augmentations could continually augment along a path that includes
the edge connected by a and b. If this were to occur repeatedly, 2,000,000 augmentations
would be required, when we could get by with only 2.

A simple method to get around this problem is always to choose the augment-
ing path that allows the largest increase in flow. Finding such a path is similar to
solving a weighted shortest-path problem and a single-line modification to Dijkstra’s algo-
rithm will do the trick. If capmax is the maximum edge capacity, then one can show
that O(|E| log capmax) augmentations will suffice to find the maximum flow. In this case,
since O(|E| log |V|) time is used for each calculation of an augmenting path, a total bound
of O(|E|2 log |V| log capmax) is obtained. If the capacities are all small integers, this reduces
to O(|E|2 log |V|).

Another way to choose augmenting paths is always to take the path with the least
number of edges, with the plausible expectation that by choosing a path in this manner,
it is less likely that a small, flow-restricting edge will turn up on the path. With this rule,
each augmenting step computes the shortest unweighted path from s to t in the residual
graph, so assume that each vertex in the graph maintains dv, representing the shortest-path
distance from s to v in the residual graph. Each augmenting step can add new edges into
the residual graph, but it is clear that no dv can decrease, because an edge is added in the
opposite direction of an existing shortest path.

Each augmenting step saturates at least one edge. Suppose edge (u, v) is saturated; at
that point, u had distance du and v had distance dv = du + 1; then (u, v) was removed from

www.manaraa.com

9.5 Minimum Spanning Tree 393

the residual graph, and edge (v, u) was added. (u, v) cannot reappear in the residual graph
again, unless and until (v, u) appears in a future augmenting path. But if it does, then the
distance to u at that point must be dv + 1, which would be two higher than at the time
(u, v) was previously removed.

This means that each time (u, v) reappears, u’s distance goes up by 2. This means
that any edge can reappear at most |V|/2 times. Each augmentation causes some edge to
reappear so the number of augmentations is O(|E||V|). Each step takes O(|E|), due to the
unweighted shortest-path calculation, yielding an O(|E|2|V|) bound on the running time.

Further data structure improvements are possible to this algorithm, and there are sev-
eral, more complicated, algorithms. A long history of improved bounds has lowered the
current best-known bound for this problem. Although no O(|E||V|) algorithm has been
reported yet, algorithms with O(|E||V| log(|V|2/|E|)) and O(|E||V| + |V|2+ε) bounds have
been discovered (see the references). There are also a host of very good bounds for spe-
cial cases. For instance, O(|E||V|1/2) time finds a maximum flow in a graph, having the
property that all vertices except the source and sink have either a single incoming edge of
capacity 1 or a single outgoing edge of capacity 1. These graphs occur in many applications.

The analyses required to produce these bounds are rather intricate, and it is not clear
how the worst-case results relate to the running times encountered in practice. A related,
even more difficult problem is the min-cost flow problem. Each edge has not only a capac-
ity, but also a cost per unit of flow. The problem is to find, among all maximum flows, the
one flow of minimum cost. Both of these problems are being actively researched.

9.5 Minimum Spanning Tree
The next problem we will consider is that of finding a minimum spanning tree in an
undirected graph. The problem makes sense for directed graphs but appears to be more
difficult. Informally, a minimum spanning tree of an undirected graph G is a tree formed
from graph edges that connects all the vertices of G at lowest total cost. A minimum span-
ning tree exists if and only if G is connected. Although a robust algorithm should report
the case that G is unconnected, we will assume that G is connected and leave the issue of
robustness as an exercise to the reader.

In Figure 9.50 the second graph is a minimum spanning tree of the first (it happens to
be unique, but this is unusual). Notice that the number of edges in the minimum spanning
tree is |V| − 1. The minimum spanning tree is a tree because it is acyclic, it is spanning
because it covers every vertex, and it is minimum for the obvious reason. If we need to
wire a house with a minimum of cable (assuming no other electrical constraints), then a
minimum spanning tree problem needs to be solved.

For any spanning tree T, if an edge e that is not in T is added, a cycle is created. The
removal of any edge on the cycle reinstates the spanning tree property. The cost of the
spanning tree is lowered if e has lower cost than the edge that was removed. If, as a span-
ning tree is created, the edge that is added is the one of minimum cost that avoids creation
of a cycle, then the cost of the resulting spanning tree cannot be improved, because any
replacement edge would have cost at least as much as an edge already in the spanning tree.

www.manaraa.com

394 Chapter 9 Graph Algorithms

6

2

4 1 3 10

7

485

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

6

2

1

4

1

2

v 1 v 2

v 3 v 4 v 5

v 6 v 7

Figure 9.50 A graph G and its minimum spanning tree

This shows that greed works for the minimum spanning tree problem. The two algorithms
we present differ in how a minimum edge is selected.

9.5.1 Prim’s Algorithm
One way to compute a minimum spanning tree is to grow the tree in successive stages. In
each stage, one node is picked as the root, and we add an edge, and thus an associated
vertex, to the tree.

At any point in the algorithm, we can see that we have a set of vertices that have already
been included in the tree; the rest of the vertices have not. The algorithm then finds, at each
stage, a new vertex to add to the tree by choosing the edge (u, v) such that the cost of (u, v)
is the smallest among all edges where u is in the tree and v is not. Figure 9.51 shows how
this algorithm would build the minimum spanning tree, starting from v1. Initially, v1 is in
the tree as a root with no edges. Each step adds one edge and one vertex to the tree.

We can see that Prim’s algorithm is essentially identical to Dijkstra’s algorithm for short-
est paths. As before, for each vertex we keep values dv and pv and an indication of whether
it is known or unknown. dv is the weight of the shortest edge connecting v to a known vertex,
and pv, as before, is the last vertex to cause a change in dv. The rest of the algorithm is
exactly the same, with the exception that since the definition of dv is different, so is the

www.manaraa.com

9.5 Minimum Spanning Tree 395

1 1

1 1 1

1

2

2 2 2

2

2 2 2

2

4 4

4

1

1
6

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

Figure 9.51 Prim’s algorithm after each stage

v known dv pv

v1 F 0 0

v2 F ∞ 0

v3 F ∞ 0

v4 F ∞ 0

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.52 Initial configuration of table used in Prim’s algorithm

update rule. For this problem, the update rule is even simpler than before: After a vertex v
is selected, for each unknown w adjacent to v, dw = min(dw, cw,v).

The initial configuration of the table is shown in Figure 9.52. v1 is selected, and v2, v3,
and v4 are updated. The table resulting from this is shown in Figure 9.53. The next vertex
selected is v4. Every vertex is adjacent to v4. v1 is not examined, because it is known. v2

is unchanged, because it has dv = 2 and the edge cost from v4 to v2 is 3; all the rest are
updated. Figure 9.54 shows the resulting table. The next vertex chosen is v2 (arbitrarily
breaking a tie). This does not affect any distances. Then v3 is chosen, which affects the
distance in v6, producing Figure 9.55. Figure 9.56 results from the selection of v7, which
forces v6 and v5 to be adjusted. v6 and then v5 are selected, completing the algorithm.

www.manaraa.com

396 Chapter 9 Graph Algorithms

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F 4 v1

v4 F 1 v1

v5 F ∞ 0

v6 F ∞ 0

v7 F ∞ 0

Figure 9.53 The table after v1 is declared known

v known dv pv

v1 T 0 0

v2 F 2 v1

v3 F 2 v4

v4 T 1 v1

v5 F 7 v4

v6 F 8 v4

v7 F 4 v4

Figure 9.54 The table after v4 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 2 v4

v4 T 1 v1

v5 F 7 v4

v6 F 5 v3

v7 F 4 v4

Figure 9.55 The table after v2 and then v3 are declared known

The final table is shown in Figure 9.57. The edges in the spanning tree can be read
from the table: (v2, v1), (v3, v4), (v4, v1), (v5, v7), (v6, v7), (v7, v4). The total cost is 16.

The entire implementation of this algorithm is virtually identical to that of Dijkstra’s
algorithm, and everything that was said about the analysis of Dijkstra’s algorithm applies
here. Be aware that Prim’s algorithm runs on undirected graphs, so when coding it,

www.manaraa.com

9.5 Minimum Spanning Tree 397

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 2 v4

v4 T 1 v1

v5 F 6 v7

v6 F 1 v7

v7 T 4 v4

Figure 9.56 The table after v7 is declared known

v known dv pv

v1 T 0 0

v2 T 2 v1

v3 T 2 v4

v4 T 1 v1

v5 T 6 v7

v6 T 1 v7

v7 T 4 v4

Figure 9.57 The table after v6 and v5 are selected (Prim’s algorithm terminates)

remember to put every edge in two adjacency lists. The running time is O(|V|2) without
heaps, which is optimal for dense graphs, and O(|E| log |V|) using binary heaps, which is
good for sparse graphs.

9.5.2 Kruskal’s Algorithm
A second greedy strategy is continually to select the edges in order of smallest weight and
accept an edge if it does not cause a cycle. The action of the algorithm on the graph in the
preceding example is shown in Figure 9.58.

Formally, Kruskal’s algorithm maintains a forest—a collection of trees. Initially, there
are |V| single-node trees. Adding an edge merges two trees into one. When the algorithm
terminates, there is only one tree, and this is the minimum spanning tree. Figure 9.59
shows the order in which edges are added to the forest.

The algorithm terminates when enough edges are accepted. It turns out to be simple to
decide whether edge (u, v) should be accepted or rejected. The appropriate data structure
is the union/find algorithm from Chapter 8.

The invariant we will use is that at any point in the process, two vertices belong to
the same set if and only if they are connected in the current spanning forest. Thus, each

www.manaraa.com

398 Chapter 9 Graph Algorithms

Edge Weight Action

(v1, v4) 1 Accepted

(v6, v7) 1 Accepted

(v1, v2) 2 Accepted

(v3, v4) 2 Accepted

(v2, v4) 3 Rejected

(v1, v3) 4 Rejected

(v4, v7) 4 Accepted

(v3, v6) 5 Rejected

(v5, v7) 6 Accepted

Figure 9.58 Action of Kruskal’s algorithm on G

1 1

1 1 1

1

1

1 1 1

1

2 2 2

2

2 2

2

4

4 6

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

Figure 9.59 Kruskal’s algorithm after each stage

vertex is initially in its own set. If u and v are in the same set, the edge is rejected, because
since they are already connected, adding (u, v) would form a cycle. Otherwise, the edge
is accepted, and a union is performed on the two sets containing u and v. It is easy to see
that this maintains the set invariant, because once the edge (u, v) is added to the spanning
forest, if w was connected to u and x was connected to v, then x and w must now be
connected, and thus belong in the same set.

The edges could be sorted to facilitate the selection, but building a heap in linear time
is a much better idea. Then deleteMins give the edges to be tested in order. Typically, only a
small fraction of the edges need to be tested before the algorithm can terminate, although

www.manaraa.com

9.6 Applications of Depth-First Search 399

ArrayList<Edge> kruskal(List<Edge> edges, int numVertices)
{

DisjSets ds = new DisjSets(numVertices);
PriorityQueue<Edge> pq = new PriorityQueue<>(edges);
List<Edge> mst = new ArrayList<>();

while(mst.size() != numVertices - 1)
{

Edge e = pq.deleteMin(); // Edge e = (u, v)
SetType uset = ds.find(e.getu());
SetType vset = ds.find(e.getv());

if(uset != vset)
{

// Accept the edge
mst.add(e);
ds.union(uset, vset);

}
}
return mst;

}

Figure 9.60 Pseudocode for Kruskal’s algorithm

it is always possible that all the edges must be tried. For instance, if there was an extra
vertex v8 and edge (v5, v8) of cost 100, all the edges would have to be examined. Method
kruskal in Figure 9.60 finds a minimum spanning tree.

The worst-case running time of this algorithm is O(|E| log |E|), which is dominated
by the heap operations. Notice that since |E| = O(|V|2), this running time is actu-
ally O(|E| log |V|). In practice, the algorithm is much faster than this time bound would
indicate.

9.6 Applications of Depth-First Search
Depth-first search is a generalization of preorder traversal. Starting at some vertex, v, we
process v and then recursively traverse all vertices adjacent to v. If this process is performed
on a tree, then all tree vertices are systematically visited in a total of O(|E|) time, since
|E| = �(|V|). If we perform this process on an arbitrary graph, we need to be careful
to avoid cycles. To do this, when we visit a vertex v, we mark it visited, since now we
have been there, and recursively call depth-first search on all adjacent vertices that are not
already marked. We implicitly assume that for undirected graphs every edge (v, w) appears
twice in the adjacency lists: once as (v, w) and once as (w, v). The procedure in Figure 9.61
performs a depth-first search (and does absolutely nothing else) and is a template for the
general style.

www.manaraa.com

400 Chapter 9 Graph Algorithms

void dfs(Vertex v)
{

v.visited = true;
for each Vertex w adjacent to v

if(!w.visited)
dfs(w);

}

Figure 9.61 Template for depth-first search (pseudocode)

For each vertex, the field visited is initialized to false. By recursively calling the
procedures only on nodes that have not been visited, we guarantee that we do not loop
indefinitely. If the graph is undirected and not connected, or directed and not strongly con-
nected, this strategy might fail to visit some nodes. We then search for an unmarked node,
apply a depth-first traversal there, and continue this process until there are no unmarked
nodes.2 Because this strategy guarantees that each edge is encountered only once, the total
time to perform the traversal is O(|E| + |V|), as long as adjacency lists are used.

9.6.1 Undirected Graphs
An undirected graph is connected if and only if a depth-first search starting from any node
visits every node. Because this test is so easy to apply, we will assume that the graphs we
deal with are connected. If they are not, then we can find all the connected components
and apply our algorithm on each of these in turn.

As an example of depth-first search, suppose in the graph of Figure 9.62 we start
at vertex A. Then we mark A as visited and call dfs(B) recursively. dfs(B) marks B as
visited and calls dfs(C) recursively. dfs(C) marks C as visited and calls dfs(D) recursively.
dfs(D) sees both A and B, but both of these are marked, so no recursive calls are made.
dfs(D) also sees that C is adjacent but marked, so no recursive call is made there, and dfs(D)
returns back to dfs(C). dfs(C) sees B adjacent, ignores it, finds a previously unseen vertex
E adjacent, and thus calls dfs(E). dfs(E) marks E, ignores A and C, and returns to dfs(C).
dfs(C) returns to dfs(B). dfs(B) ignores both A and D and returns. dfs(A) ignores both D
and E and returns. (We have actually touched every edge twice, once as (v, w) and again as
(w, v), but this is really once per adjacency list entry.)

We graphically illustrate these steps with a depth-first spanning tree. The root of the
tree is A, the first vertex visited. Each edge (v, w) in the graph is present in the tree. If, when
we process (v, w), we find that w is unmarked, or if, when we process (w, v), we find that v
is unmarked, we indicate this with a tree edge. If, when we process (v, w), we find that w
is already marked, and when processing (w, v), we find that v is already marked, we draw

2 An efficient way of implementing this is to begin the depth-first search at v1. If we need to restart the
depth-first search, we examine the sequence vk, vk+1, . . . for an unmarked vertex, where vk−1 is the vertex
where the last depth-first search was started. This guarantees that throughout the algorithm, only O(|V|) is
spent looking for vertices where new depth-first search trees can be started.

www.manaraa.com

9.6 Applications of Depth-First Search 401

A

B

C

D E

Figure 9.62 An undirected graph

A

B

C

D E

Figure 9.63 Depth-first search of previous graph

a dashed line, which we will call a back edge, to indicate that this “edge” is not really part
of the tree. The depth-first search of the graph in Figure 9.62 is shown in Figure 9.63.

The tree will simulate the traversal we performed. A preorder numbering of the tree,
using only tree edges, tells us the order in which the vertices were marked. If the graph is
not connected, then processing all nodes (and edges) requires several calls to dfs, and each
generates a tree. This entire collection is a depth-first spanning forest.

www.manaraa.com

402 Chapter 9 Graph Algorithms

9.6.2 Biconnectivity
A connected undirected graph is biconnected if there are no vertices whose removal dis-
connects the rest of the graph. The graph in the example above is biconnected. If the
nodes are computers and the edges are links, then if any computer goes down, network
mail is unaffected, except, of course, at the down computer. Similarly, if a mass tran-
sit system is biconnected, users always have an alternate route should some terminal be
disrupted.

If a graph is not biconnected, the vertices whose removal would disconnect the graph
are known as articulation points. These nodes are critical in many applications. The graph
in Figure 9.64 is not biconnected: C and D are articulation points. The removal of C
would disconnect G, and the removal of D would disconnect E and F, from the rest of the
graph.

Depth-first search provides a linear-time algorithm to find all articulation points in a
connected graph. First, starting at any vertex, we perform a depth-first search and number
the nodes as they are visited. For each vertex v, we call this preorder number Num(v). Then,
for every vertex v in the depth-first search spanning tree, we compute the lowest-numbered
vertex, which we call Low(v), that is reachable from v by taking zero or more tree edges
and then possibly one back edge (in that order). The depth-first search tree in Figure 9.65
shows the preorder number first, and then the lowest-numbered vertex reachable under
the rule described above.

The lowest-numbered vertex reachable by A, B, and C is vertex 1 (A), because they can
all take tree edges to D and then one back edge back to A. We can efficiently compute Low

B A

C D

G E

F

Figure 9.64 A graph with articulation points C and D

www.manaraa.com

9.6 Applications of Depth-First Search 403

F, 6/4

E, 5/4

D, 4/1

C, 3/1

B, 2/1

A, 1/1

G, 7/7

Figure 9.65 Depth-first tree for previous graph, with Num and Low

by performing a postorder traversal of the depth-first spanning tree. By the definition of
Low, Low(v) is the minimum of

1. Num(v)

2. the lowest Num(w) among all back edges (v, w)

3. the lowest Low(w) among all tree edges (v, w)

The first condition is the option of taking no edges, the second way is to choose no
tree edges and a back edge, and the third way is to choose some tree edges and possibly a
back edge. This third method is succinctly described with a recursive call. Since we need
to evaluate Low for all the children of v before we can evaluate Low(v), this is a postorder
traversal. For any edge (v, w), we can tell whether it is a tree edge or a back edge merely by
checking Num(v) and Num(w). Thus, it is easy to compute Low(v): We merely scan down
v’s adjacency list, apply the proper rule, and keep track of the minimum. Doing all the
computation takes O(|E| + |V|) time.

All that is left to do is to use this information to find articulation points. The root is an
articulation point if and only if it has more than one child, because if it has two children,
removing the root disconnects nodes in different subtrees, and if it has only one child,

www.manaraa.com

404 Chapter 9 Graph Algorithms

F, 4/2

E, 3/2

D, 2/1

C, 1/1

B, 6/1

A, 5/1

G, 7/7

Figure 9.66 Depth-first tree that results if depth-first search starts at C

removing the root merely disconnects the root. Any other vertex v is an articulation point
if and only if v has some child w such that Low(w) ≥ Num(v). Notice that this condition is
always satisfied at the root; hence the need for a special test.

The if part of the proof is clear when we examine the articulation points that the
algorithm determines, namely, C and D. D has a child E, and Low(E) ≥ Num(D), since
both are 4. Thus, there is only one way for E to get to any node above D, and that is by
going through D. Similarly, C is an articulation point, because Low(G) ≥ Num(C). To prove
that this algorithm is correct, one must show that the only if part of the assertion is true
(that is, this finds all articulation points). We leave this as an exercise. As a second example,
we show (Figure 9.66) the result of applying this algorithm on the same graph, starting the
depth-first search at C.

We close by giving pseudocode to implement this algorithm. We will assume that
Vertex contains the data fields visited (initialized to false), num, low, and parent. We will
also keep a (Graph) class variable called counter, which is initialized to 1, to assign the
preorder traversal numbers, num. We also leave out the easily implemented test for the root.

As we have already stated, this algorithm can be implemented by performing a preorder
traversal to compute Num and then a postorder traversal to compute Low. A third traversal
can be used to check which vertices satisfy the articulation point criteria. Performing three
traversals, however, would be a waste. The first pass is shown in Figure 9.67.

The second and third passes, which are postorder traversals, can be implemented by
the code in Figure 9.68. The last if statement handles a special case. If w is adjacent to
v, then the recursive call to w will find v adjacent to w. This is not a back edge, only an
edge that has already been considered and needs to be ignored. Otherwise, the procedure
computes the minimum of the various low and num entries, as specified by the algorithm.

There is no rule that a traversal must be either preorder or postorder. It is possible
to do processing both before and after the recursive calls. The procedure in Figure 9.69
combines the two routines assignNum and assignLow in a straightforward manner to produce
the procedure findArt.

www.manaraa.com

9.6 Applications of Depth-First Search 405

// Assign Num and compute parents
void assignNum(Vertex v)
{

v.num = counter++;
v.visited = true;
for each Vertex w adjacent to v

if(!w.visited)
{

w.parent = v;
assignNum(w);

}
}

Figure 9.67 Routine to assign Num to vertices (pseudocode)

// Assign low; also check for articulation points.
void assignLow(Vertex v)
{

v.low = v.num; // Rule 1
for each Vertex w adjacent to v
{

if(w.num > v.num) // Forward edge
{

assignLow(w);
if(w.low >= v.num)

System.out.println(v + " is an articulation point");
v.low = min(v.low, w.low); // Rule 3

}
else
if(v.parent != w) // Back edge

v.low = min(v.low, w.num); // Rule 2
}

}

Figure 9.68 Pseudocode to compute Low and to test for articulation points (test for the
root is omitted)

9.6.3 Euler Circuits
Consider the three figures in Figure 9.70. A popular puzzle is to reconstruct these figures
using a pen, drawing each line exactly once. The pen may not be lifted from the paper
while the drawing is being performed. As an extra challenge, make the pen finish at the
same point at which it started. This puzzle has a surprisingly simple solution. Stop reading
if you would like to try to solve it.

www.manaraa.com

406 Chapter 9 Graph Algorithms

void findArt(Vertex v)
{

v.visited = true;
v.low = v.num = counter++; // Rule 1
for each Vertex w adjacent to v
{

if(!w.visited) // Forward edge
{

w.parent = v;
findArt(w);
if(w.low >= v.num)

System.out.println(v + " is an articulation point");
v.low = min(v.low, w.low); // Rule 3

}
else
if(v.parent != w) // Back edge

v.low = min(v.low, w.num); // Rule 2
}

}

Figure 9.69 Testing for articulation points in one depth-first search (test for the root is
omitted) (pseudocode)

Figure 9.70 Three drawings

The first figure can be drawn only if the starting point is the lower left- or right-hand
corner, and it is not possible to finish at the starting point. The second figure is easily
drawn with the finishing point the same as the starting point, but the third figure cannot
be drawn at all within the parameters of the puzzle.

We can convert this problem to a graph theory problem by assigning a vertex to each
intersection. Then the edges can be assigned in the natural manner, as in Figure 9.71.

After this conversion is performed, we must find a path in the graph that visits every
edge exactly once. If we are to solve the “extra challenge,” then we must find a cycle that
visits every edge exactly once. This graph problem was solved in 1736 by Euler and marked
the beginning of graph theory. The problem is thus commonly referred to as an Euler path
(sometimes Euler tour) or Euler circuit problem, depending on the specific problem

www.manaraa.com

9.6 Applications of Depth-First Search 407

Figure 9.71 Conversion of puzzle to graph

statement. The Euler tour and Euler circuit problems, though slightly different, have the
same basic solution. Thus, we will consider the Euler circuit problem in this section.

The first observation that can be made is that an Euler circuit, which must end on
its starting vertex, is possible only if the graph is connected and each vertex has an even
degree (number of edges). This is because, on the Euler circuit, a vertex is entered and then
left. If any vertex v has odd degree, then eventually we will reach the point where only one
edge into v is unvisited, and taking it will strand us at v. If exactly two vertices have odd
degree, an Euler tour, which must visit every edge but need not return to its starting vertex,
is still possible if we start at one of the odd-degree vertices and finish at the other. If more
than two vertices have odd degree, then an Euler tour is not possible.

The observations of the preceding paragraph provide us with a necessary condition for
the existence of an Euler circuit. It does not, however, tell us that all connected graphs that
satisfy this property must have an Euler circuit, nor does it give us guidance on how to
find one. It turns out that the necessary condition is also sufficient. That is, any connected
graph, all of whose vertices have even degree, must have an Euler circuit. Furthermore, a
circuit can be found in linear time.

We can assume that we know that an Euler circuit exists, since we can test the necessary
and sufficient condition in linear time. Then the basic algorithm is to perform a depth-first
search. There are a surprisingly large number of “obvious” solutions that do not work.
Some of these are presented in the exercises.

The main problem is that we might visit a portion of the graph and return to the
starting point prematurely. If all the edges coming out of the start vertex have been used
up, then part of the graph is untraversed. The easiest way to fix this is to find the first
vertex on this path that has an untraversed edge, and perform another depth-first search.
This will give another circuit, which can be spliced into the original. This is continued
until all edges have been traversed.

As an example, consider the graph in Figure 9.72. It is easily seen that this graph has
an Euler circuit. Suppose we start at vertex 5, and traverse the circuit 5, 4, 10, 5. Then we
are stuck, and most of the graph is still untraversed. The situation is shown in Figure 9.73.

We then continue from vertex 4, which still has unexplored edges. A depth-first search
might come up with the path 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4. If we splice this path into
the previous path of 5, 4, 10, 5, then we get a new path of 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3,
4, 10, 5.

www.manaraa.com

408 Chapter 9 Graph Algorithms

9

3

1

7

4

10

12

8

2

6

11

5

Figure 9.72 Graph for Euler circuit problem

9

3

1

7

4

10

12

8

2

6

11

5

Figure 9.73 Graph remaining after 5, 4, 10, 5

9

3

1

7

4

10

12

8

2

6

11

5

Figure 9.74 Graph after the path 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5

The graph that remains after this is shown in Figure 9.74. Notice that in this graph
all the vertices must have even degree, so we are guaranteed to find a cycle to add. The
remaining graph might not be connected, but this is not important. The next vertex on the
path that has untraversed edges is vertex 3. A possible circuit would then be 3, 2, 8, 9, 6,
3. When spliced in, this gives the path 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.

The graph that remains is in Figure 9.75. On this path, the next vertex with an untra-
versed edge is 9, and the algorithm finds the circuit 9, 12, 10, 9. When this is added to the
current path, a circuit of 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5 is
obtained. As all the edges are traversed, the algorithm terminates with an Euler circuit.

www.manaraa.com

9.6 Applications of Depth-First Search 409

9

3

1

7

4

10

12

8

2

6

11

5

Figure 9.75 Graph remaining after the path 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3,
4, 10, 5

To make this algorithm efficient, we must use appropriate data structures. We will
sketch some of the ideas, leaving the implementation as an exercise. To make splicing
simple, the path should be maintained as a linked list. To avoid repetitious scanning of
adjacency lists, we must maintain, for each adjacency list, the last edge scanned. When
a path is spliced in, the search for a new vertex from which to perform the next depth-
first search must begin at the start of the splice point. This guarantees that the total work
performed on the vertex search phase is O(|E|) during the entire life of the algorithm. With
the appropriate data structures, the running time of the algorithm is O(|E| + |V|).

A very similar problem is to find a simple cycle, in an undirected graph, that visits
every vertex. This is known as the Hamiltonian cycle problem. Although it seems almost
identical to the Euler circuit problem, no efficient algorithm for it is known. We shall see
this problem again in Section 9.7.

9.6.4 Directed Graphs
Using the same strategy as with undirected graphs, directed graphs can be traversed in
linear time, using depth-first search. If the graph is not strongly connected, a depth-first
search starting at some node might not visit all nodes. In this case we repeatedly perform
depth-first searches, starting at some unmarked node, until all vertices have been visited.
As an example, consider the directed graph in Figure 9.76.

We arbitrarily start the depth-first search at vertex B. This visits vertices B, C, A, D, E,
and F. We then restart at some unvisited vertex. Arbitrarily, we start at H, which visits J and
I. Finally, we start at G, which is the last vertex that needs to be visited. The corresponding
depth-first search tree is shown in Figure 9.77.

The dashed arrows in the depth-first spanning forest are edges (v, w) for which w was
already marked at the time of consideration. In undirected graphs, these are always back
edges, but, as we can see, there are three types of edges that do not lead to new vertices.
First, there are back edges, such as (A, B) and (I, H). There are also forward edges, such as
(C, D) and (C, E), that lead from a tree node to a descendant. Finally, there are cross edges,
such as (F, C) and (G, F), which connect two tree nodes that are not directly related. Depth-
first search forests are generally drawn with children and new trees added to the forest from

www.manaraa.com

410 Chapter 9 Graph Algorithms

A B

D

E

C F

G

H

IJ

Figure 9.76 A directed graph

E

D

A

C

B

F

I

J

H G

Figure 9.77 Depth-first search of previous graph

left to right. In a depth-first search of a directed graph drawn in this manner, cross edges
always go from right to left.

Some algorithms that use depth-first search need to distinguish between the three types
of nontree edges. This is easy to check as the depth-first search is being performed, and it
is left as an exercise.

One use of depth-first search is to test whether or not a directed graph is acyclic. The
rule is that a directed graph is acyclic if and only if it has no back edges. (The graph above
has back edges, and thus is not acyclic.) The reader may remember that a topological sort

www.manaraa.com

9.6 Applications of Depth-First Search 411

can also be used to determine whether a graph is acyclic. Another way to perform topo-
logical sorting is to assign the vertices topological numbers N, N − 1, . . . , 1 by postorder
traversal of the depth-first spanning forest. As long as the graph is acyclic, this ordering
will be consistent.

9.6.5 Finding Strong Components
By performing two depth-first searches, we can test whether a directed graph is strongly
connected, and if it is not, we can actually produce the subsets of vertices that are strongly
connected to themselves. This can also be done in only one depth-first search, but the
method used here is much simpler to understand.

First, a depth-first search is performed on the input graph G. The vertices of G are
numbered by a postorder traversal of the depth-first spanning forest, and then all edges in
G are reversed, forming Gr. The graph in Figure 9.78 represents Gr for the graph G shown
in Figure 9.76; the vertices are shown with their numbers.

The algorithm is completed by performing a depth-first search on Gr, always starting
a new depth-first search at the highest-numbered vertex. Thus, we begin the depth-first
search of Gr at vertex G, which is numbered 10. This leads nowhere, so the next search
is started at H. This call visits I and J. The next call starts at B and visits A, C, and F. The
next calls after this are dfs(D) and finally dfs(E). The resulting depth-first spanning forest
is shown in Figure 9.79.

A,3 B,6

D,2

E,1

C,4 F,5

G,10

H,9

I,7J,8

Figure 9.78 Gr numbered by postorder traversal of G (from Figure 9.76)

www.manaraa.com

412 Chapter 9 Graph Algorithms

G

J

I

H

F

C

A

B D E

Figure 9.79 Depth-first search of Gr—strong components are {G}, {H, I, J}, {B, A, C, F},
{D}, {E}

Each of the trees (this is easier to see if you completely ignore all nontree edges) in this
depth-first spanning forest forms a strongly connected component. Thus, for our example,
the strongly connected components are {G}, {H, I, J}, {B, A, C, F}, {D}, and {E}.

To see why this algorithm works, first note that if two vertices v and w are in the same
strongly connected component, then there are paths from v to w and from w to v in the
original graph G, and hence also in Gr. Now, if two vertices v and w are not in the same
depth-first spanning tree of Gr, clearly they cannot be in the same strongly connected
component.

To prove that this algorithm works, we must show that if two vertices v and w are in
the same depth-first spanning tree of Gr, there must be paths from v to w and from w to
v. Equivalently, we can show that if x is the root of the depth-first spanning tree of Gr

containing v, then there is a path from x to v and from v to x. Applying the same logic to w
would then give a path from x to w and from w to x. These paths would imply paths from
v to w and w to v (going through x).

Since v is a descendant of x in Gr ’s depth-first spanning tree, there is a path from x to
v in Gr and thus a path from v to x in G. Furthermore, since x is the root, x has the higher
postorder number from the first depth-first search. Therefore, during the first depth-first
search, all the work processing v was completed before the work at x was completed. Since
there is a path from v to x, it follows that v must be a descendant of x in the spanning tree
for G—otherwise v would finish after x. This implies a path from x to v in G and completes
the proof.

9.7 Introduction to NP-Completeness
In this chapter, we have seen solutions to a wide variety of graph theory problems. All these
problems have polynomial running times, and with the exception of the network flow
problem, the running time is either linear or only slightly more than linear (O(|E| log |E|)).
We have also mentioned, in passing, that for some problems certain variations seem harder
than the original.

www.manaraa.com

9.7 Introduction to NP-Completeness 413

Recall that the Euler circuit problem, which finds a path that touches every edge exactly
once, is solvable in linear time. The Hamiltonian cycle problem asks for a simple cycle that
contains every vertex. No linear algorithm is known for this problem.

The single-source unweighted shortest-path problem for directed graphs is also
solvable in linear time. No linear-time algorithm is known for the corresponding longest-
simple-path problem.

The situation for these problem variations is actually much worse than we have
described. Not only are no linear algorithms known for these variations, but there are
no known algorithms that are guaranteed to run in polynomial time. The best known
algorithms for these problems could take exponential time on some inputs.

In this section we will take a brief look at this problem. This topic is rather complex,
so we will only take a quick and informal look at it. Because of this, the discussion may be
(necessarily) somewhat imprecise in places.

We will see that there are a host of important problems that are roughly equivalent
in complexity. These problems form a class called the NP-complete problems. The exact
complexity of these NP-complete problems has yet to be determined and remains the
foremost open problem in theoretical computer science. Either all these problems have
polynomial-time solutions or none of them do.

9.7.1 Easy vs. Hard
When classifying problems, the first step is to examine the boundaries. We have already
seen that many problems can be solved in linear time. We have also seen some O(log N)
running times, but these either assume some preprocessing (such as input already being
read or a data structure already being built) or occur on arithmetic examples. For instance,
the gcd algorithm, when applied on two numbers M and N, takes O(log N) time. Since the
numbers consist of log M and log N bits respectively, the gcd algorithm is really taking time
that is linear in the amount or size of input. Thus, when we measure running time, we will
be concerned with the running time as a function of the amount of input. Generally, we
cannot expect better than linear running time.

At the other end of the spectrum lie some truly hard problems. These problems are
so hard that they are impossible. This does not mean the typical exasperated moan, which
means that it would take a genius to solve the problem. Just as real numbers are not
sufficient to express a solution to x2 < 0, one can prove that computers cannot solve every
problem that happens to come along. These “impossible” problems are called undecidable
problems.

One particular undecidable problem is the halting problem. Is it possible to have your
Java compiler have an extra feature that not only detects syntax errors, but also all infinite
loops? This seems like a hard problem, but one might expect that if some very clever
programmers spent enough time on it, they could produce this enhancement.

The intuitive reason that this problem is undecidable is that such a program might
have a hard time checking itself. For this reason, these problems are sometimes called
recursively undecidable.

If an infinite loop–checking program could be written, surely it could be used to check
itself. We could then produce a program called LOOP. LOOP takes as input a program

www.manaraa.com

414 Chapter 9 Graph Algorithms

P and runs P on itself. It prints out the phrase YES if P loops when run on itself. If P
terminates when run on itself, a natural thing to do would be to print out NO. Instead of
doing that, we will have LOOP go into an infinite loop.

What happens when LOOP is given itself as input? Either LOOP halts, or it does not
halt. The problem is that both these possibilities lead to contradictions, in much the same
way as does the phrase “This sentence is a lie.”

By our definition, LOOP(P) goes into an infinite loop if P(P) terminates. Suppose that
when P = LOOP, P(P) terminates. Then, according to the LOOP program, LOOP(P) is
obligated to go into an infinite loop. Thus, we must have LOOP(LOOP) terminating and
entering an infinite loop, which is clearly not possible. On the other hand, suppose that
when P = LOOP, P(P) enters an infinite loop. Then LOOP(P) must terminate, and we arrive
at the same set of contradictions. Thus, we see that the program LOOP cannot possibly
exist.

9.7.2 The Class NP
A few steps down from the horrors of undecidable problems lies the class NP. NP stands
for nondeterministic polynomial-time. A deterministic machine, at each point in time, is
executing an instruction. Depending on the instruction, it then goes to some next instruc-
tion, which is unique. A nondeterministic machine has a choice of next steps. It is free
to choose any that it wishes, and if one of these steps leads to a solution, it will always
choose the correct one. A nondeterministic machine thus has the power of extremely good
(optimal) guessing. This probably seems like a ridiculous model, since nobody could pos-
sibly build a nondeterministic computer, and because it would seem to be an incredible
upgrade to your standard computer (every problem might now seem trivial). We will see
that nondeterminism is a very useful theoretical construct. Furthermore, nondetermin-
ism is not as powerful as one might think. For instance, undecidable problems are still
undecidable, even if nondeterminism is allowed.

A simple way to check if a problem is in NP is to phrase the problem as a yes/no
question. The problem is in NP if, in polynomial time, we can prove that any “yes” instance
is correct. We do not have to worry about “no” instances, since the program always makes
the right choice. Thus, for the Hamiltonian cycle problem, a “yes” instance would be any
simple circuit in the graph that includes all the vertices. This is in NP, since, given the path,
it is a simple matter to check that it is really a Hamiltonian cycle. Appropriately phrased
questions, such as “Is there a simple path of length > K?” can also easily be checked and
are in NP. Any path that satisfies this property can be checked trivially.

The class NP includes all problems that have polynomial-time solutions, since obvi-
ously the solution provides a check. One would expect that since it is so much easier to
check an answer than to come up with one from scratch, there would be problems in NP
that do not have polynomial-time solutions. To date no such problem has been found, so
it is entirely possible, though not considered likely by experts, that nondeterminism is not
such an important improvement. The problem is that proving exponential lower bounds
is an extremely difficult task. The information theory bound technique, which we used to
show that sorting requires �(N log N) comparisons, does not seem to be adequate for the
task, because the decision trees are not nearly large enough.

www.manaraa.com

9.7 Introduction to NP-Completeness 415

Notice also that not all decidable problems are in NP. Consider the problem of deter-
mining whether a graph does not have a Hamiltonian cycle. To prove that a graph has
a Hamiltonian cycle is a relatively simple matter—we just need to exhibit one. Nobody
knows how to show, in polynomial time, that a graph does not have a Hamiltonian cycle.
It seems that one must enumerate all the cycles and check them one by one. Thus the
Non–Hamiltonian cycle problem is not known to be in NP.

9.7.3 NP-Complete Problems
Among all the problems known to be in NP, there is a subset, known as the NP-complete
problems, which contains the hardest. An NP-complete problem has the property that any
problem in NP can be polynomially reduced to it.

A problem P1 can be reduced to P2 as follows: Provide a mapping so that any instance
of P1 can be transformed to an instance of P2. Solve P2, and then map the answer back
to the original. As an example, numbers are entered into a pocket calculator in decimal.
The decimal numbers are converted to binary, and all calculations are performed in binary.
Then the final answer is converted back to decimal for display. For P1 to be polynomially
reducible to P2, all the work associated with the transformations must be performed in
polynomial time.

The reason that NP-complete problems are the hardest NP problems is that a prob-
lem that is NP-complete can essentially be used as a subroutine for any problem in NP,
with only a polynomial amount of overhead. Thus, if any NP-complete problem has a
polynomial-time solution, then every problem in NP must have a polynomial-time solution.
This makes the NP-complete problems the hardest of all NP problems.

Suppose we have an NP-complete problem P1. Suppose P2 is known to be in NP.
Suppose further that P1 polynomially reduces to P2, so that we can solve P1 by using
P2 with only a polynomial time penalty. Since P1 is NP-complete, every problem in NP
polynomially reduces to P1. By applying the closure property of polynomials, we see that
every problem in NP is polynomially reducible to P2: We reduce the problem to P1 and
then reduce P1 to P2. Thus, P2 is NP-complete.

As an example, suppose that we already know that the Hamiltonian cycle problem is
NP-complete. The traveling salesman problem is as follows.

Traveling Salesman Problem.
Given a complete graph G = (V, E), with edge costs, and an integer K, is there a simple
cycle that visits all vertices and has total cost ≤ K?

The problem is different from the Hamiltonian cycle problem, because all |V|(|V|−1)/2
edges are present and the graph is weighted. This problem has many important appli-
cations. For instance, printed circuit boards need to have holes punched so that chips,
resistors, and other electronic components can be placed. This is done mechanically.
Punching the hole is a quick operation; the time-consuming step is positioning the hole
puncher. The time required for positioning depends on the distance traveled from hole to
hole. Since we would like to punch every hole (and then return to the start for the next

www.manaraa.com

416 Chapter 9 Graph Algorithms

V1

V2 V3

V4 V5

V1

V2 V3

V4 V5

1 1

2 1

2

1
2 1

2

1

Figure 9.80 Hamiltonian cycle problem transformed to traveling salesman problem

board), and minimize the total amount of time spent traveling, what we have is a traveling
salesman problem.

The traveling salesman problem is NP-complete. It is easy to see that a solution can
be checked in polynomial time, so it is certainly in NP. To show that it is NP-complete,
we polynomially reduce the Hamiltonian cycle problem to it. To do this we construct a
new graph G′. G′ has the same vertices as G. For G′, each edge (v, w) has a weight of 1 if
(v, w) ∈ G, and 2 otherwise. We choose K = |V|. See Figure 9.80.

It is easy to verify that G has a Hamiltonian cycle if and only if G′ has a traveling
salesman tour of total weight |V|.

There is now a long list of problems known to be NP-complete. To prove that some
new problem is NP-complete, it must be shown to be in NP, and then an appropriate
NP-complete problem must be transformed into it. Although the transformation to a trav-
eling salesman problem was rather straightforward, most transformations are actually quite
involved and require some tricky constructions. Generally, several different NP-complete
problems are considered before the problem that actually provides the reduction. As we
are only interested in the general ideas, we will not show any more transformations; the
interested reader can consult the references.

The alert reader may be wondering how the first NP-complete problem was actually
proven to be NP-complete. Since proving that a problem is NP-complete requires trans-
forming it from another NP-complete problem, there must be some NP-complete problem
for which this strategy will not work. The first problem that was proven to be NP-complete
was the satisfiability problem. The satisfiability problem takes as input a Boolean expres-
sion and asks whether the expression has an assignment to the variables that gives a value
of true.

Satisfiability is certainly in NP, since it is easy to evaluate a Boolean expression and
check whether the result is true. In 1971, Cook showed that satisfiability was NP-complete
by directly proving that all problems that are in NP could be transformed to satisfiability.
To do this, he used the one known fact about every problem in NP: Every problem in NP

www.manaraa.com

Exercises 417

can be solved in polynomial time by a nondeterministic computer. The formal model for a
computer is known as a Turing machine. Cook showed how the actions of this machine
could be simulated by an extremely complicated and long, but still polynomial, Boolean
formula. This Boolean formula would be true if and only if the program which was being
run by the Turing machine produced a “yes” answer for its input.

Once satisfiability was shown to be NP-complete, a host of new NP-complete problems,
including some of the most classic problems, were also shown to be NP-complete.

In addition to the satisfiability, Hamiltonian circuit, traveling salesman, and longest-
path problems, which we have already examined, some of the more well-known NP-
complete problems which we have not discussed are bin packing, knapsack, graph coloring,
and clique. The list is quite extensive and includes problems from operating systems
(scheduling and security), database systems, operations research, logic, and especially
graph theory.

Summary

In this chapter we have seen how graphs can be used to model many real-life problems.
Many of the graphs that occur are typically very sparse, so it is important to pay attention
to the data structures that are used to implement them.

We have also seen a class of problems that do not seem to have efficient solutions. In
Chapter 10, some techniques for dealing with these problems will be discussed.

Exercises

9.1 Find a topological ordering for the graph in Figure 9.81.

9.2 If a stack is used instead of a queue for the topological sort algorithm in Section 9.2,
does a different ordering result? Why might one data structure give a “better”
answer?

s

A

D

G

B

E

H

C

F

I

t

1

4

6

2

2

3

3

2 1

6

2

2

3

32

6

41

3

1 4

Figure 9.81 Graph used in Exercises 9.1 and 9.11

www.manaraa.com

418 Chapter 9 Graph Algorithms

A

B

C

D

E

F

G

5

3

2

1

3

7

2 1

6

7

1

2

Figure 9.82 Graph used in Exercise 9.5

9.3 Write a program to perform a topological sort on a graph.

9.4 An adjacency matrix requires O(|V|2) merely to initialize using a standard double
loop. Propose a method that stores a graph in an adjacency matrix (so that testing
for the existence of an edge is O(1)) but avoids the quadratic running time.

9.5 a. Find the shortest path from A to all other vertices for the graph in Figure 9.82.
b. Find the shortest unweighted path from B to all other vertices for the graph in

Figure 9.82.

9.6 What is the worst-case running time of Dijkstra’s algorithm when implemented
with d-heaps (Section 6.5)?

9.7 a. Give an example where Dijkstra’s algorithm gives the wrong answer in the
presence of a negative edge but no negative-cost cycle.

��b. Show that the weighted shortest-path algorithm suggested in Section 9.3.3
works if there are negative-weight edges, but no negative-cost cycles, and that
the running time of this algorithm is O(|E| · |V|).

�9.8 Suppose all the edge weights in a graph are integers between 1 and |E|. How fast
can Dijkstra’s algorithm be implemented?

9.9 Write a program to solve the single-source shortest-path problem.

9.10 a. Explain how to modify Dijkstra’s algorithm to produce a count of the number of
different minimum paths from v to w.

b. Explain how to modify Dijkstra’s algorithm so that if there is more than one
minimum path from v to w, a path with the fewest number of edges is chosen.

9.11 Find the maximum flow in the network of Figure 9.81.

9.12 Suppose that G = (V, E) is a tree, s is the root, and we add a vertex t and edges
of infinite capacity from all leaves in G to t. Give a linear-time algorithm to find a
maximum flow from s to t.

www.manaraa.com

Exercises 419

Figure 9.83 A bipartite graph

9.13 A bipartite graph, G = (V, E), is a graph such that V can be partitioned into two
subsets V1 and V2 and no edge has both its vertices in the same subset.
a. Give a linear algorithm to determine whether a graph is bipartite.
b. The bipartite matching problem is to find the largest subset E′ of E such that no

vertex is included in more than one edge. A matching of four edges (indicated
by dashed edges) is shown in Figure 9.83. There is a matching of five edges,
which is maximum.

Show how the bipartite matching problem can be used to solve the following prob-
lem: We have a set of instructors, a set of courses, and a list of courses that each
instructor is qualified to teach. If no instructor is required to teach more than one
course, and only one instructor may teach a given course, what is the maximum
number of courses that can be offered?
c. Show that the network flow problem can be used to solve the bipartite matching

problem.
d. What is the time complexity of your solution to part (b)?

�9.14 a. Give an algorithm to find an augmenting path that permits the maximum flow.
b. Let f be the amount of flow remaining in the residual graph. Show that the

augmenting path produced by the algorithm in part (a) admits a path of capacity
f/|E|.

c. Show that after |E| consecutive iterations, the total flow remaining in the residual
graph is reduced from f to at most f /e, where e ≈ 2.71828.

d. Show that |E| ln f iterations suffice to produce the maximum flow.

9.15 a. Find a minimum spanning tree for the graph in Figure 9.84 using both Prim’s
and Kruskal’s algorithms.

b. Is this minimum spanning tree unique? Why?

9.16 Does either Prim’s or Kruskal’s algorithm work if there are negative edge weights?

9.17 Show that a graph of V vertices can have VV−2 minimum spanning trees.

9.18 Write a program to implement Kruskal’s algorithm.

www.manaraa.com

420 Chapter 9 Graph Algorithms

A B C

D E F G

H I J

4

5

6

4

2

3

2

11

1

4

3

3

10

6

2

11

7

1

8

Figure 9.84 Graph used in Exercise 9.15

A

B

C

D

E

F

G

H

I

J

K

Figure 9.85 Graph used in Exercise 9.21

9.19 If all the edges in a graph have weights between 1 and |E|, how fast can the
minimum spanning tree be computed?

9.20 Give an algorithm to find a maximum spanning tree. Is this harder than finding a
minimum spanning tree?

9.21 Find all the articulation points in the graph in Figure 9.85. Show the depth-first
spanning tree and the values of Num and Low for each vertex.

9.22 Prove that the algorithm to find articulation points works.

9.23 a. Give an algorithm to find the minimum number of edges that need to be
removed from an undirected graph so that the resulting graph is acyclic.

�b. Show that this problem is NP-complete for directed graphs.

9.24 Prove that in a depth-first spanning forest of a directed graph, all cross edges go
from right to left.

www.manaraa.com

Exercises 421

A

B

C

D

E

F

G

Figure 9.86 Graph used in Exercise 9.26

9.25 Give an algorithm to decide whether an edge (v, w) in a depth-first spanning forest
of a directed graph is a tree, back, cross, or forward edge.

9.26 Find the strongly connected components in the graph of Figure 9.86.

9.27 Write a program to find the strongly connected components in a digraph.
�9.28 Give an algorithm that finds the strongly connected components in only one depth-

first search. Use an algorithm similar to the biconnectivity algorithm.

9.29 The biconnected components of a graph G is a partition of the edges into sets such
that the graph formed by each set of edges is biconnected. Modify the algorithm in
Figure 9.69 to find the biconnected components instead of the articulation points.

9.30 Suppose we perform a breadth-first search of an undirected graph and build a
breadth-first spanning tree. Show that all edges in the tree are either tree edges or
cross edges.

9.31 Give an algorithm to find in an undirected (connected) graph a path that goes
through every edge exactly once in each direction.

9.32 a. Write a program to find an Euler circuit in a graph if one exists.
b. Write a program to find an Euler tour in a graph if one exists.

9.33 An Euler circuit in a directed graph is a cycle in which every edge is visited exactly
once.

�a. Prove that a directed graph has an Euler circuit if and only if it is strongly
connected and every vertex has equal indegree and outdegree.

�b. Give a linear-time algorithm to find an Euler circuit in a directed graph where
one exists.

9.34 a. Consider the following solution to the Euler circuit problem: Assume that the
graph is biconnected. Perform a depth-first search, taking back edges only as a
last resort. If the graph is not biconnected, apply the algorithm recursively on
the biconnected components. Does this algorithm work?

b. Suppose that when taking back edges, we take the back edge to the nearest
ancestor. Does the algorithm work?

www.manaraa.com

422 Chapter 9 Graph Algorithms

Figure 9.87 Graph used in Exercise 9.35

9.35 A planar graph is a graph that can be drawn in a plane without any two edges
intersecting.

�a. Show that neither of the graphs in Figure 9.87 is planar.
b. Show that in a planar graph, there must exist some vertex which is connected to

no more than five nodes.
��c. Show that in a planar graph, |E| ≤ 3|V| − 6.

9.36 A multigraph is a graph in which multiple edges are allowed between pairs of
vertices. Which of the algorithms in this chapter work without modification for
multigraphs? What modifications need to be done for the others?

�9.37 Let G = (V, E) be an undirected graph. Use depth-first search to design a linear
algorithm to convert each edge in G to a directed edge such that the resulting
graph is strongly connected, or determine that this is not possible.

9.38 You are given a set of N sticks, which are lying on top of each other in some con-
figuration. Each stick is specified by its two endpoints; each endpoint is an ordered
triple giving its x, y, and z coordinates; no stick is vertical. A stick may be picked
up only if there is no stick on top of it.
a. Explain how to write a routine that takes two sticks a and b and reports whether

a is above, below, or unrelated to b. (This has nothing to do with graph theory.)
b. Give an algorithm that determines whether it is possible to pick up all the sticks,

and if so, provides a sequence of stick pickups that accomplishes this.

9.39 A graph is k-colorable if each vertex can be given one of k colors, and no edge
connects identically colored vertices. Give a linear-time algorithm to test a graph
for two-colorability. Assume graphs are stored in adjacency list format; you must
specify any additional data structures that are needed.

9.40 Give a polynomial-time algorithm that finds �V/2� vertices that collectively cover
at least three-fourths (3/4) of the edges in an arbitrary undirected graph.

9.41 Show how to modify the topological sort algorithm so that if the graph is not
acyclic, the algorithm will print out some cycle. You may not use depth-first search.

www.manaraa.com

Exercises 423

9.42 Let G be a directed graph with N vertices. A vertex s is called a sink if, for every
v in V such that s �= v, there is an edge (v, s), and there are no edges of the form
(s, v). Give an O(N) algorithm to determine whether or not G has a sink, assuming
that G is given by its N × N adjacency matrix.

9.43 When a vertex and its incident edges are removed from a tree, a collection of sub-
trees remains. Give a linear-time algorithm that finds a vertex whose removal from
an N vertex tree leaves no subtree with more than N/2 vertices.

9.44 Give a linear-time algorithm to determine the longest unweighted path in an acyclic
undirected graph (that is, a tree).

9.45 Consider an N-by-N grid in which some squares are occupied by black circles. Two
squares belong to the same group if they share a common edge. In Figure 9.88,
there is one group of four occupied squares, three groups of two occupied squares,
and two individual occupied squares. Assume that the grid is represented by a
two-dimensional array. Write a program that does the following:
a. Computes the size of a group when a square in the group is given.
b. Computes the number of different groups.
c. Lists all groups.

9.46 Section 8.7 described the generating of mazes. Suppose we want to output the path
in the maze. Assume that the maze is represented as a matrix; each cell in the matrix
stores information about what walls are present (or absent).
a. Write a program that computes enough information to output a path in the

maze. Give output in the form SEN... (representing go south, then east, then
north, etc.).

b. Write a program that draws the maze and, at the press of a button, draws the
path.

Figure 9.88 Grid for Exercise 9.45

www.manaraa.com

424 Chapter 9 Graph Algorithms

9.47 Suppose that walls in the maze can be knocked down, with a penalty of P squares.
P is specified as a parameter to the algorithm. (If the penalty is 0, then the problem
is trivial.) Describe an algorithm to solve this version of the problem. What is the
running time of your algorithm?

9.48 Suppose that the maze may or may not have a solution.
a. Describe a linear-time algorithm that determines the minimum number of walls

that need to be knocked down to create a solution. (Hint: Use a double-ended
queue.)

b. Describe an algorithm (not necessarily linear-time) that finds a shortest path after
knocking down the minimum number of walls. Note that the solution to part
(a) would give no information about which walls would be the best to knock
down. (Hint: Use Exercise 9.47.)

9.49 Write a program to compute word ladders where single-character substitutions
have a cost of 1, and single-character additions or deletions have a cost of p > 0,
specified by the user. As mentioned at the end of Section 9.3.6, this is essentially a
weighted shortest-path problem.

Explain how each of the following problems (Exercises 9.50–9.53) can be solved by applying a
shortest-path algorithm. Then design a mechanism for representing an input, and write a program
that solves the problem.

9.50 The input is a list of league game scores (and there are no ties). If all teams have
at least one win and a loss, we can generally prove, by a silly transitivity argument,
that any team is better than any other. For instance, in the six-team league where
everyone plays three games, suppose we have the following results: A beat B and C;
B beat C and F; C beat D; D beat E; E beat A; F beat D and E. Then we can prove
that A is better than F, because A beat B, who in turn beat F. Similarly, we can prove
that F is better than A because F beat E and E beat A. Given a list of game scores
and two teams X and Y, either find a proof (if one exists) that X is better than Y, or
indicate that no proof of this form can be found.

9.51 The input is a collection of currencies and their exchange rates. Is there a sequence
of exchanges that makes money instantly? For instance, if the currencies are X, Y,
and Z and the exchange rate is 1 X equals 2 Ys, 1 Y equals 2 Zs, and 1 X equals 3
Zs, then 300 Zs will buy 100 Xs, which in turn will buy 200 Ys, which in turn will
buy 400 Zs. We have thus made a profit of 33 percent.

9.52 A student needs to take a certain number of courses to graduate, and these courses
have prerequisites that must be followed. Assume that all courses are offered every
semester and that the student can take an unlimited number of courses. Given a list
of courses and their prerequisites, compute a schedule that requires the minimum
number of semesters.

9.53 The object of the Kevin Bacon Game is to link a movie actor to Kevin Bacon via
shared movie roles. The minimum number of links is an actor’s Bacon number. For
instance, Tom Hanks has a Bacon number of 1; he was in Apollo 13 with Kevin
Bacon. Sally Field has a Bacon number of 2, because she was in Forrest Gump with

www.manaraa.com

References 425

Tom Hanks, who was in Apollo 13 with Kevin Bacon. Almost all well-known actors
have a Bacon number of 1 or 2. Assume that you have a comprehensive list of
actors, with roles,3 and do the following:
a. Explain how to find an actor’s Bacon number.
b. Explain how to find the actor with the highest Bacon number.
c. Explain how to find the minimum number of links between two arbitrary actors.

9.54 The clique problem can be stated as follows: Given an undirected graph G = (V, E)
and an integer K, does G contain a complete subgraph of at least K vertices?

The vertex cover problem can be stated as follows: Given an undirected graph
G = (V, E) and an integer K, does G contain a subset V′ ⊂ V such that |V′| ≤ K and
every edge in G has a vertex in V′? Show that the clique problem is polynomially
reducible to vertex cover.

9.55 Assume that the Hamiltonian cycle problem is NP-complete for undirected
graphs.
a. Prove that the Hamiltonian cycle problem is NP-complete for directed graphs.
b. Prove that the unweighted simple longest-path problem is NP-complete for

directed graphs.

9.56 The baseball card collector problem is as follows: Given packets P1, P2, . . . , PM, each
of which contains a subset of the year’s baseball cards, and an integer K, is it possible
to collect all the baseball cards by choosing ≤ K packets? Show that the baseball
card collector problem is NP-complete.

References

Good graph theory textbooks include [9], [14], [24], and [39]. More advanced topics,
including the more careful attention to running times, are covered in [41], [43], and [50].

Use of adjacency lists was advocated in [26]. The topological sort algorithm is from
[31], as described in [36]. Dijkstra’s algorithm appeared in [10]. The improvements using
d-heaps and Fibonacci heaps are described in [30] and [16], respectively. The shortest-path
algorithm with negative edge weights is due to Bellman [3]; Tarjan [50] describes a more
efficient way to guarantee termination.

Ford and Fulkerson’s seminal work on network flow is [15]. The idea of augment-
ing along shortest paths or on paths admitting the largest flow increase is from [13].
Other approaches to the problem can be found in [11], [34], [23], [7], [35], and [22].
An algorithm for the min-cost flow problem can be found in [20].

An early minimum spanning tree algorithm can be found in [4]. Prim’s algorithm is
from [44]; Kruskal’s algorithm appears in [37]. Two O(|E| log log |V|) algorithms are [6]
and [51]. The theoretically best-known algorithms appear in [16], [18], [32] and [5].

3 For instance, see the Internet Movie Database files actors.list.gz and actresses.list.gz at
ftp: //ftp.fu-berlin.de/pub/misc/movies/database.

www.manaraa.com

426 Chapter 9 Graph Algorithms

An empirical study of these algorithms suggests that Prim’s algorithm, implemented with
decreaseKey, is best in practice on most graphs [42].

The algorithm for biconnectivity is from [46]. The first linear-time strong components
algorithm (Exercise 9.28) appears in the same paper. The algorithm presented in the text
is due to Kosaraju (unpublished) and Sharir [45]. Other applications of depth-first search
appear in [27], [28], [47], and [48] (as mentioned in Chapter 8, the results in [47] and
[48] have been improved, but the basic algorithm is unchanged).

The classic reference work for the theory of NP-complete problems is [21]. Additional
material can be found in [1]. The NP-completeness of satisfiability is shown in [8]. The
other seminal paper is [33], which showed the NP-completeness of 21 problems. An excel-
lent survey of complexity theory is [49]. An approximation algorithm for the traveling
salesman problem, which generally gives nearly optimal results, can be found in [40].

A solution to Exercise 9.8 can be found in [2]. Solutions to the bipartite matching
problem in Exercise 9.13 can be found in [25] and [38]. The problem can be generalized
by adding weights to the edges and removing the restriction that the graph is bipartite.
Efficient solutions for the unweighted matching problem for general graphs are quite
complex. Details can be found in [12], [17], and [19].

Exercise 9.35 deals with planar graphs, which commonly arise in practice. Planar
graphs are very sparse, and many difficult problems are easier on planar graphs. An exam-
ple is the graph isomorphism problem, which is solvable in linear time for planar graphs
[29]. No polynomial time algorithm is known for general graphs.

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

2. R. K. Ahuja, K. Melhorn, J. B. Orlin, and R. E. Tarjan, “Faster Algorithms for the Shortest
Path Problem,” Journal of the ACM, 37 (1990), 213–223.

3. R. E. Bellman, “On a Routing Problem,” Quarterly of Applied Mathematics, 16 (1958),
87–90.

4. O. Borǔvka, “Ojistém problému minimálním (On a Minimal Problem),” Práca Moravské
Pr̆irodo-vĕdecké Spolec̆nosti, 3 (1926), 37–58.

5. B. Chazelle, “A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type
Complexity,” Journal of the ACM, 47 (2000), 1028–1047.

6. D. Cheriton and R. E. Tarjan, “Finding Minimum Spanning Trees,” SIAM Journal on
Computing, 5 (1976), 724–742.

7. J. Cheriyan and T. Hagerup, “A Randomized Maximum-Flow Algorithm,” SIAM Journal on
Computing, 24 (1995), 203–226.

8. S. Cook, “The Complexity of Theorem Proving Procedures,” Proceedings of the Third Annual
ACM Symposium on Theory of Computing (1971), 151–158.

9. N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall,
Englewood Cliffs, N.J., 1974.

10. E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische
Mathematik, 1 (1959), 269–271.

11. E. A. Dinic, “Algorithm for Solution of a Problem of Maximum Flow in Networks with
Power Estimation,” Soviet Mathematics Doklady, 11 (1970), 1277–1280.

www.manaraa.com

References 427

12. J. Edmonds, “Paths, Trees, and Flowers,” Canadian Journal of Mathematics, 17 (1965),
449–467.

13. J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic Efficiency for
Network Flow Problems,” Journal of the ACM, 19 (1972), 248–264.

14. S. Even, Graph Algorithms, Computer Science Press, Potomac, Md., 1979.
15. L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks, Princeton University Press,

Princeton, N.J., 1962.
16. M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in Improved Network

Optimization Algorithms,” Journal of the ACM, 34 (1987), 596–615.
17. H. N. Gabow, “Data Structures for Weighted Matching and Nearest Common Ancestors

with Linking,” Proceedings of First Annual ACM-SIAM Symposium on Discrete Algorithms
(1990), 434–443.

18. H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, “Efficient Algorithms for Finding
Minimum Spanning Trees on Directed and Undirected Graphs,” Combinatorica, 6 (1986),
109–122.

19. Z. Galil, “Efficient Algorithms for Finding Maximum Matchings in Graphs,” ACM
Computing Surveys, 18 (1986), 23–38.

20. Z. Galil and E. Tardos, “An O(n2(m + n log n) log n) Min-Cost Flow Algorithm,” Journal of
the ACM, 35 (1988), 374–386.

21. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

22. A. V. Goldberg and S. Rao, “Beyond the Flow Decomposition Barrier,” Journal of the ACM,
45 (1998), 783–797.

23. A. V. Goldberg and R. E. Tarjan, “A New Approach to the Maximum-Flow Problem,”
Journal of the ACM, 35 (1988), 921–940.

24. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
25. J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for Maximum Matchings in Bipartite

Graphs,” SIAM Journal on Computing, 2 (1973), 225–231.
26. J. E. Hopcroft and R. E. Tarjan, “Algorithm 447: Efficient Algorithms for Graph

Manipulation,” Communications of the ACM, 16 (1973), 372–378.
27. J. E. Hopcroft and R. E. Tarjan, “Dividing a Graph into Triconnected Components,” SIAM

Journal on Computing, 2 (1973), 135–158.
28. J. E. Hopcroft and R. E. Tarjan, “Efficient Planarity Testing,” Journal of the ACM, 21 (1974),

549–568.
29. J. E. Hopcroft and J. K. Wong, “Linear Time Algorithm for Isomorphism of Planar Graphs,”

Proceedings of the Sixth Annual ACM Symposium on Theory of Computing (1974), 172–184.
30. D. B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks,” Journal of the

ACM, 24 (1977), 1–13.
31. A. B. Kahn, “Topological Sorting of Large Networks,” Communications of the ACM, 5 (1962),

558–562.
32. D. R. Karger, P. N. Klein, and R. E. Tarjan, “A Randomized Linear-Time Algorithm to Find

Minimum Spanning Trees,” Journal of the ACM, 42 (1995), 321–328.

www.manaraa.com

428 Chapter 9 Graph Algorithms

33. R. M. Karp, “Reducibility among Combinatorial Problems,” Complexity of Computer
Computations (eds. R. E. Miller and J. W. Thatcher), Plenum Press, New York, 1972,
85–103.

34. A. V. Karzanov, “Determining the Maximal Flow in a Network by the Method of Preflows,”
Soviet Mathematics Doklady, 15 (1974), 434–437.

35. V. King, S. Rao, and R. E. Tarjan, “A Faster Deterministic Maximum Flow Algorithm,”
Journal of Algorithms, 17 (1994), 447–474.

36. D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d ed.,
Addison-Wesley, Reading, Mass., 1997.

37. J. B. Kruskal, Jr., “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem,” Proceedings of the American Mathematical Society, 7 (1956), 48–50.

38. H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval Research Logistics
Quarterly, 2 (1955), 83–97.

39. E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart and
Winston, New York, 1976.

40. S. Lin and B. W. Kernighan, “An Effective Heuristic Algorithm for the Traveling Salesman
Problem,” Operations Research, 21 (1973), 498–516.

41. K. Melhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-completeness,
Springer-Verlag, Berlin, 1984.

42. B. M. E. Moret and H. D. Shapiro, “An Empirical Analysis of Algorithms for Constructing
a Minimum Spanning Tree,” Proceedings of the Second Workshop on Algorithms and Data
Structures (1991), 400–411.

43. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, Englewood Cliffs, N.J., 1982.

44. R. C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell System
Technical Journal, 36 (1957), 1389–1401.

45. M. Sharir, “A Strong-Connectivity Algorithm and Its Application in Data Flow Analysis,”
Computers and Mathematics with Applications, 7 (1981), 67–72.

46. R. E. Tarjan, “Depth First Search and Linear Graph Algorithms,” SIAM Journal on
Computing, 1 (1972), 146–160.

47. R. E. Tarjan, “Testing Flow Graph Reducibility,” Journal of Computer and System Sciences, 9
(1974), 355–365.

48. R. E. Tarjan, “Finding Dominators in Directed Graphs,” SIAM Journal on Computing, 3
(1974), 62–89.

49. R. E. Tarjan, “Complexity of Combinatorial Algorithms,” SIAM Review, 20 (1978),
457–491.

50. R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, 1983.

51. A. C. Yao, “An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees,”
Information Processing Letters, 4 (1975), 21–23.

www.manaraa.com

C H A P T E R 10

Algorithm Design
Techniques

So far, we have been concerned with the efficient implementation of algorithms. We have
seen that when an algorithm is given, the actual data structures need not be specified. It
is up to the programmer to choose the appropriate data structure in order to make the
running time as small as possible.

In this chapter, we switch our attention from the implementation of algorithms to the
design of algorithms. Most of the algorithms that we have seen so far are straightforward and
simple. Chapter 9 contains some algorithms that are much more subtle, and some require
an argument (in some cases lengthy) to show that they are indeed correct. In this chapter,
we will focus on five of the common types of algorithms used to solve problems. For many
problems, it is quite likely that at least one of these methods will work. Specifically, for
each type of algorithm we will

� See the general approach.
� Look at several examples (the exercises at the end of the chapter provide many more

examples).
� Discuss, in general terms, the time and space complexity, where appropriate.

10.1 Greedy Algorithms
The first type of algorithm we will examine is the greedy algorithm. We have already seen
three greedy algorithms in Chapter 9: Dijkstra’s, Prim’s, and Kruskal’s algorithms. Greedy
algorithms work in phases. In each phase, a decision is made that appears to be good,
without regard for future consequences. Generally, this means that some local optimum is
chosen. This “take what you can get now” strategy is the source of the name for this class
of algorithms. When the algorithm terminates, we hope that the local optimum is equal
to the global optimum. If this is the case, then the algorithm is correct; otherwise, the
algorithm has produced a suboptimal solution. If the absolute best answer is not required,
then simple greedy algorithms are sometimes used to generate approximate answers, rather
than using the more complicated algorithms generally required to generate an exact answer.

There are several real-life examples of greedy algorithms. The most obvious is the
coin-changing problem. To make change in U.S. currency, we repeatedly dispense the 429

www.manaraa.com

430 Chapter 10 Algorithm Design Techniques

largest denomination. Thus, to give out seventeen dollars and sixty-one cents in change,
we give out a ten-dollar bill, a five-dollar bill, two one-dollar bills, two quarters, one dime,
and one penny. By doing this, we are guaranteed to minimize the number of bills and coins.
This algorithm does not work in all monetary systems, but fortunately, we can prove that it
does work in the American monetary system. Indeed, it works even if two-dollar bills and
fifty-cent pieces are allowed.

Traffic problems provide an example where making locally optimal choices does not
always work. For example, during certain rush hour times in Miami, it is best to stay off
the prime streets even if they look empty, because traffic will come to a standstill a mile
down the road, and you will be stuck. Even more shocking, it is better in some cases to
make a temporary detour in the direction opposite your destination in order to avoid all
traffic bottlenecks.

In the remainder of this section, we will look at several applications that use greedy
algorithms. The first application is a simple scheduling problem. Virtually all schedul-
ing problems are either NP-complete (or of similar difficult complexity) or are solvable
by a greedy algorithm. The second application deals with file compression and is one of
the earliest results in computer science. Finally, we will look at an example of a greedy
approximation algorithm.

10.1.1 A Simple Scheduling Problem
We are given jobs j1, j2, . . . , jN, all with known running times t1, t2, . . . , tN, respectively.
We have a single processor. What is the best way to schedule these jobs in order to mini-
mize the average completion time? In this entire section, we will assume nonpreemptive
scheduling: Once a job is started, it must run to completion.

As an example, suppose we have the four jobs and associated running times shown
in Figure 10.1. One possible schedule is shown in Figure 10.2. Because j1 finishes in 15
(time units), j2 in 23, j3 in 26, and j4 in 36, the average completion time is 25. A better
schedule, which yields a mean completion time of 17.75, is shown in Figure 10.3.

The schedule given in Figure 10.3 is arranged by shortest job first. We can show that
this will always yield an optimal schedule. Let the jobs in the schedule be ji1 , ji2 , . . . , jiN .
The first job finishes in time ti1 . The second job finishes after ti1 + ti2 , and the third job
finishes after ti1 + ti2 + ti3 . From this, we see that the total cost, C, of the schedule is

C =
N∑

k=1

(N − k + 1)tik (10.1)

C = (N + 1)
N∑

k=1

tik −
N∑

k=1

k · tik (10.2)

Notice that in Equation (10.2), the first sum is independent of the job ordering, so
only the second sum affects the total cost. Suppose that in an ordering there exists some
x > y such that tix < tiy . Then a calculation shows that by swapping jix and jiy , the second
sum increases, decreasing the total cost. Thus, any schedule of jobs in which the times are

www.manaraa.com

10.1 Greedy Algorithms 431

Job Time

j1 15

j2 8

j3 3

j4 10

Figure 10.1 Jobs and times

j 1 j 2 j 3 j 4

0 15 23 26 36

Figure 10.2 Schedule #1

j 3 j 2 j 4 j 1

0 3 11 21 36

Figure 10.3 Schedule #2 (optimal)

not monotonically nondecreasing must be suboptimal. The only schedules left are those in
which the jobs are arranged by smallest running time first, breaking ties arbitrarily.

This result indicates the reason the operating system scheduler generally gives
precedence to shorter jobs.

The Multiprocessor Case
We can extend this problem to the case of several processors. Again we have jobs
j1, j2, . . . , jN, with associated running times t1, t2, . . . , tN, and a number P of processors.
We will assume without loss of generality that the jobs are ordered, shortest running time
first. As an example, suppose P = 3, and the jobs are as shown in Figure 10.4.

Figure 10.5 shows an optimal arrangement to minimize mean completion time. Jobs
j1, j4, and j7 are run on Processor 1. Processor 2 handles j2, j5, and j8, and Processor 3 runs
the remaining jobs. The total time to completion is 165, for an average of 165

9 = 18.33.
The algorithm to solve the multiprocessor case is to start jobs in order, cycling through

processors. It is not hard to show that no other ordering can do better, although if the
number of processors P evenly divides the number of jobs N, there are many optimal
orderings. This is obtained by, for each 0 ≤ i < N/P, placing each of the jobs jiP+1 through
j(i+1)P on a different processor. In our case, Figure 10.6 shows a second optimal solution.

www.manaraa.com

432 Chapter 10 Algorithm Design Techniques

Job Time

j1 3

j2 5

j3 6

j4 10

j5 11

j6 14

j7 15

j8 18

j9 20

Figure 10.4 Jobs and times

j 1 j 4 j 7

j 2 j 5 j 8

j 3 j 6 j 9

0 3 5 6 13 16 20 28 34 40

Figure 10.5 An optimal solution for the multiprocessor case

Even if P does not divide N exactly, there can still be many optimal solutions, even if
all the job times are distinct. We leave further investigation of this as an exercise.

Minimizing the Final Completion Time
We close this section by considering a very similar problem. Suppose we are only con-
cerned with when the last job finishes. In our two examples above, these completion times
are 40 and 38, respectively. Figure 10.7 shows that the minimum final completion time is
34, and this clearly cannot be improved, because every processor is always busy.

Although this schedule does not have minimum mean completion time, it has merit in
that the completion time of the entire sequence is earlier. If the same user owns all these
jobs, then this is the preferable method of scheduling. Although these problems are very
similar, this new problem turns out to be NP-complete; it is just another way of phrasing
the knapsack or bin-packing problems, which we will encounter later in this section. Thus,

www.manaraa.com

10.1 Greedy Algorithms 433

j 1 j 5 j 9

j 2 j 4 j 7

j 3 j 6 j 8

0 3 5 6 14 15 20 30 34 38

Figure 10.6 A second optimal solution for the multiprocessor case

j 2 j 5 j 8

j 6 j 9

j 1 j 3 j 4 j 7

0 3 5 9 14 16 19 34

Figure 10.7 Minimizing the final completion time

minimizing the final completion time is apparently much harder than minimizing the mean
completion time.

10.1.2 Huffman Codes
In this section, we consider a second application of greedy algorithms, known as file
compression.

The normal ASCII character set consists of roughly 100 “printable” characters. In order
to distinguish these characters, �log 100� = 7 bits are required. Seven bits allow the rep-
resentation of 128 characters, so the ASCII character set adds some other “nonprintable”
characters. An eighth bit is added as a parity check. The important point, however, is that
if the size of the character set is C, then �log C� bits are needed in a standard encoding.

Suppose we have a file that contains only the characters a, e, i, s, t, plus blank spaces
and newlines. Suppose further, that the file has ten a’s, fifteen e’s, twelve i’s, three s’s, four t’s,

www.manaraa.com

434 Chapter 10 Algorithm Design Techniques

Character Code Frequency Total Bits

a 000 10 30

e 001 15 45

i 010 12 36

s 011 3 9

t 100 4 12

space 101 13 39

newline 110 1 3

Total 174

Figure 10.8 Using a standard coding scheme

a e i s t sp nl

Figure 10.9 Representation of the original code in a tree

thirteen blanks, and one newline. As the table in Figure 10.8 shows, this file requires 174
bits to represent, since there are 58 characters and each character requires three bits.

In real life, files can be quite large. Many of the very large files are output of some
program and there is usually a big disparity between the most frequent and least frequent
characters. For instance, many large data files have an inordinately large amount of digits,
blanks, and newlines, but few q’s and x’s. We might be interested in reducing the file size in
the case where we are transmitting it over a slow phone line. Also, since on virtually every
machine, disk space is precious, one might wonder if it would be possible to provide a
better code and reduce the total number of bits required.

The answer is that this is possible, and a simple strategy achieves 25 percent savings
on typical large files and as much as 50 to 60 percent savings on many large data files.
The general strategy is to allow the code length to vary from character to character and
to ensure that the frequently occurring characters have short codes. Notice that if all the
characters occur with the same frequency, then there are not likely to be any savings.

The binary code that represents the alphabet can be represented by the binary tree
shown in Figure 10.9.

The tree in Figure 10.9 has data only at the leaves. The representation of each character
can be found by starting at the root and recording the path, using a 0 to indicate the left
branch and a 1 to indicate the right branch. For instance, s is reached by going left, then

www.manaraa.com

10.1 Greedy Algorithms 435

a e i s t sp

nl

Figure 10.10 A slightly better tree

right, and finally right. This is encoded as 011. This data structure is sometimes referred to
as a trie. If character ci is at depth di and occurs fi times, then the cost of the code is equal
to

∑
difi.

A better code than the one given in Figure 10.9 can be obtained by noticing that the
newline is an only child. By placing the newline symbol one level higher at its parent, we
obtain the new tree in Figure 10.10. This new tree has cost of 173, but is still far from
optimal.

Notice that the tree in Figure 10.10 is a full tree: All nodes either are leaves or have
two children. An optimal code will always have this property, since otherwise, as we have
already seen, nodes with only one child could move up a level.

If the characters are placed only at the leaves, any sequence of bits can always be
decoded unambiguously. For instance, suppose 0100111100010110001000111 is the
encoded string. 0 is not a character code, 01 is not a character code, but 010 represents i,
so the first character is i. Then 011 follows, giving an s. Then 11 follows, which is a newline.
The remainder of the code is a, space, t, i, e, and newline. Thus, it does not matter if the
character codes are different lengths, as long as no character code is a prefix of another
character code. Such an encoding is known as a prefix code. Conversely, if a character is
contained in a nonleaf node, it is no longer possible to guarantee that the decoding will be
unambiguous.

Putting these facts together, we see that our basic problem is to find the full binary tree
of minimum total cost (as defined above), where all characters are contained in the leaves.
The tree in Figure 10.11 shows the optimal tree for our sample alphabet. As can be seen in
Figure 10.12, this code uses only 146 bits.

Notice that there are many optimal codes. These can be obtained by swapping chil-
dren in the encoding tree. The main unresolved question, then, is how the coding tree is
constructed. The algorithm to do this was given by Huffman in 1952. Thus, this coding
system is commonly referred to as a Huffman code.

Huffman’s Algorithm
Throughout this section we will assume that the number of characters is C. Huffman’s
algorithm can be described as follows: We maintain a forest of trees. The weight of a tree is
equal to the sum of the frequencies of its leaves. C−1 times, select the two trees, T1 and T2,
of smallest weight, breaking ties arbitrarily, and form a new tree with subtrees T1 and T2.

www.manaraa.com

436 Chapter 10 Algorithm Design Techniques

s nl

t

a

e i sp

Figure 10.11 Optimal prefix code

Character Code Frequency Total Bits

a 001 10 30

e 01 15 30

i 10 12 24

s 00000 3 15

t 0001 4 16

space 11 13 26

newline 00001 1 5

Total 146

Figure 10.12 Optimal prefix code

a e i s t sp nl
10 15 12 3 4 13 1

Figure 10.13 Initial stage of Huffman’s algorithm

At the beginning of the algorithm, there are C single-node trees—one for each character.
At the end of the algorithm there is one tree, and this is the optimal Huffman coding tree.

A worked example will make the operation of the algorithm clear. Figure 10.13 shows
the initial forest; the weight of each tree is shown in small type at the root. The two trees
of lowest weight are merged together, creating the forest shown in Figure 10.14. We will
name the new root T1, so that future merges can be stated unambiguously. We have made
s the left child arbitrarily; any tiebreaking procedure can be used. The total weight of the
new tree is just the sum of the weights of the old trees, and can thus be easily computed.

www.manaraa.com

10.1 Greedy Algorithms 437

a e i t sp s

T1

nl
10 15 12 4 13

4

Figure 10.14 Huffman’s algorithm after the first merge

a e i sp s

T1

nl

T2

t

10 15 12 13

8

Figure 10.15 Huffman’s algorithm after the second merge

e i sp s

T1

nl

T2

t

T3

a

15 12 13

18

Figure 10.16 Huffman’s algorithm after the third merge

It is also a simple matter to create the new tree, since we merely need to get a new node,
set the left and right links, and record the weight.

Now there are six trees, and we again select the two trees of smallest weight. These
happen to be T1 and t, which are then merged into a new tree with root T2 and weight 8.
This is shown in Figure 10.15. The third step merges T2 and a, creating T3, with weight
10 + 8 = 18. Figure 10.16 shows the result of this operation.

After the third merge is completed, the two trees of lowest weight are the single-node
trees representing i and the blank space. Figure 10.17 shows how these trees are merged
into the new tree with root T4. The fifth step is to merge the trees with roots e and T3, since
these trees have the two smallest weights. The result of this step is shown in Figure 10.18.

Finally, the optimal tree, which was shown in Figure 10.11, is obtained by merging the
two remaining trees. Figure 10.19 shows this optimal tree, with root T6.

We will sketch the ideas involved in proving that Huffman’s algorithm yields an optimal
code; we will leave the details as an exercise. First, it is not hard to show by contradiction
that the tree must be full, since we have already seen how a tree that is not full is improved.

Next, we must show that the two least frequent characters α and β must be the two
deepest nodes (although other nodes may be as deep). Again, this is easy to show by

www.manaraa.com

438 Chapter 10 Algorithm Design Techniques

e i

T4

sp s

T1

nl

T2

t

T3

a

15

25

18

Figure 10.17 Huffman’s algorithm after the fourth merge

i

T4

sp s

T1

nl

T2

t

T3

a

T5

e

25

33

Figure 10.18 Huffman’s algorithm after the fifth merge

contradiction, since if either α or β is not a deepest node, then there must be some γ that
is (recall that the tree is full). If α is less frequent than γ , then we can improve the cost by
swapping them in the tree.

We can then argue that the characters in any two nodes at the same depth can be
swapped without affecting optimality. This shows that an optimal tree can always be found
that contains the two least frequent symbols as siblings; thus the first step is not a mistake.

The proof can be completed by using an induction argument. As trees are merged,
we consider the new character set to be the characters in the roots. Thus, in our example,
after four merges, we can view the character set as consisting of e and the metacharacters
T3 and T4. This is probably the trickiest part of the proof; you are urged to fill in all of the
details.

The reason that this is a greedy algorithm is that at each stage we perform a merge
without regard to global considerations. We merely select the two smallest trees.

If we maintain the trees in a priority queue, ordered by weight, then the running time
is O(C log C), since there will be one buildHeap, 2C − 2 deleteMins, and C − 2 inserts,
on a priority queue that never has more than C elements. A simple implementation of the
priority queue, using a list, would give an O(C2) algorithm. The choice of priority queue
implementation depends on how large C is. In the typical case of an ASCII character set,
C is small enough that the quadratic running time is acceptable. In such an application,
virtually all the running time will be spent on the disk I/O required to read the input file
and write out the compressed version.

www.manaraa.com

10.1 Greedy Algorithms 439

s

T1

nl

T2

t

T3

a

T5

e

T6

i

T4

sp

58

Figure 10.19 Huffman’s algorithm after the final merge

There are two details that must be considered. First, the encoding information must
be transmitted at the start of the compressed file, since otherwise it will be impossible to
decode. There are several ways of doing this; see Exercise 10.4. For small files, the cost
of transmitting this table will override any possible savings in compression, and the result
will probably be file expansion. Of course, this can be detected and the original left intact.
For large files, the size of the table is not significant.

The second problem is that as described, this is a two-pass algorithm. The first pass
collects the frequency data and the second pass does the encoding. This is obviously not
a desirable property for a program dealing with large files. Some alternatives are described
in the references.

10.1.3 Approximate Bin Packing
In this section, we will consider some algorithms to solve the bin-packing problem. These
algorithms will run quickly but will not necessarily produce optimal solutions. We will
prove, however, that the solutions that are produced are not too far from optimal.

We are given N items of sizes s1, s2, . . . , sN. All sizes satisfy 0 < si ≤ 1. The problem
is to pack these items in the fewest number of bins, given that each bin has unit capacity.
As an example, Figure 10.20 shows an optimal packing for an item list with sizes 0.2, 0.5,
0.4, 0.7, 0.1, 0.3, 0.8.

There are two versions of the bin-packing problem. The first version is online bin
packing. In this version, each item must be placed in a bin before the next item can be
processed. The second version is the off-line bin-packing problem. In an off-line algo-
rithm, we do not need to do anything until all the input has been read. The distinction
between online and off-line algorithms was discussed in Section 8.2.

Online Algorithms
The first issue to consider is whether or not an online algorithm can actually always
give an optimal answer, even if it is allowed unlimited computation. Remember that even

www.manaraa.com

440 Chapter 10 Algorithm Design Techniques

B 1

0.2

0.8

B 2

0.7

0.3

B 3

0.4

0.1

0.5

Figure 10.20 Optimal packing for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

though unlimited computation is allowed, an online algorithm must place an item before
processing the next item and cannot change its decision.

To show that an online algorithm cannot always give an optimal solution, we will give
it particularly difficult data to work on. Consider an input sequence I1 of M small items of
weight 1

2 − ε followed by M large items of weight 1
2 + ε, 0 < ε < 0.01. It is clear that

these items can be packed in M bins if we place one small item and one large item in each
bin. Suppose there were an optimal online algorithm A that could perform this packing.
Consider the operation of algorithm A on the sequence I2, consisting of only M small items
of weight 1

2 − ε. I2 can be packed in �M/2� bins. However, A will place each item in a
separate bin, since A must yield the same results on I2 as it does for the first half of I1, and
the first half of I1 is exactly the same input as I2. This means that A will use twice as many
bins as is optimal for I2. What we have proven is that there is no optimal algorithm for
online bin packing.

What the argument above shows is that an online algorithm never knows when the
input might end, so any performance guarantees it provides must hold at every instant
throughout the algorithm. If we follow the foregoing strategy, we can prove the following.

Theorem 10.1.
There are inputs that force any online bin-packing algorithm to use at least 4

3 the
optimal number of bins.

Proof.
Suppose otherwise, and suppose for simplicity that M is even. Consider any online
algorithm A running on the input sequence I1, above. Recall that this sequence consists
of M small items followed by M large items. Let us consider what the algorithm A has
done after processing the Mth item. Suppose A has already used b bins. At this point in
the algorithm, the optimal number of bins is M/2, because we can place two elements
in each bin. Thus we know that 2b/M < 4

3 , by our assumption of a better-than- 4
3

performance guarantee.
Now consider the performance of algorithm A after all items have been packed.

All bins created after the bth bin must contain exactly one item, since all small items
are placed in the first b bins, and two large items will not fit in a bin. Since the

www.manaraa.com

10.1 Greedy Algorithms 441

B 1

0.2

0.5

empty

B 2

0.4

empty

B 3

0.7

0.1

empty

B 4

0.3

empty

B 5

0.8

empty

Figure 10.21 Next fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

first b bins can have at most two items each, and the remaining bins have one item
each, we see that packing 2M items will require at least 2M − b bins. Since the 2M
items can be optimally packed using M bins, our performance guarantee assures us
that (2M − b)/M < 4

3 .

The first inequality implies that b/M < 2
3 , and the second inequality implies that

b/M > 2
3 , which is a contradiction. Thus, no online algorithm can guarantee that it

will produce a packing with less than 4
3 the optimal number of bins.

There are three simple algorithms that guarantee that the number of bins used is no
more than twice optimal. There are also quite a few more complicated algorithms with
better guarantees.

Next Fit
Probably the simplest algorithm is next fit. When processing any item, we check to see
whether it fits in the same bin as the last item. If it does, it is placed there; otherwise, a new
bin is created. This algorithm is incredibly simple to implement and runs in linear time.
Figure 10.21 shows the packing produced for the same input as Figure 10.20.

Not only is next fit simple to program, its worst-case behavior is also easy to analyze.

Theorem 10.2.
Let M be the optimal number of bins required to pack a list I of items. Then next fit
never uses more than 2M bins. There exist sequences such that next fit uses 2M − 2
bins.

Proof.
Consider any adjacent bins Bj and Bj+1. The sum of the sizes of all items in Bj and Bj+1

must be larger than 1, since otherwise all of these items would have been placed in Bj.
If we apply this result to all pairs of adjacent bins, we see that at most half of the space
is wasted. Thus next fit uses at most twice the optimal number of bins.

To see that this ratio, 2, is tight, suppose that the N items have size si = 0.5 if i is
odd and si = 2/N if i is even. Assume N is divisible by 4. The optimal packing, shown
in Figure 10.22, consists of N/4 bins, each containing 2 elements of size 0.5, and one

www.manaraa.com

442 Chapter 10 Algorithm Design Techniques

B 1

0.5

0.5

B 2

0.5

0.5

. . .

BN/4

0.5

0.5

BN/4+1

2/N
2/N
2/N

. . .

2/N
2/N
2/N

Figure 10.22 Optimal packing for 0.5, 2/N, 0.5, 2/N, 0.5, 2/N, . . .

B 1

0.5

2 /N

empty

B 2

0.5

2 /N

empty

. . .

BN/2

0.5

2/N

empty

Figure 10.23 Next fit packing for 0.5, 2/N, 0.5, 2/N, 0.5, 2/N, . . .

bin containing the N/2 elements of size 2/N, for a total of (N/4) + 1. Figure 10.23
shows that next fit uses N/2 bins. Thus, next fit can be forced to use almost twice as
many bins as optimal.

First Fit
Although next fit has a reasonable performance guarantee, it performs poorly in practice,
because it creates new bins when it does not need to. In the sample run, it could have
placed the item of size 0.3 in either B1 or B2, rather than create a new bin.

The first fit strategy is to scan the bins in order and place the new item in the first bin
that is large enough to hold it. Thus, a new bin is created only when the results of previous
placements have left no other alternative. Figure 10.24 shows the packing that results from
first fit on our standard input.

A simple method of implementing first fit would process each item by scanning down
the list of bins sequentially. This would take O(N2). It is possible to implement first fit to
run in O(N log N); we leave this as an exercise.

www.manaraa.com

10.1 Greedy Algorithms 443

B 1

0.2

0.5

0.1

empty

B 2

0.4

0.3

empty

B 3

0.7

empty

B 4

0.8

empty

Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

B 1→BM

1/ 7 + ε
1/ 7 + ε
1/ 7 + ε
1/ 7 + ε
1/ 7 + ε
1/ 7 + ε
empty

...

BM+1→B 4M

1/ 3 + ε

1/ 3 + ε

empty

...

B 4M+1→B 10M

1/ 2 + ε

empty

Figure 10.25 A case where first fit uses 10M bins instead of 6M

A moment’s thought will convince you that at any point, at most one bin can be more
than half empty, since if a second bin were also half empty, its contents would fit into the
first bin. Thus, we can immediately conclude that first fit guarantees a solution with at
most twice the optimal number of bins.

On the other hand, the bad case that we used in the proof of next fit’s performance
bound does not apply for first fit. Thus, one might wonder if a better bound can be proven.
The answer is yes, but the proof is complicated.

Theorem 10.3.
Let M be the optimal number of bins required to pack a list I of items. Then first fit
never uses more than 17

10 M + 7
10 bins. There exist sequences such that first fit uses

17
10 (M − 1) bins.

Proof.
See the references at the end of the chapter.

An example where first fit does almost as poorly as the previous theorem would indi-
cate is shown in Figure 10.25. The input consists of 6M items of size 1

7 + ε, followed by

www.manaraa.com

444 Chapter 10 Algorithm Design Techniques

B 1

0.2

0.5

0.1

empty

B 2

0.4

empty

B 3

0.7

0.3

B 4

0.8

empty

Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

6M items of size 1
3 + ε, followed by 6M items of size 1

2 + ε. One simple packing places one
item of each size in a bin and requires 6M bins. First fit requires 10M bins.

When first fit is run on a large number of items with sizes uniformly distributed
between 0 and 1, empirical results show that first fit uses roughly 2 percent more bins
than optimal. In many cases, this is quite acceptable.

Best Fit
The third online strategy we will examine is best fit. Instead of placing a new item in the
first spot that is found, it is placed in the tightest spot among all bins. A typical packing is
shown in Figure 10.26.

Notice that the item of size 0.3 is placed in B3, where it fits perfectly, instead of B2.
One might expect that since we are now making a more educated choice of bins, the
performance guarantee would improve. This is not the case, because the generic bad cases
are the same. Best fit is never more than roughly 1.7 times as bad as optimal, and there
are inputs for which it (nearly) achieves this bound. Nevertheless, best fit is also simple
to code, especially if an O(N log N) algorithm is required, and it does perform better for
random inputs.

Off-line Algorithms
If we are allowed to view the entire item list before producing an answer, then we should
expect to do better. Indeed, since we can eventually find the optimal packing by exhaustive
search, we already have a theoretical improvement over the online case.

The major problem with all the online algorithms is that it is hard to pack the large
items, especially when they occur late in the input. The natural way around this is to sort
the items, placing the largest items first. We can then apply first fit or best fit, yielding the
algorithms first fit decreasing and best fit decreasing, respectively. Figure 10.27 shows
that in our case this yields an optimal solution (although, of course, this is not true in
general).

In this section, we will deal with first fit decreasing. The results for best fit decreasing
are almost identical. Since it is possible that the item sizes are not distinct, some authors

www.manaraa.com

10.1 Greedy Algorithms 445

B 1

0.8

0.2

B 2

0.7

0.3

B 3

0.5

0.4

0.1

Figure 10.27 First fit for 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1

prefer to call the algorithm first fit nonincreasing. We will stay with the original name. We
will also assume, without loss of generality, that input sizes are already sorted.

The first remark we can make is that the bad case, which showed first fit using 10M
bins instead of 6M bins, does not apply when the items are sorted. We will show that if
an optimal packing uses M bins, then first fit decreasing never uses more than (4M + 1)/3
bins.

The result depends on two observations. First, all the items with weight larger than
1
3 will be placed in the first M bins. This implies that all the items in the extra bins have

weight at most 1
3 . The second observation is that the number of items in the extra bins can

be at most M − 1. Combining these two results, we find that at most �(M − 1)/3� extra
bins can be required. We now prove these two observations.

Lemma 10.1.
Let the N items have (sorted in decreasing order) input sizes s1, s2, . . . , sN, respectively,
and suppose that the optimal packing is M bins. Then all items that first fit decreasing
places in extra bins have size at most 1

3 .

Proof.
Suppose the ith item is the first placed in bin M + 1. We need to show that si ≤ 1

3 . We

will prove this by contradiction. Assume si > 1
3 .

It follows that s1, s2, . . . , si−1 > 1
3 , since the sizes are arranged in sorted order.

From this it follows that all bins B1, B2, . . ., BM have at most two items each.
Consider the state of the system after the (i − 1)st item is placed in a bin, but

before the ith item is placed. We now want to show that (under the assumption that
si > 1

3) the first M bins are arranged as follows: First there are some bins with exactly
one element, and then the remaining bins have two elements.

Suppose there were two bins Bx and By, such that 1 ≤ x < y ≤ M, Bx has two
items, and By has one item. Let x1 and x2 be the two items in Bx, and let y1 be the item
in By. x1 ≥ y1, since x1 was placed in the earlier bin. x2 ≥ si, by similar reasoning.
Thus, x1 + x2 ≥ y1 + si. This implies that si could be placed in By. By our assumption
this is not possible. Thus, if si > 1

3 , then, at the time that we try to process si, the first

www.manaraa.com

446 Chapter 10 Algorithm Design Techniques

M bins are arranged such that the first j have one element and the next M − j have two
elements.

To prove the lemma we will show that there is no way to place all the items in M
bins, which contradicts the premise of the lemma.

Clearly, no two items s1, s2, . . . , sj can be placed in one bin, by any algorithm, since
if they could, first fit would have done so too. We also know that first fit has not placed
any of the items of size sj+1, sj+2, . . . , si into the first j bins, so none of them fit. Thus, in
any packing, specifically the optimal packing, there must be j bins that do not contain
these items. It follows that the items of size sj+1, sj+2, . . . , si−1 must be contained in
some set of M − j bins, and from previous considerations, the total number of such
items is 2(M − j).1

The proof is completed by noting that if si > 1
3 , there is no way for si to be placed

in one of these M bins. Clearly, it cannot go in one of the j bins, since if it could, then
first fit would have done so too. To place it in one of the remaining M − j bins requires
distributing 2(M− j)+1 items into the M− j bins. Thus, some bin would have to have
three items, each of which is larger than 1

3 , a clear impossibility.
This contradicts the fact that all the sizes can be placed in M bins, so the original

assumption must be incorrect. Thus, si ≤ 1
3 .

Lemma 10.2.
The number of objects placed in extra bins is at most M − 1.

Proof.
Assume that there are at least M objects placed in extra bins. We know that∑N

i=1 si ≤ M, since all the objects fit in M bins. Suppose that Bj is filled with Wj total
weight for 1 ≤ j ≤ M. Suppose the first M extra objects have sizes x1, x2, . . . , xM.
Then, since the items in the first M bins plus the first M extra items are a subset of all
the items, it follows that

N∑
i=1

si ≥
M∑

j=1

Wj +
M∑

j=1

xj ≥
M∑

j=1

(Wj + xj)

Now Wj + xj > 1, since otherwise the item corresponding to xj would have been
placed in Bj. Thus

N∑
i=1

si >

M∑
j=1

1 > M

But this is impossible if the N items can be packed in M bins. Thus, there can be at
most M − 1 extra items.

1 Recall that first fit packed these elements into M − j bins and placed two items in each bin. Thus, there are
2(M − j) items.

www.manaraa.com

10.1 Greedy Algorithms 447

Theorem 10.4.
Let M be the optimal number of bins required to pack a list I of items. Then first fit
decreasing never uses more than (4M + 1)/3 bins.

Proof.
There are at most M − 1 extra items, of size at most 1

3 . Thus, there can be at most
�(M − 1)/3� extra bins. The total number of bins used by first fit decreasing is thus at
most �(4M − 1)/3� ≤ (4M + 1)/3.

It is possible to prove a much tighter bound for both first fit decreasing and next fit
decreasing.

Theorem 10.5.
Let M be the optimal number of bins required to pack a list I of items. Then first fit
decreasing never uses more than 11

9 M + 6
9 bins. There exist sequences such that first

fit decreasing uses 11
9 M + 6

9 bins.

Proof.
The upper bound requires a very complicated analysis. The lower bound is exhibited
by a sequence consisting of 6k + 4 elements of size 1

2 + ε, followed by 6k + 4 elements
of size 1

4 +2ε, followed by 6k+4 elements of size 1
4 +ε, followed by 12k+8 elements

of size 1
4 − 2ε. Figure 10.28 shows that the optimal packing requires 9k + 6 bins, but

first fit decreasing uses 11k + 8 bins. Set M = 9k + 6, and the result follows.

In practice, first fit decreasing performs extremely well. If sizes are chosen uniformly
over the unit interval, then the expected number of extra bins is �(

√
M). Bin packing is a

fine example of how simple greedy heuristics can give good results.

B 1→ →B6k + 4 B6k + 5 9k + 6B →B6k + 5 8k + 5B →B8k + 7 11k + 7B 11k + 8B8k + 6B

Optimal First Fit Decreasing

1/4 − 2ε

1/4 − 2ε

1/4 − 2ε

1/4 − 2ε

empty

1/4 − 2ε1/4 + ε

1/4 − 2ε

1/4 − 2ε

1/4 − 2ε

1/2 + ε

1/4 + ε

1/4 − 2ε

1/4 + ε

1/4 + ε

1/4 + ε

empty

B1→B6k + 4

1/2 + ε

1/4 + 2ε

empty

1/4 + 2ε

1/4 + 2ε

1/4 − 2ε

1/4 − 2ε

Figure 10.28 Example where first fit decreasing uses 11k + 8 bins, but only 9k + 6 bins
are required

www.manaraa.com

448 Chapter 10 Algorithm Design Techniques

10.2 Divide and Conquer
Another common technique used to design algorithms is divide and conquer. Divide-and
conquer-algorithms consist of two parts:

Divide: Smaller problems are solved recursively (except, of course, base cases).

Conquer: The solution to the original problem is then formed from the solutions to the
subproblems.

Traditionally, routines in which the text contains at least two recursive calls are called
divide-and-conquer algorithms, while routines whose text contains only one recursive call
are not. We generally insist that the subproblems be disjoint (that is, essentially nonover-
lapping). Let us review some of the recursive algorithms that have been covered in this
text.

We have already seen several divide-and-conquer algorithms. In Section 2.4.3, we saw
an O(N log N) solution to the maximum subsequence sum problem. In Chapter 4, we saw
linear-time tree traversal strategies. In Chapter 7, we saw the classic examples of divide and
conquer, namely mergesort and quicksort, which have O(N log N) worst-case and average-
case bounds, respectively.

We have also seen several examples of recursive algorithms that probably do not clas-
sify as divide and conquer, but merely reduce to a single simpler case. In Section 1.3, we
saw a simple routine to print a number. In Chapter 2, we used recursion to perform effi-
cient exponentiation. In Chapter 4, we examined simple search routines for binary search
trees. In Section 6.6, we saw simple recursion used to merge leftist heaps. In Section 7.7,
an algorithm was given for selection that takes linear average time. The disjoint set find
operation was written recursively in Chapter 8. Chapter 9 showed routines to recover the
shortest path in Dijkstra’s algorithm and other procedures to perform depth-first search in
graphs. None of these algorithms are really divide-and-conquer algorithms, because only
one recursive call is performed.

We have also seen, in Section 2.4, a very bad recursive routine to compute the
Fibonacci numbers. This could be called a divide-and-conquer algorithm, but it is terribly
inefficient, because the problem really is not divided at all.

In this section, we will see more examples of the divide-and-conquer paradigm. Our
first application is a problem in computational geometry. Given N points in a plane, we
will show that the closest pair of points can be found in O(N log N) time. The exercises
describe some other problems in computational geometry which can be solved by divide
and conquer. The remainder of the section shows some extremely interesting, but mostly
theoretical, results. We provide an algorithm that solves the selection problem in O(N)
worst-case time. We also show that 2 N-bit numbers can be multiplied in o(N2) operations
and that two N × N matrices can be multiplied in o(N3) operations. Unfortunately, even
though these algorithms have better worst-case bounds than the conventional algorithms,
none are practical except for very large inputs.

www.manaraa.com

10.2 Divide and Conquer 449

10.2.1 Running Time of Divide-and-Conquer Algorithms
All the efficient divide-and-conquer algorithms we will see divide the problems into sub-
problems, each of which is some fraction of the original problem, and then perform some
additional work to compute the final answer. As an example, we have seen that merge-
sort operates on two problems, each of which is half the size of the original, and then
uses O(N) additional work. This yields the running time equation (with appropriate initial
conditions)

T(N) = 2T(N/2) + O(N)

We saw in Chapter 7 that the solution to this equation is O(N log N). The following theorem
can be used to determine the running time of most divide-and-conquer algorithms.

Theorem 10.6.
The solution to the equation T(N) = aT(N/b) + �(Nk), where a ≥ 1 and b > 1, is

T(N) =

⎧⎪⎨
⎪⎩

O(Nlogb a) if a > bk

O(Nk log N) if a = bk

O(Nk) if a < bk

Proof.
Following the analysis of mergesort in Chapter 7, we will assume that N is a power of
b; thus, let N = bm. Then N/b = bm−1 and Nk = (bm)k = bmk = bkm = (bk)m. Let us
assume T(1) = 1, and ignore the constant factor in �(Nk). Then we have

T(bm) = aT(bm−1) + (bk)m

If we divide through by am, we obtain the equation

T(bm)

am
= T(bm−1)

am−1
+

{
bk

a

}m

(10.3)

We can apply this equation for other values of m, obtaining

T(bm−1)

am−1
= T(bm−2)

am−2
+

{
bk

a

}m−1

(10.4)

T(bm−2)

am−2
= T(bm−3)

am−3
+

{
bk

a

}m−2

(10.5)

. . .

T(b1)

a1
= T(b0)

a0
+

{
bk

a

}1

(10.6)

We use our standard trick of adding up the telescoping Equations (10.3) through
(10.6). Virtually all the terms on the left cancel the leading terms on the right, yielding

www.manaraa.com

450 Chapter 10 Algorithm Design Techniques

T(bm)

am
= 1 +

m∑
i=1

{
bk

a

}i

(10.7)

=
m∑

i=0

{
bk

a

}i

(10.8)

Thus

T(N) = T(bm) = am
m∑

i=0

{
bk

a

}i

(10.9)

If a > bk, then the sum is a geometric series with ratio smaller than 1. Since the sum
of infinite series would converge to a constant, this finite sum is also bounded by a
constant, and thus Equation (10.10) applies:

T(N) = O(am) = O(alogb N) = O(Nlogb a) (10.10)

If a = bk, then each term in the sum is 1. Since the sum contains 1 + logb N terms and
a = bk implies that logb a = k,

T(N) = O(am logb N) = O(Nlogb a logb N) = O(Nk logb N)

= O(Nk log N) (10.11)

Finally, if a < bk, then the terms in the geometric series are larger than 1, and the
second formula in Section 1.2.3 applies. We obtain

T(N) = am (bk/a)m+1 − 1

(bk/a) − 1
= O(am(bk/a)m) = O((bk)m) = O(Nk) (10.12)

proving the last case of the theorem.

As an example, mergesort has a = b = 2 and k = 1. The second case applies, giving
the answer O(N log N). If we solve three problems, each of which is half the original size,
and combine the solutions with O(N) additional work, then a = 3, b = 2, and k = 1. Case
1 applies here, giving a bound of O(Nlog2 3) = O(N1.59). An algorithm that solved three
half-sized problems, but required O(N2) work to merge the solution, would have an O(N2)
running time, since the third case would apply.

There are two important cases that are not covered by Theorem 10.6. We state two
more theorems, leaving the proofs as exercises. Theorem 10.7 generalizes the previous
theorem.

Theorem 10.7.
The solution to the equation T(N) = aT(N/b) + �(Nk logp N), where a ≥ 1, b > 1,
and p ≥ 0 is

www.manaraa.com

10.2 Divide and Conquer 451

T(N) =

⎧⎪⎨
⎪⎩

O(Nlogb a) if a > bk

O(Nk logp+1 N) if a = bk

O(Nk logp N) if a < bk

Theorem 10.8.
If

∑k
i=1 αi < 1, then the solution to the equation T(N) = ∑k

i=1 T(αiN) + O(N) is
T(N) = O(N).

10.2.2 Closest-Points Problem
The input to our first problem is a list P of points in a plane. If p1 = (x1, y1) and p2 =
(x2, y2), then the Euclidean distance between p1 and p2 is [(x1 − x2)2 + (y1 − y2)2]1/2. We
are required to find the closest pair of points. It is possible that two points have the same
position; in that case that pair is the closest, with distance zero.

If there are N points, then there are N(N − 1)/2 pairs of distances. We can check all
of these, obtaining a very short program, but at the expense of an O(N2) algorithm. Since
this approach is just an exhaustive search, we should expect to do better.

Let us assume that the points have been sorted by x coordinate. At worst, this adds
O(N log N) to the final time bound. Since we will show an O(N log N) bound for the entire
algorithm, this sort is essentially free, from a complexity standpoint.

Figure 10.29 shows a small sample point set P. Since the points are sorted by x coor-
dinate, we can draw an imaginary vertical line that partitions the point set into two halves,
PL and PR. This is certainly simple to do. Now we have almost exactly the same situation
as we saw in the maximum subsequence sum problem in Section 2.4.3. Either the closest
points are both in PL, or they are both in PR, or one is in PL and the other is in PR. Let us
call these distances dL, dR, and dC. Figure 10.30 shows the partition of the point set and
these three distances.

Figure 10.29 A small point set

www.manaraa.com

452 Chapter 10 Algorithm Design Techniques

dL

dR

dC

Figure 10.30 P partitioned into PL and PR; shortest distances are shown

We can compute dL and dR recursively. The problem, then, is to compute dC. Since we
would like an O(N log N) solution, we must be able to compute dC with only O(N) addi-
tional work. We have already seen that if a procedure consists of two half-sized recursive
calls and O(N) additional work, then the total time will be O(N log N).

Let δ = min(dL, dR). The first observation is that we only need to compute dC if dC

improves on δ. If dC is such a distance, then the two points that define dC must be within
δ of the dividing line; we will refer to this area as a strip. As shown in Figure 10.31, this
observation limits the number of points that need to be considered (in our case, δ = dR).

δ δ

dL

dR

p 1 p 2

p 3

p 4

p 5

p 6
p 7

Figure 10.31 Two-lane strip, containing all points considered for dC strip

www.manaraa.com

10.2 Divide and Conquer 453

// Points are all in the strip

for(i = 0; i < numPointsInStrip; i++)
for(j = i + 1; j < numPointsInStrip; j++)

if(dist(pi, pj) < δ)
δ = dist(pi, pj);

Figure 10.32 Brute-force calculation of min(δ, dC)

There are two strategies that can be tried to compute dC. For large point sets that are
uniformly distributed, the number of points that are expected to be in the strip is very
small. Indeed, it is easy to argue that only O(

√
N) points are in the strip on average. Thus,

we could perform a brute-force calculation on these points in O(N) time. The pseudocode
in Figure 10.32 implements this strategy, assuming the Java convention that the points are
indexed starting at 0.

In the worst case, all the points could be in the strip, so this strategy does not always
work in linear time. We can improve this algorithm with the following observation: The y
coordinates of the two points that define dC can differ by at most δ. Otherwise, dC > δ.
Suppose that the points in the strip are sorted by their y coordinates. Therefore, if pi and pj’s
y coordinates differ by more than δ, then we can proceed to pi+1. This simple modification
is implemented in Figure 10.33.

This extra test has a significant effect on the running time, because for each pi only a
few points pj are examined before pi’s and pj’s y coordinates differ by more than δ and force
an exit from the inner for loop. Figure 10.34 shows, for instance, that for point p3, only
the two points p4 and p5 lie in the strip within δ vertical distance.

In the worst case, for any point pi, at most 7 points pj are considered. This is because
these points must lie either in the δ by δ square in the left half of the strip or in the δ by
δ square in the right half of the strip. On the other hand, all the points in each δ by δ

square are separated by at least δ. In the worst case, each square contains four points, one
at each corner. One of these points is pi, leaving at most seven points to be considered.
This worst-case situation is shown in Figure 10.35. Notice that even though pL2 and pR1

have the same coordinates, they could be different points. For the actual analysis, it is only

// Points are all in the strip and sorted by y-coordinate

for(i = 0; i < numPointsInStrip; i++)
for(j = i + 1; j < numPointsInStrip; j++)

if(pi and pj’s y-coordinates differ by more than δ)
break; // Go to next pi.

else
if(dist(pi, pj) < δ)

δ = dist(pi, pj);

Figure 10.33 Refined calculation of min(δ, dC)

www.manaraa.com

454 Chapter 10 Algorithm Design Techniques

δ δ

dL

dR

p 1 p 2

p 3 p 4

p 5

p 6
p 7

δ

Figure 10.34 Only p4 and p5 are considered in the second for loop

Left half (λ x λ) Right half (λ x λ)

pL1 pL2

pL3 pL4

pR1 pR2

pR3 pR4

Figure 10.35 At most eight points fit in the rectangle; there are two coordinates shared
by two points each

important that the number of points in the λ by 2λ rectangle be O(1), and this much is
certainly clear.

Because at most seven points are considered for each pi, the time to compute a dC that
is better than δ is O(N). Thus, we appear to have an O(N log N) solution to the closest-
points problem, based on the two half-sized recursive calls plus the linear extra work to
combine the two results. However, we do not quite have an O(N log N) solution yet.

The problem is that we have assumed that a list of points sorted by y coordinate is avail-
able. If we perform this sort for each recursive call, then we have O(N log N) extra work:

www.manaraa.com

10.2 Divide and Conquer 455

This gives an O(N log2 N) algorithm. This is not all that bad, especially when compared to
the brute force O(N2). However, it is not hard to reduce the work for each recursive call to
O(N), thus ensuring an O(N log N) algorithm.

We will maintain two lists. One is the point list sorted by x coordinate, and the other is
the point list sorted by y coordinate. We will call these lists P and Q, respectively. These can
be obtained by a preprocessing sorting step at cost O(N log N) and thus does not affect the
time bound. PL and QL are the lists passed to the left-half recursive call, and PR and QR are
the lists passed to the right-half recursive call. We have already seen that P is easily split in
the middle. Once the dividing line is known, we step through Q sequentially, placing each
element in QL or QR as appropriate. It is easy to see that QL and QR will be automatically
sorted by y coordinate. When the recursive calls return, we scan through the Q list and
discard all the points whose x coordinates are not within the strip. Then Q contains only
points in the strip, and these points are guaranteed to be sorted by their y coordinates.

This strategy ensures that the entire algorithm is O(N log N), because only O(N) extra
work is performed.

10.2.3 The Selection Problem
The selection problem requires us to find the kth smallest element in a collection S of N
elements. Of particular interest is the special case of finding the median. This occurs when
k = �N/2�.

In Chapters 1, 6, and 7 we have seen several solutions to the selection problem. The
solution in Chapter 7 uses a variation of quicksort and runs in O(N) average time. Indeed,
it is described in Hoare’s original paper on quicksort.

Although this algorithm runs in linear average time, it has a worst case of O(N2).
Selection can easily be solved in O(N log N) worst-case time by sorting the elements, but
for a long time it was unknown whether or not selection could be accomplished in O(N)
worst-case time. The quickselect algorithm outlined in Section 7.7.6 is quite efficient in
practice, so this was mostly a question of theoretical interest.

Recall that the basic algorithm is a simple recursive strategy. Assuming that N is larger
than the cutoff point where elements are simply sorted, an element v, known as the pivot,
is chosen. The remaining elements are placed into two sets, S1 and S2. S1 contains elements
that are guaranteed to be no larger than v, and S2 contains elements that are no smaller
than v. Finally, if k ≤ |S1|, then the kth smallest element in S can be found by recursively
computing the kth smallest element in S1. If k = |S1|+ 1, then the pivot is the kth smallest
element. Otherwise, the kth smallest element in S is the (k − |S1| − 1)st smallest element
in S2. The main difference between this algorithm and quicksort is that there is only one
subproblem to solve instead of two.

In order to obtain a linear algorithm, we must ensure that the subproblem is only a
fraction of the original and not merely only a few elements smaller than the original. Of
course, we can always find such an element if we are willing to spend some time to do so.
The difficult problem is that we cannot spend too much time finding the pivot.

For quicksort, we saw that a good choice for pivot was to pick three elements and
use their median. This gives some expectation that the pivot is not too bad but does not

www.manaraa.com

456 Chapter 10 Algorithm Design Techniques

provide a guarantee. We could choose 21 elements at random, sort them in constant time,
use the 11th largest as pivot, and get a pivot that is even more likely to be good. However,
if these 21 elements were the 21 largest, then the pivot would still be poor. Extending this,
we could use up to O(N/log N) elements, sort them using heapsort in O(N) total time,
and be almost certain, from a statistical point of view, of obtaining a good pivot. In the
worst case, however, this does not work because we might select the O(N/log N) largest
elements, and then the pivot would be the [N − O(N/log N)]th largest element, which is
not a constant fraction of N.

The basic idea is still useful. Indeed, we will see that we can use it to improve the
expected number of comparisons that quickselect makes. To get a good worst case, how-
ever, the key idea is to use one more level of indirection. Instead of finding the median
from a sample of random elements, we will find the median from a sample of medians.

The basic pivot selection algorithm is as follows:

1. Arrange the N elements into
N/5� groups of five elements, ignoring the (at most four)
extra elements.

2. Find the median of each group. This gives a list M of
N/5� medians.

3. Find the median of M. Return this as the pivot, v.

We will use the term median-of-median-of-five partitioning to describe the quick-
select algorithm that uses the pivot selection rule given above. We will now show that
median-of-median-of-five partitioning guarantees that each recursive subproblem is at
most roughly 70 percent as large as the original. We will also show that the pivot can
be computed quickly enough to guarantee an O(N) running time for the entire selection
algorithm.

Let us assume for the moment that N is divisible by 5, so there are no extra elements.
Suppose also that N/5 is odd, so that the set M contains an odd number of elements. This
provides some symmetry, as we shall see. We are thus assuming, for convenience, that N
is of the form 10k + 5. We will also assume that all the elements are distinct. The actual
algorithm must make sure to handle the case where this is not true. Figure 10.36 shows
how the pivot might be chosen when N = 45.

In Figure 10.36, v represents the element which is selected by the algorithm as pivot.
Since v is the median of nine elements, and we are assuming that all elements are distinct,
there must be four medians that are larger than v and four that are smaller. We denote these
by L and S, respectively. Consider a group of five elements with a large median (type L).
The median of the group is smaller than two elements in the group and larger than two
elements in the group. We will let H represent the huge elements. These are elements that
are known to be larger than a large median. Similarly, T represents the tiny elements, which
are smaller than a small median. There are 10 elements of type H: Two are in each of the
groups with an L type median, and two elements are in the same group as v. Similarly,
there are 10 elements of type T.

Elements of type L or H are guaranteed to be larger than v, and elements of type S or T
are guaranteed to be smaller than v. There are thus guaranteed to be 14 large and 14 small
elements in our problem. Therefore, a recursive call could be on at most 45 −14 −1 = 30
elements.

www.manaraa.com

10.2 Divide and Conquer 457

H

H

L

H

H

L

H

H

v

T

T

S

T

T

H

H

L S

T

T

H

H

L S

T

T

S

T

T

Sorted groups of five elements

Medians

Figure 10.36 How the pivot is chosen

Let us extend this analysis to general N of the form 10k + 5. In this case, there are
k elements of type L and k elements of type S. There are 2k + 2 elements of type H, and
also 2k + 2 elements of type T. Thus, there are 3k + 2 elements that are guaranteed to be
larger than v and 3k + 2 elements that are guaranteed to be smaller. Thus, in this case, the
recursive call can contain at most 7k + 2 < 0.7N elements. If N is not of the form 10k + 5,
similar arguments can be made without affecting the basic result.

It remains to bound the running time to obtain the pivot element. There are two basic
steps. We can find the median of five elements in constant time. For instance, it is not hard
to sort five elements in eight comparisons. We must do this
N/5� times, so this step takes
O(N) time. We must then compute the median of a group of
N/5� elements. The obvious
way to do this is to sort the group and return the element in the middle. But this takes
O(
N/5� log
N/5�) = O(N log N) time, so this does not work. The solution is to call the
selection algorithm recursively on the
N/5� elements.

This completes the description of the basic algorithm. There are still some details that
need to be filled in if an actual implementation is desired. For instance, duplicates must
be handled correctly, and the algorithm needs a cutoff large enough to ensure that the
recursive calls make progress. There is quite a large amount of overhead involved, and
this algorithm is not practical at all, so we will not describe any more of the details that
need to be considered. Even so, from a theoretical standpoint, the algorithm is a major
breakthrough, because, as the following theorem shows, the running time is linear in the
worst case.

Theorem 10.9.
The running time of quickselect using median-of-median-of-five partitioning is O(N).

www.manaraa.com

458 Chapter 10 Algorithm Design Techniques

Proof.
The algorithm consists of two recursive calls of size 0.7N and 0.2N, plus linear extra
work. By Theorem 10.8, the running time is linear.

Reducing the Average Number of Comparisons
Divide and conquer can also be used to reduce the expected number of comparisons
required by the selection algorithm. Let us look at a concrete example. Suppose we have a
group S of 1,000 numbers and are looking for the 100th smallest number, which we will
call X. We choose a subset S′ of S consisting of 100 numbers. We would expect that the
value of X is similar in size to the 10th smallest number in S′. More specifically, the fifth
smallest number in S′ is almost certainly less than X, and the 15th smallest number in S′ is
almost certainly greater than X.

More generally, a sample S′ of s elements is chosen from the N elements. Let δ be some
number, which we will choose later so as to minimize the average number of comparisons
used by the procedure. We find the (v1 = ks/N − δ)th and (v2 = ks/N + δ)th smallest
elements in S′. Almost certainly, the kth smallest element in S will fall between v1 and v2, so
we are left with a selection problem on 2δ elements. With low probability, the kth smallest
element does not fall in this range, and we have considerable work to do. However, with a
good choice of s and δ, we can ensure, by the laws of probability, that the second case does
not adversely affect the total work.

If an analysis is performed, we find that if s = N2/3 log1/3 N and δ = N1/3 log2/3 N,
then the expected number of comparisons is N + k + O(N2/3 log1/3 N), which is optimal
except for the low-order term. (If k > N/2, we can consider the symmetric problem of
finding the (N − k)th largest element.)

Most of the analysis is easy to do. The last term represents the cost of performing
the two selections to determine v1 and v2. The average cost of the partitioning, assuming
a reasonably clever strategy, is equal to N plus the expected rank of v2 in S, which is
N + k + O(Nδ/s). If the kth element winds up in S′, the cost of finishing the algorithm is
equal to the cost of selection on S′, namely, O(s). If the kth smallest element doesn’t wind up
in S′, the cost is O(N). However, s and δ have been chosen to guarantee that this happens
with very low probability o(1/N), so the expected cost of this possibility is o(1), which is a
term that goes to zero as N gets large. An exact calculation is left as Exercise 10.22.

This analysis shows that finding the median requires about 1.5N comparisons on
average. Of course, this algorithm requires some floating-point arithmetic to compute s,
which can slow down the algorithm on some machines. Even so, experiments have shown
that if correctly implemented, this algorithm compares favorably with the quickselect
implementation in Chapter 7.

10.2.4 Theoretical Improvements for Arithmetic
Problems

In this section we describe a divide-and-conquer algorithm that multiplies two N-digit
numbers. Our previous model of computation assumed that multiplication was done in
constant time, because the numbers were small. For large numbers, this assumption is no

www.manaraa.com

10.2 Divide and Conquer 459

longer valid. If we measure multiplication in terms of the size of numbers being multiplied,
then the natural multiplication algorithm takes quadratic time. The divide-and-conquer
algorithm runs in subquadratic time. We also present the classic divide-and-conquer
algorithm that multiplies two N by N matrices in subcubic time.

Multiplying Integers
Suppose we want to multiply two N-digit numbers X and Y. If exactly one of X and Y is
negative, then the answer is negative; otherwise it is positive. Thus, we can perform this
check and then assume that X, Y ≥ 0. The algorithm that almost everyone uses when
multiplying by hand requires �(N2) operations, because each digit in X is multiplied by
each digit in Y.

If X = 61,438,521 and Y = 94,736,407, XY = 5,820,464,730,934,047. Let us break
X and Y into two halves, consisting of the most significant and least significant digits,
respectively. Then XL = 6,143, XR = 8,521, YL = 9,473, and YR = 6,407. We also have
X = XL104 + XR and Y = YL104 + YR. It follows that

XY = XLYL108 + (XLYR + XRYL)104 + XRYR

Notice that this equation consists of four multiplications, XLYL, XLYR, XRYL, and XRYR,
which are each half the size of the original problem (N/2 digits). The multiplications by 108

and 104 amount to the placing of zeros. This and the subsequent additions add only O(N)
additional work. If we perform these four multiplications recursively using this algorithm,
stopping at an appropriate base case, then we obtain the recurrence

T(N) = 4T(N/2) + O(N)

From Theorem 10.6, we see that T(N) = O(N2), so, unfortunately, we have not
improved the algorithm. To achieve a subquadratic algorithm, we must use less than four
recursive calls. The key observation is that

XLYR + XRYL = (XL − XR)(YR − YL) + XLYL + XRYR

Thus, instead of using two multiplications to compute the coefficient of 104, we can use
one multiplication, plus the result of two multiplications that have already been performed.
Figure 10.37 shows how only three recursive subproblems need to be solved.

It is easy to see that now the recurrence equation satisfies

T(N) = 3T(N/2) + O(N)

and so we obtain T(N) = O(Nlog2 3) = O(N1.59). To complete the algorithm, we must have
a base case, which can be solved without recursion.

When both numbers are one-digit, we can do the multiplication by table lookup. If one
number has zero digits, then we return zero. In practice, if we were to use this algorithm,
we would choose the base case to be that which is most convenient for the machine.

Although this algorithm has better asymptotic performance than the standard
quadratic algorithm, it is rarely used, because for small N the overhead is significant, and
for larger N there are even better algorithms. These algorithms also make extensive use of
divide and conquer.

www.manaraa.com

460 Chapter 10 Algorithm Design Techniques

Function Value Computational Complexity

XL 6,143 Given

XR 8,521 Given

YL 9,473 Given

YR 6,407 Given

D1 = XL − XR −2,378 O(N)

D2 = YR − YL −3,066 O(N)

XLYL 58,192,639 T(N/2)

XRYR 54,594,047 T(N/2)

D1D2 7,290,948 T(N/2)

D3 = D1D2 + XLYL + XRYR 120,077,634 O(N)

XRYR 54,594,047 Computed above

D3104 1,200,776,340,000 O(N)

XLYL108 5,819,263,900,000,000 O(N)

XLYL108 + D3104 + XRYR 5,820,464,730,934,047 O(N)

Figure 10.37 The divide-and-conquer algorithm in action

Matrix Multiplication
A fundamental numerical problem is the multiplication of two matrices. Figure 10.38 gives
a simple O(N3) algorithm to compute C = AB, where A, B, and C are N×N matrices. The
algorithm follows directly from the definition of matrix multiplication. To compute Ci,j, we
compute the dot product of the ith row in A with the jth column in B. As usual, arrays
begin at index 0.

For a long time it was assumed that �(N3) was required for matrix multiplication.
However, in the late sixties Strassen showed how to break the �(N3) barrier. The basic
idea of Strassen’s algorithm is to divide each matrix into four quadrants, as shown in
Figure 10.39. Then it is easy to show that

C1,1 = A1,1B1,1 + A1,2B2,1

C1,2 = A1,1B1,2 + A1,2B2,2

C2,1 = A2,1B1,1 + A2,2B2,1

C2,2 = A2,1B1,2 + A2,2B2,2

As an example, to perform the multiplication AB

AB =

⎡
⎢⎢⎣

3 4 1 6
1 2 5 7
5 1 2 9
4 3 5 6

⎤
⎥⎥⎦
⎡
⎢⎢⎣

5 6 9 3
4 5 3 1
1 1 8 4
3 1 4 1

⎤
⎥⎥⎦

www.manaraa.com

10.2 Divide and Conquer 461

1 /**
2 * Standard matrix multiplication.
3 * Arrays start at 0.
4 * Assumes a and b are square.
5 */
6 public static int [][] multiply(int [][] a, int [][] b)
7 {
8 int n = a.length;
9 int [][] c = new int[n][n];

10
11 for(int i = 0; i < n; i++) // Initialization
12 for(int j = 0; j < n; j++)
13 c[i][j] = 0;
14
15 for(int i = 0; i < n; i++)
16 for(int j = 0; j < n; j++)
17 for(int k = 0; k < n; k++)
18 c[i][j] += a[i][k] * b[k][j];
19
20 return c;
21 }

Figure 10.38 Simple O(N3) matrix multiplication

[
A1,1 A1,2

A2,1 A2,2

][
B1,1 B1,2

B2,1 B2,2

]
=

[
C1,1 C1,2

C2,1 C2,2

]

Figure 10.39 Decomposing AB = C into four quadrants

we define the following eight N/2 by N/2 matrices:

A1,1 =
[

3 4
1 2

]
A1,2 =

[
1 6
5 7

]
B1,1 =

[
5 6
4 5

]
B1,2 =

[
9 3
3 1

]

A2,1 =
[

5 1
4 3

]
A2,2 =

[
2 9
5 6

]
B2,1 =

[
1 1
3 1

]
B2,2 =

[
8 4
4 1

]
We could then perform eight N/2 by N/2 matrix multiplications and four N/2 by N/2
matrix additions. The matrix additions take O(N2) time. If the matrix multiplications are
done recursively, then the running time satisfies

T(N) = 8T(N/2) + O(N2)

From Theorem 10.6, we see that T(N) = O(N3), so we do not have an improvement. As
we saw with integer multiplication, we must reduce the number of subproblems below 8.

www.manaraa.com

462 Chapter 10 Algorithm Design Techniques

Strassen used a strategy similar to the integer multiplication divide-and-conquer algorithm
and showed how to use only seven recursive calls by carefully arranging the computations.
The seven multiplications are

M1 = (A1,2 − A2,2)(B2,1 + B2,2)

M2 = (A1,1 + A2,2)(B1,1 + B2,2)

M3 = (A1,1 − A2,1)(B1,1 + B1,2)

M4 = (A1,1 + A1,2)B2,2

M5 = A1,1(B1,2 − B2,2)

M6 = A2,2(B2,1 − B1,1)

M7 = (A2,1 + A2,2)B1,1

Once the multiplications are performed, the final answer can be obtained with eight
more additions.

C1,1 = M1 + M2 − M4 + M6

C1,2 = M4 + M5

C2,1 = M6 + M7

C2,2 = M2 − M3 + M5 − M7

It is straightforward to verify that this tricky ordering produces the desired values. The
running time now satisfies the recurrence

T(N) = 7T(N/2) + O(N2)

The solution of this recurrence is T(N) = O(Nlog2 7) = O(N2.81).
As usual, there are details to consider, such as the case when N is not a power of 2,

but these are basically minor nuisances. Strassen’s algorithm is worse than the straight-
forward algorithm until N is fairly large. It does not generalize for the case where the
matrices are sparse (contain many zero entries), and it does not easily parallelize. When
run with floating-point entries, it is less stable numerically than the classic algorithm.
Thus, it has only limited applicability. Nevertheless, it represents an important theoret-
ical milestone and certainly shows that in computer science, as in many other fields,
even though a problem seems to have an intrinsic complexity, nothing is certain until
proven.

10.3 Dynamic Programming
In the previous section, we saw that a problem that can be mathematically expressed recur-
sively can also be expressed as a recursive algorithm, in many cases yielding a significant
performance improvement over a more naïve exhaustive search.

www.manaraa.com

10.3 Dynamic Programming 463

Any recursive mathematical formula could be directly translated to a recursive algo-
rithm, but the underlying reality is that often the compiler will not do justice to the
recursive algorithm, and an inefficient program results. When we suspect that this is likely
to be the case, we must provide a little more help to the compiler, by rewriting the recursive
algorithm as a nonrecursive algorithm that systematically records the answers to the sub-
problems in a table. One technique that makes use of this approach is known as dynamic
programming.

10.3.1 Using a Table Instead of Recursion
In Chapter 2, we saw that the natural recursive program to compute the Fibonacci numbers
is very inefficient. Recall that the program shown in Figure 10.40 has a running time T(N)
that satisfies T(N) ≥ T(N −1)+T(N −2). Since T(N) satisfies the same recurrence relation
as the Fibonacci numbers and has the same initial conditions, T(N) in fact grows at the
same rate as the Fibonacci numbers and is thus exponential.

On the other hand, since to compute FN, all that is needed is FN−1 and FN−2, we only
need to record the two most recently computed Fibonacci numbers. This yields the O(N)
algorithm in Figure 10.41.

The reason that the recursive algorithm is so slow is because of the algorithm used to
simulate recursion. To compute FN, there is one call to FN−1 and FN−2. However, since
FN−1 recursively makes a call to FN−2 and FN−3, there are actually two separate calls
to compute FN−2. If one traces out the entire algorithm, then we can see that FN−3 is
computed three times, FN−4 is computed five times, FN−5 is computed eight times, and
so on. As Figure 10.42 shows, the growth of redundant calculations is explosive. If the
compiler’s recursion simulation algorithm were able to keep a list of all precomputed values
and not make a recursive call for an already solved subproblem, then this exponential
explosion would be avoided. This is why the program in Figure 10.41 is so much more
efficient.

As a second example, we saw in Chapter 7 how to solve the recurrence C(N) =
(2/N)

∑N−1
i=0 C(i) + N, with C(0) = 1. Suppose that we want to check, numerically,

1 /**
2 * Compute Fibonacci numbers as described in Chapter 1.
3 */
4 public static int fib(int n)
5 {
6 if(n <= 1)
7 return 1;
8 else
9 return fib(n - 1) + fib(n - 2);

10 }

Figure 10.40 Inefficient algorithm to compute Fibonacci numbers

www.manaraa.com

464 Chapter 10 Algorithm Design Techniques

1 /**
2 * Compute Fibonacci numbers as described in Chapter 1.
3 */
4 public static int fibonacci(int n)
5 {
6 if(n <= 1)
7 return 1;
8
9 int last = 1;

10 int nextToLast = 1;
11 int answer = 1;
12
13 for(int i = 2; i <= n; i++)
14 {
15 answer = last + nextToLast;
16 nextToLast = last;
17 last = answer;
18 }
19 return answer;
20 }

Figure 10.41 Linear algorithm to compute Fibonacci numbers

F1 F0

F2 F1

F3

F1 F0

F2

F4

F1 F0

F2 F1

F3

F5

F1 F0

F2 F1

F3

F1 F0

F2

F4

F6

Figure 10.42 Trace of the recursive calculation of Fibonacci numbers

whether the solution we obtained is correct. We could then write the simple program
in Figure 10.43 to evaluate the recursion.

Once again, the recursive calls duplicate work. In this case, the running time T(N)
satisfies T(N) = ∑N−1

i=0 T(i) + N, because, as shown in Figure 10.44, there is one (direct)
recursive call of each size from 0 to N − 1, plus O(N) additional work (where else have we
seen the tree shown in Figure 10.44?). Solving for T(N), we find that it grows exponen-
tially. By using a table, we obtain the program in Figure 10.45. This program avoids the
redundant recursive calls and runs in O(N2). It is not a perfect program; as an exercise,
you should make the simple change that reduces its running time to O(N).

www.manaraa.com

10.3 Dynamic Programming 465

1 public static double eval(int n)
2 {
3 if(n == 0)
4 return 1.0;
5 else
6 {
7 double sum = 0.0;
8 for(int i = 0; i < n; i++)
9 sum += eval(i);

10 return 2.0 * sum / n + n;
11 }
12 }

Figure 10.43 Recursive method to evaluate C(N) = 2/N
∑N−1

i=0 C(i) + N

C1

C0

C2

C0

C3

C1

C0

C0

C4

C1

C0

C2

C0

C1

C0

C0

C5

C1

C0

C2

C0

C3

C1

C0

C0 C1

C0

C2

C0

C1

C0

C0

Figure 10.44 Trace of the recursive calculation in eval

1 public static double eval(int n)
2 {
3 double [] c = new double [n + 1];
4
5 c[0] = 1.0;
6 for(int i = 1; i <= n; i++)
7 {
8 double sum = 0.0;
9 for(int j = 0; j < i; j++)

10 sum += c[j];
11 c[i] = 2.0 * sum / i + i;
12 }
13
14 return c[n];
15 }

Figure 10.45 Evaluating C(N) = 2/N
∑N−1

i=0 C(i) + N with a table

www.manaraa.com

466 Chapter 10 Algorithm Design Techniques

10.3.2 Ordering Matrix Multiplications
Suppose we are given four matrices, A, B, C, and D, of dimensions A = 50 × 10, B =
10×40, C = 40×30, and D = 30×5. Although matrix multiplication is not commutative,
it is associative, which means that the matrix product ABCD can be parenthesized, and
thus evaluated, in any order. The obvious way to multiply two matrices of dimensions
p × q and q × r, respectively, uses pqr scalar multiplications. (Using a theoretically superior
algorithm such as Strassen’s algorithm does not significantly alter the problem we will
consider, so we will assume this performance bound.) What is the best way to perform the
three matrix multiplications required to compute ABCD?

In the case of four matrices, it is simple to solve the problem by exhaustive search,
since there are only five ways to order the multiplications. We evaluate each case below:

� (A((BC)D)): Evaluating BC requires 10 × 40 × 30 = 12,000 multiplications. Evalu-
ating (BC)D requires the 12,000 multiplications to compute BC, plus an additional
10 × 30 × 5 = 1,500 multiplications, for a total of 13,500. Evaluating (A((BC)D))
requires 13,500 multiplications for (BC)D, plus an additional 50 × 10 × 5 = 2,500
multiplications, for a grand total of 16,000 multiplications.

� (A(B(CD))): Evaluating CD requires 40 × 30 × 5 = 6,000 multiplications. Evalu-
ating B(CD) requires the 6,000 multiplications to compute CD, plus an additional
10 × 40 × 5 = 2,000 multiplications, for a total of 8,000. Evaluating (A(B(CD)))
requires 8,000 multiplications for B(CD), plus an additional 50 × 10 × 5 = 2,500
multiplications, for a grand total of 10,500 multiplications.

� ((AB)(CD)): Evaluating CD requires 40 × 30 × 5 = 6,000 multiplications. Evaluating
AB requires 50 × 10 × 40 = 20,000 multiplications. Evaluating ((AB)(CD)) requires
6,000 multiplications for CD, 20,000 multiplications for AB, plus an additional
50 × 40 × 5 = 10,000 multiplications for a grand total of 36,000 multiplications.

� (((AB)C)D): Evaluating AB requires 50 × 10 × 40 = 20,000 multiplications. Evalu-
ating (AB)C requires the 20,000 multiplications to compute AB, plus an additional
50 × 40 × 30 = 60,000 multiplications, for a total of 80,000. Evaluating (((AB)C)D)
requires 80,000 multiplications for (AB)C, plus an additional 50 × 30 × 5 = 7,500
multiplications, for a grand total of 87,500 multiplications.

� ((A(BC))D): Evaluating BC requires 10 × 40 × 30 = 12,000 multiplications. Evalu-
ating A(BC) requires the 12,000 multiplications to compute BC, plus an additional
50 × 10 × 30 = 15,000 multiplications, for a total of 27,000. Evaluating ((A(BC))D)
requires 27,000 multiplications for A(BC), plus an additional 50 × 30 × 5 = 7,500
multiplications, for a grand total of 34,500 multiplications.

The calculations show that the best ordering uses roughly one-ninth the number of
multiplications as the worst ordering. Thus, it might be worthwhile to perform a few cal-
culations to determine the optimal ordering. Unfortunately, none of the obvious greedy
strategies seems to work. Moreover, the number of possible orderings grows quickly.
Suppose we define T(N) to be this number. Then T(1) = T(2) = 1, T(3) = 2, and
T(4) = 5, as we have seen. In general,

www.manaraa.com

10.3 Dynamic Programming 467

T(N) =
N−1∑
i=1

T(i)T(N − i)

To see this, suppose that the matrices are A1, A2, . . . , AN, and the last multiplica-
tion performed is (A1A2 · · · Ai)(Ai+1Ai+2 · · · AN). Then there are T(i) ways to compute
(A1A2 · · · Ai) and T(N− i) ways to compute (Ai+1Ai+2 · · · AN). Thus, there are T(i)T(N− i)
ways to compute (A1A2 · · · Ai)(Ai+1Ai+2 · · · AN) for each possible i.

The solution of this recurrence is the well-known Catalan numbers, which grow expo-
nentially. Thus, for large N, an exhaustive search through all possible orderings is useless.
Nevertheless, this counting argument provides a basis for a solution that is substantially
better than exponential. Let ci be the number of columns in matrix Ai for 1 ≤ i ≤ N. Then
Ai has ci−1 rows, since otherwise the multiplications are not valid. We will define c0 to be
the number of rows in the first matrix, A1.

Suppose mLeft,Right is the number of multiplications required to multiply
ALeftALeft+1 · · · ARight−1 ARight. For consistency, mLeft,Left = 0. Suppose the last multi-
plication is (ALeft · · · Ai) (Ai+1 · · · ARight), where Left ≤ i < Right. Then the number of
multiplications used is mLeft,i + mi+1,Right + cLeft−1cicRight. These three terms represent
the multiplications required to compute (ALeft · · · Ai), (Ai+1 · · · ARight), and their product,
respectively.

If we define MLeft,Right to be the number of multiplications required in an optimal
ordering, then, if Left < Right,

MLeft,Right = min
Left≤i<Right

{MLeft,i + Mi+1,Right + cLeft−1cicRight}

This equation implies that if we have an optimal multiplication arrangement of ALeft · · ·
ARight, the subproblems ALeft · · · Ai and Ai+1 · · · ARight cannot be performed suboptimally.
This should be clear, since otherwise we could improve the entire result by replacing the
suboptimal computation by an optimal computation.

The formula translates directly to a recursive program, but, as we have seen in the
last section, such a program would be blatantly inefficient. However, since there are only
approximately N2/2 values of MLeft,Right that ever need to be computed, it is clear that a
table can be used to store these values. Further examination shows that if Right − Left = k,
then the only values Mx,y that are needed in the computation of MLeft,Right satisfy y− x < k.
This tells us the order in which we need to compute the table.

If we want to print out the actual ordering of the multiplications in addition to the final
answer M1,N, then we can use the ideas from the shortest-path algorithms in Chapter 9.
Whenever we make a change to MLeft,Right, we record the value of i that is responsible. This
gives the simple program shown in Figure 10.46.

Although the emphasis of this chapter is not coding, it is worth noting that many
programmers tend to shorten variable names to a single letter. c, i, and k are used as
single-letter variables because this agrees with the names we have used in the description
of the algorithm, which is very mathematical. However, it is generally best to avoid l as a
variable name, because l looks too much like 1 and can make for very difficult debugging
if you make a transcription error.

www.manaraa.com

468 Chapter 10 Algorithm Design Techniques

1 /**
2 * Compute optimal ordering of matrix multiplication.
3 * c contains the number of columns for each of the n matrices.
4 * c[0] is the number of rows in matrix 1.
5 * The minimum number of multiplications is left in m[1][n].
6 * Actual ordering is computed via another procedure using lastChange.
7 * m and lastChange are indexed starting at 1, instead of 0.
8 * Note: Entries below main diagonals of m and lastChange
9 * are meaningless and uninitialized.

10 */
11 public static void optMatrix(int [] c, long [][] m, int [][] lastChange)
12 {
13 int n = c.length - 1;
14
15 for(int left = 1; left <= n; left++)
16 m[left][left] = 0;
17 for(int k = 1; k < n; k++) // k is right - left
18 for(int left = 1; left <= n - k; left++)
19 {
20 // For each position
21 int right = left + k;
22 m[left][right] = INFINITY;
23 for(int i = left; i < right; i++)
24 {
25 long thisCost = m[left][i] + m[i + 1][right]
26 + c[left - 1] * c[i] * c[right];
27
28 if(thisCost < m[left][right]) // Update min
29 {
30 m[left][right] = thisCost;
31 lastChange[left][right] = i;
32 }
33 }
34 }
35 }

Figure 10.46 Program to find optimal ordering of matrix multiplications

Returning to the algorithmic issues, this program contains a triply nested loop and is
easily seen to run in O(N3) time. The references describe a faster algorithm, but since the
time to perform the actual matrix multiplication is still likely to be much larger than the
time to compute the optimal ordering, this algorithm is still quite practical.

www.manaraa.com

10.3 Dynamic Programming 469

10.3.3 Optimal Binary Search Tree
Our second dynamic programming example considers the following input: We are given
a list of words, w1, w2, . . . , wN, and fixed probabilities p1, p2, . . . , pN of their occurrence.
The problem is to arrange these words in a binary search tree in a way that minimizes
the expected total access time. In a binary search tree, the number of comparisons needed
to access an element at depth d is d + 1, so if wi is placed at depth di, then we want to
minimize

∑N
i=1 pi(1 + di).

As an example, Figure 10.47 shows seven words along with their probability of occur-
rence in some context. Figure 10.48 shows three possible binary search trees. Their
searching costs are shown in Figure 10.49.

The first tree was formed using a greedy strategy. The word with the highest probability
of being accessed was placed at the root. The left and right subtrees were then formed
recursively. The second tree is the perfectly balanced search tree. Neither of these trees
is optimal, as demonstrated by the existence of the third tree. From this we can see that
neither of the obvious solutions works.

This is initially surprising, since the problem appears to be very similar to the con-
struction of a Huffman encoding tree, which, as we have already seen, can be solved by a
greedy algorithm. Construction of an optimal binary search tree is harder, because the data
are not constrained to appear only at the leaves, and also because the tree must satisfy the
binary search tree property.

Word Probability

a 0.22

am 0.18

and 0.20

egg 0.05

if 0.25

the 0.02

two 0.08

Figure 10.47 Sample input for optimal binary search tree problem

if

a

and

egg

two

the

am

ifa and

egg

two

theam ifa

and

egg two

the

am

Figure 10.48 Three possible binary search trees for data in previous table

www.manaraa.com

470 Chapter 10 Algorithm Design Techniques

Input Tree #1 Tree #2 Tree #3

Word Probability Access Cost Access Cost Access Cost

wi pi Once Sequence Once Sequence Once Sequence

a 0.22 2 0.44 3 0.66 2 0.44

am 0.18 4 0.72 2 0.36 3 0.54

and 0.20 3 0.60 3 0.60 1 0.20

egg 0.05 4 0.20 1 0.05 3 0.15

if 0.25 1 0.25 3 0.75 2 0.50

the 0.02 3 0.06 2 0.04 4 0.08

two 0.08 2 0.16 3 0.24 3 0.24

Totals 1.00 2.43 2.70 2.15

Figure 10.49 Comparison of the three binary search trees

A dynamic programming solution follows from two observations. Once again, suppose
we are trying to place the (sorted) words wLeft, wLeft+1, . . . , wRight−1, wRight into a binary
search tree. Suppose the optimal binary search tree has wi as the root, where Left ≤ i ≤
Right. Then the left subtree must contain wLeft, . . . , wi−1, and the right subtree must contain
wi+1, . . . , wRight (by the binary search tree property). Further, both of these subtrees must
also be optimal, since otherwise they could be replaced by optimal subtrees, which would
give a better solution for wLeft, . . . , wRight. Thus, we can write a formula for the cost CLeft,Right

of an optimal binary search tree. Figure 10.50 may be helpful.
If Left > Right, then the cost of the tree is 0; this is the null case, which we always

have for binary search trees. Otherwise, the root costs pi. The left subtree has a cost of
CLeft,i−1, relative to its root, and the right subtree has a cost of Ci+1,Right relative to its root.
As Figure 10.50 shows, each node in these subtrees is one level deeper from wi than from

their respective roots, so we must add
∑i−1

j=Left pj and
∑Right

j=i+1 pj. This gives the formula

wi

wLeft →wi −1 wi +1→wRight

Figure 10.50 Structure of an optimal binary search tree

www.manaraa.com

10.3 Dynamic Programming 471

CLeft,Right = min
Left≤i≤Right

⎧⎨
⎩pi + CLeft,i−1 + Ci+1,Right +

i−1∑
j=Left

pj +
Right∑

j=i+1

pj

⎫⎬
⎭

= min
Left≤i≤Right

⎧⎨
⎩CLeft,i−1 + Ci+1,Right +

Right∑
j=Left

pj

⎫⎬
⎭

From this equation, it is straightforward to write a program to compute the cost of the
optimal binary search tree. As usual, the actual search tree can be maintained by saving
the value of i that minimizes CLeft,Right. The standard recursive routine can be used to print
the actual tree.

Figure 10.51 shows the table that will be produced by the algorithm. For each sub-
range of words, the cost and root of the optimal binary search tree are maintained. The
bottommost entry computes the optimal binary search tree for the entire set of words in
the input. The optimal tree is the third tree shown in Figure 10.48.

The precise computation for the optimal binary search tree for a particular subrange,
namely, am..if, is shown in Figure 10.52. It is obtained by computing the minimum-cost
tree obtained by placing am, and, egg, and if at the root. For instance, when and is placed at
the root, the left subtree contains am..am (of cost 0.18, via previous calculation), the right
subtree contains egg..if (of cost 0.35), and pam + pand + pegg + pif = 0.68, for a total cost
of 1.21.

Iteration=1
a..a am..am and..and egg..egg if..if the..the two..two

Left=1 Left=2 Left=3 Left=4 Left=5 Left=6 Left=7

.22 a .18 am .20 and .05 egg .25 if .02 the .08 two

Iteration=2
a..am am..and and..egg egg..if if..the the..two

.58 a .56 and .30 and .35 if .29 if .12 two

Iteration=3
a..and am..egg and..if egg..the if..two

1.02 am .66 and .80 if .39 if .47 if

Iteration=4
a..egg am..if and..the egg..two

1.17 am 1.21 and .84 if .57 if

Iteration=5
a..if am..the and..two

1.83 and 1.27 and 1.02 if

Iteration=6
a..the am..two

1.89 and 1.53 and

Iteration=7
a..two

2.15 and

Figure 10.51 Computation of the optimal binary search tree for sample input

www.manaraa.com

472 Chapter 10 Algorithm Design Techniques

am

(null) and..if

and

am..am egg..if

egg

am..and if..if

if

am..egg (null)

0 + 0.80 + 0.68 = 1.48 0.18 + 0.35 + 0.68 = 1.21

0.56 + 0.25 + 0.68 = 1.49 0.66 + 0 + 0.68 = 1.34

Figure 10.52 Computation of table entry (1.21, and) for am..if

The running time of this algorithm is O(N3), because when it is implemented, we
obtain a triple loop. An O(N2) algorithm for the problem is sketched in the exercises.

10.3.4 All-Pairs Shortest Path
Our third and final dynamic programming application is an algorithm to compute shortest
weighted paths between every pair of points in a directed graph G = (V, E). In Chapter 9,
we saw an algorithm for the single-source shortest-path problem, which finds the shortest
path from some arbitrary vertex s to all others. That algorithm (Dijkstra’s) runs in O(|V|2)
time on dense graphs, but substantially faster on sparse graphs. We will give a short algo-
rithm to solve the all-pairs problem for dense graphs. The running time of the algorithm is
O(|V|3), which is not an asymptotic improvement over |V| iterations of Dijkstra’s algorithm
but could be faster on a very dense graph, because its loops are tighter. The algorithm also
performs correctly if there are negative edge costs, but no negative-cost cycles; Dijkstra’s
algorithm fails in this case.

Let us recall the important details of Dijkstra’s algorithm (the reader may wish to review
Section 9.3). Dijkstra’s algorithm starts at a vertex s and works in stages. Each vertex in the
graph is eventually selected as an intermediate vertex. If the current selected vertex is v,
then for each w ∈ V, we set dw = min(dw, dv + cv,w). This formula says that the best
distance to w (from s) is either the previously known distance to w from s, or the result of
going from s to v (optimally) and then directly from v to w.

Dijkstra’s algorithm provides the idea for the dynamic programming algorithm: we
select the vertices in sequential order. We will define Dk,i,j to be the weight of the shortest

www.manaraa.com

10.3 Dynamic Programming 473

path from vi to vj that uses only v1, v2, . . . , vk as intermediates. By this definition,
D0,i,j = ci,j, where ci,j is ∞ if (vi, vj) is not an edge in the graph. Also, by definition,
D|V|,i,j is the shortest path from vi to vj in the graph.

As Figure 10.53 shows, when k > 0 we can write a simple formula for Dk,i,j. The
shortest path from vi to vj that uses only v1, v2, . . . , vk as intermediates is the shortest path
that either does not use vk as an intermediate at all, or consists of the merging of the two
paths vi → vk and vk → vj, each of which uses only the first k−1 vertices as intermediates.
This leads to the formula

1 /**
2 * Compute all-shortest paths.
3 * a[][] contains the adjacency matrix with
4 * a[i][i] presumed to be zero.
5 * d[] contains the values of the shortest path.
6 * Vertices are numbered starting at 0; all arrays
7 * have equal dimension. A negative cycle exists if
8 * d[i][i] is set to a negative value.
9 * Actual path can be computed using path[][].

10 * NOT_A_VERTEX is -1
11 */
12 public static void allPairs(int [][] a, int [][] d, int [][] path)
13 {
14 int n = a.length;
15
16 // Initialize d and path
17 for(int i = 0; i < n; i++)
18 for(int j = 0; j < n; j++)
19 {
20 d[i][j] = a[i][j];
21 path[i][j] = NOT_A_VERTEX;
22 }
23
24 for(int k = 0; k < n; k++)
25 // Consider each vertex as an intermediate
26 for(int i = 0; i < n; i++)
27 for(int j = 0; j < n; j++)
28 if(d[i][k] + d[k][j] < d[i][j])
29 {
30 // Update shortest path
31 d[i][j] = d[i][k] + d[k][j];
32 path[i][j] = k;
33 }
34 }

Figure 10.53 All-pairs shortest path

www.manaraa.com

474 Chapter 10 Algorithm Design Techniques

Dk,i,j = min
{
Dk−1,i,j, Dk−1,i,k + Dk−1,k,j

}
The time requirement is once again O(|V|3). Unlike the two previous dynamic pro-
gramming examples, this time bound has not been substantially lowered by another
approach.

Because the kth stage depends only on the (k − 1)th stage, it appears that only two
|V| × |V| matrices need to be maintained. However, using k as an intermediate vertex on
a path that starts or finishes with k does not improve the result unless there is a negative
cycle. Thus, only one matrix is necessary, because Dk−1,i,k = Dk,i,k and Dk−1,k,j = Dk,k,j,
which implies that none of the terms on the right change values and need to be saved. This
observation leads to the simple program in Figure 10.53, which numbers vertices starting
at zero to conform with Java’s conventions.

On a complete graph, where every pair of vertices is connected (in both directions), this
algorithm is almost certain to be faster than |V| iterations of Dijkstra’s algorithm, because
the loops are so tight. Lines 17 through 22 can be executed in parallel, as can lines 26
through 33. Thus, this algorithm seems to be well suited for parallel computation.

Dynamic programming is a powerful algorithm design technique, which provides a
starting point for a solution. It is essentially the divide-and-conquer paradigm of solv-
ing simpler problems first, with the important difference being that the simpler problems
are not a clear division of the original. Because subproblems are repeatedly solved, it is
important to record their solutions in a table rather than recompute them. In some cases,
the solution can be improved (although it is certainly not always obvious and frequently
difficult), and in other cases, the dynamic programming technique is the best approach
known.

In some sense, if you have seen one dynamic programming problem, you have seen
them all. More examples of dynamic programming can be found in the exercises and
references.

10.4 Randomized Algorithms
Suppose you are a professor who is giving weekly programming assignments. You want to
make sure that the students are doing their own programs or, at the very least, understand
the code they are submitting. One solution is to give a quiz on the day that each program is
due. On the other hand, these quizzes take time out of class, so it might only be practical
to do this for roughly half of the programs. Your problem is to decide when to give the
quizzes.

Of course, if the quizzes are announced in advance, that could be interpreted as an
implicit license to cheat for the 50 percent of the programs that will not get a quiz. One
could adopt the unannounced strategy of giving quizzes on alternate programs, but stu-
dents would figure out the strategy before too long. Another possibility is to give quizzes on
what seem like the important programs, but this would likely lead to similar quiz patterns
from semester to semester. Student grapevines being what they are, this strategy would
probably be worthless after a semester.

www.manaraa.com

10.4 Randomized Algorithms 475

One method that seems to eliminate these problems is to use a coin. A quiz is made
for every program (making quizzes is not nearly as time-consuming as grading them), and
at the start of class, the professor will flip a coin to decide whether the quiz is to be given.
This way, it is impossible to know before class whether or not the quiz will occur, and these
patterns do not repeat from semester to semester. Thus, the students will have to expect
that a quiz will occur with 50 percent probability, regardless of previous quiz patterns.
The disadvantage is that it is possible that there is no quiz for an entire semester. This is
not a likely occurrence, unless the coin is suspect. Each semester, the expected number of
quizzes is half the number of programs, and with high probability, the number of quizzes
will not deviate much from this.

This example illustrates what we call randomized algorithms. At least once during the
algorithm, a random number is used to make a decision. The running time of the algorithm
depends not only on the particular input, but also on the random numbers that occur.

The worst-case running time of a randomized algorithm is often the same as the worst-
case running time of the nonrandomized algorithm. The important difference is that a good
randomized algorithm has no bad inputs, but only bad random numbers (relative to the
particular input). This may seem like only a philosophical difference, but actually it is quite
important, as the following example shows.

Consider two variants of quicksort. Variant A uses the first element as pivot, while
variant B uses a randomly chosen element as pivot. In both cases, the worst-case running
time is �(N2), because it is possible at each step that the largest element is chosen as pivot.
The difference between these worst cases is that there is a particular input that can always
be presented to variant A to cause the bad running time. Variant A will run in �(N2) time
every single time it is given an already sorted list. If variant B is presented with the same
input twice, it will have two different running times, depending on what random numbers
occur.

Throughout the text, in our calculations of running times, we have assumed that all
inputs are equally likely. This is not true, because nearly sorted input, for instance, occurs
much more often than is statistically expected, and this causes problems, particularly for
quicksort and binary search trees. By using a randomized algorithm, the particular input
is no longer important. The random numbers are important, and we can get an expected
running time, where we now average over all possible random numbers instead of over
all possible inputs. Using quicksort with a random pivot gives an O(N log N)-expected-
time algorithm. This means that for any input, including already-sorted input, the running
time is expected to be O(N log N), based on the statistics of random numbers. An expected
running-time bound is somewhat stronger than an average-case bound but, of course,
is weaker than the corresponding worst-case bound. On the other hand, as we saw in
the selection problem, solutions that obtain the worst-case bound are frequently not as
practical as their average-case counterparts. Randomized algorithms usually are.

Randomized algorithms were used implicitly in perfect and universal hashing
(Sections 5.7 and 5.8). In this section we will examine two additional uses of randomiza-
tion. First, we will see a novel scheme for supporting the binary search tree operations in
O(log N) expected time. Once again, this means that there are no bad inputs, just bad ran-
dom numbers. From a theoretical point of view, this is not terribly exciting, since balanced

www.manaraa.com

476 Chapter 10 Algorithm Design Techniques

search trees achieve this bound in the worst case. Nevertheless, the use of randomization
leads to relatively simple algorithms for searching, inserting, and especially deleting.

Our second application is a randomized algorithm to test the primality of large
numbers. The algorithm we present runs quickly but occasionally makes an error. The
probability of error can, however, be made negligibly small.

10.4.1 Random Number Generators
Since our algorithms require random numbers, we must have a method to generate them.
Actually, true randomness is virtually impossible to do on a computer, since these numbers
will depend on the algorithm and thus cannot possibly be random. Generally, it suffices to
produce pseudorandom numbers, which are numbers that appear to be random. Random
numbers have many known statistical properties; pseudorandom numbers satisfy most of
these properties. Surprisingly, this too is much easier said than done.

Suppose we only need to flip a coin; thus, we must generate a 0 (for heads) or 1 (for
tails) randomly. One way to do this is to examine the system clock. The clock might record
time as an integer that counts the number of seconds since some starting time. We could
then use the lowest bit. The problem is that this does not work well if a sequence of ran-
dom numbers is needed. One second is a long time, and the clock might not change at
all while the program is running. Even if the time was recorded in units of microseconds,
if the program was running by itself the sequence of numbers that would be generated
would be far from random, since the time between calls to the generator would be essen-
tially identical on every program invocation. We see, then, that what is really needed is
a sequence of random numbers.2 These numbers should appear independent. If a coin
is flipped and heads appears, the next coin flip should still be equally likely to come up
heads or tails.

The simplest method to generate random numbers is the linear congruential gen-
erator, which was first described by Lehmer in 1951. Numbers x1, x2, . . . are generated
satisfying

xi+1 = A xi mod M

To start the sequence, some value of x0 must be given. This value is known as the seed. If
x0 = 0, then the sequence is far from random, but if A and M are correctly chosen, then
any other 1 ≤ x0 < M is equally valid. If M is prime, then xi is never 0. As an example, if
M = 11, A = 7, and x0 = 1, then the numbers generated are

7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, . . .

Notice that after M − 1 = 10 numbers, the sequence repeats. Thus, this sequence has a
period of M − 1, which is as large as possible (by the pigeonhole principle). If M is prime,
there are always choices of A that give a full period of M − 1. Some choices of A do not; if
A = 5 and x0 = 1, the sequence has a short period of 5.

2 We will use random in place of pseudorandom in the rest of this section.

www.manaraa.com

10.4 Randomized Algorithms 477

5, 3, 4, 9, 1, 5, 3, 4, . . .

If M is chosen to be a large, 31-bit prime, the period should be significantly large for most
applications. Lehmer suggested the use of the 31-bit prime M = 231 −1 = 2,147,483,647.
For this prime, A = 48,271 is one of the many values that gives a full-period generator. Its
use has been well studied and is recommended by experts in the field. We will see later that
with random number generators, tinkering usually means breaking, so one is well advised
to stick with this formula until told otherwise.3

This seems like a simple routine to implement. Generally, a class variable is used to
hold the current value in the sequence of x’s. When debugging a program that uses random
numbers, it is probably best to set x0 = 1, so that the same random sequence occurs all
the time. When the program seems to work, either the system clock can be used or the
user can be asked to input a value for the seed.

It is also common to return a random real number in the open interval (0, 1) (0 and 1
are not possible values); this can be done by dividing by M. From this, a random number
in any closed interval [α, β] can be computed by normalizing. This yields the “obvious”
class in Figure 10.54 which, unfortunately, is erroneous.

The problem with this class is that the multiplication could overflow; although this is
not an error, it affects the result and thus the pseudorandomness. Even though we could
use 64-bit longs, this would slow down the computation. Schrage gave a procedure in
which all the calculations can be done on a 32-bit machine without overflow. We compute
the quotient and remainder of M/A and define these as Q and R, respectively. In our case,
Q = 44,488, R = 3,399, and R < Q. We have

xi+1 = A xi mod M = A xi − M

⌊
A xi

M

⌋

= A xi − M

⌊
xi

Q

⌋
+ M

⌊
xi

Q

⌋
− M

⌊
A xi

M

⌋

= A xi − M

⌊
xi

Q

⌋
+ M

(⌊
xi

Q

⌋
−

⌊
A xi

M

⌋)

Since xi = Q
 xi
Q � + ximod Q, we can replace the leading A xi and obtain

xi+1 = A

(
Q

⌊
xi

Q

⌋
+ xi mod Q

)
− M

⌊
xi

Q

⌋
+ M

(⌊
xi

Q

⌋
−

⌊
A xi

M

⌋)

= (AQ − M)

⌊
xi

Q

⌋
+ A(xi mod Q) + M

(⌊
xi

Q

⌋
−

⌊
A xi

M

⌋)

3 For instance, it seems that
xi+1 = (48,271xi + 1) mod(231 − 1)

would somehow be even more random. This illustrates how fragile these generators are.

[48,271(179,424,105) + 1] mod(231 − 1) = 179,424,105

so if the seed is 179,424,105, the generator gets stuck in a cycle of period 1.

www.manaraa.com

478 Chapter 10 Algorithm Design Techniques

1 public class Random
2 {
3 private static final int A = 48271;
4 private static final int M = 2147483647;
5
6 public Random()
7 {
8 state = System.currentTimeMillis() % Integer.MAX_VALUE ;
9 }

10
11 /**
12 * Return a pseudorandom int, and change the
13 * internal state. DOES NOT WORK.
14 * @return the pseudorandom int.
15 */
16 public int randomIntWRONG()
17 {
18 return state = (A * state) % M;
19 }
20
21 /**
22 * Return a pseudorandom double in the open range 0..1
23 * and change the internal state.
24 * @return the pseudorandom double.
25 */
26 public double random0_1()
27 {
28 return (double) randomInt() / M;
29 }
30
31 private int state;
32 }

Figure 10.54 Random number generator that does not work

Since M = AQ + R, it follows that AQ − M = −R. Thus, we obtain

xi+1 = A(xi mod Q) − R

⌊
xi

Q

⌋
+ M

(⌊
xi

Q

⌋
−

⌊
A xi

M

⌋)

The term δ(xi) =
 xi
Q � −
A xi

M � is either 0 or 1, because both terms are integers and their
difference lies between 0 and 1. Thus, we have

xi+1 = A(xi mod Q) − R

⌊
xi

Q

⌋
+ Mδ(xi)

www.manaraa.com

10.4 Randomized Algorithms 479

1 public class Random
2 {
3 private static final int A = 48271;
4 private static final int M = 2147483647;
5 private static final int Q = M / A;
6 private static final int R = M % A;
7
8 /**
9 * Return a pseudorandom int, and change the internal state.

10 * @return the pseudorandom int.
11 */
12 public int randomInt()
13 {
14 int tmpState = A * (state % Q) - R * (state / Q);
15
16 if(tmpState >= 0)
17 state = tmpState;
18 else
19 state = tmpState + M;
20
21 return state;
22 }
23
24 // Remainder of this class is the same as Figure 10.54

Figure 10.55 Random number generator that does not overflow

A quick check shows that because R < Q, all the remaining terms can be calculated without
overflow (this is one of the reasons for choosing A = 48,271). Furthermore, δ(xi) = 1
only if the remaining terms evaluate to less than zero. Thus δ(xi) does not need to be
explicitly computed but can be determined by a simple test. This leads to the revisions in
Figure 10.55.

One might be tempted to assume that all machines have a random number generator
at least as good as the one in Figure 10.55 in their standard library. Sadly, this is not true.
Many libraries have generators based on the function

xi+1 = (A xi + C) mod 2B

where B is chosen to match the number of bits in the machine’s integer, and C is odd.
Unfortunately, these generators always produce values of xi that alternate between even
and odd—hardly a desirable property. Indeed, the lower k bits cycle with period 2k (at
best). Many other random number generators have much smaller cycles than the one pro-
vided in Figure 10.55. These are not suitable for the case where long sequences of random
numbers are needed. The Java library and the UNIX drand48 function use a generator of
this form. However, they use a 48-bit linear congruential generator and return only the

www.manaraa.com

480 Chapter 10 Algorithm Design Techniques

high 32 bits, thus avoiding the cycling problem in the low-order bits. The constants are
A = 25,214,903,917, B = 48, and C = 13.

Because Java provides 64-bit longs, implementing a basic 48-bit random number gen-
erator in standard Java can be illustrated in only a page of code. It is somewhat slower
than the 31-bit random number generator, but not much so, and yields a significantly
longer period. Figure 10.56 shows a respectable implementation of this random number
generator.

Lines 7–10 show the basic constants of the random number generator. Because M is
a power of 2, we can use bitwise operators. M = 2B can be computed by a bit shift, and
instead of using the modulus operator %, we can use a bitwise and operator. This is because
MASK=M-1 consists of the low 48 bits all set to 1, and a bitwise and operator with MASK thus
has the effect of yielding a 48-bit result.

The next routine returns a specified number (at most 32) of random bits from the
computed state, using the high-order bits which are more random than the lower bits.
Line 34 is a direct application of the previously stated linear congruential formula, and
line 36 is a bitwise shift (zero-filled in the high bits to avoid negative numbers). randomInt
obtains 32 bits, while random0_1 obtains 53 bits (representing the mantissa; the other 11
bits of a double represent the exponent) in two separate calls.

The 48-bit random number generator (and even the 31-bit generator) is quite ade-
quate for many applications, simple to implement in 64-bit arithmetic, and uses little
space. However, linear congruential generators are unsuitable for some applications, such
as cryptography or in simulations that require large numbers of highly independent and
uncorrelated random numbers. In those cases, the Java class java.security.SecureRandom
should be used.

10.4.2 Skip Lists
Our first use of randomization is a data structure that supports both searching and insertion
in O(log N) expected time. As mentioned in the introduction to this section, this means that
the running time for each operation on any input sequence has expected value O(log N),
where the expectation is based on the random number generator. It is possible to add
deletion and all the operations that involve ordering and obtain expected time bounds that
match the average time bounds of binary search trees.

The simplest possible data structure to support searching is the linked list. Figure 10.57
shows a simple linked list. The time to perform a search is proportional to the number of
nodes that have to be examined, which is at most N.

Figure 10.58 shows a linked list in which every other node has an additional link to
the node two ahead of it in the list. Because of this, at most �N/2�+ 1 nodes are examined
in the worst case.

We can extend this idea and obtain Figure 10.59. Here, every fourth node has a link
to the node four ahead. Only �N/4� + 2 nodes are examined.

The limiting case of this argument is shown in Figure 10.60. Every 2ith node has a link
to the node 2i ahead of it. The total number of links has only doubled, but now at most
�log N� nodes are examined during a search. It is not hard to see that the total time spent
for a search is O(log N), because the search consists of either advancing to a new node or

www.manaraa.com

10.4 Randomized Algorithms 481

1 /**
2 * Random number class, using a 48-bit
3 * linear congruential generator.
4 */
5 public class Random48
6 {
7 private static final long A = 25_214_903_917L;
8 private static final long B = 48;
9 private static final long C = 11;

10 private static final long M = (1L<<B);
11 private static final long MASK = M-1;
12
13 public Random48()
14 { state = System.nanoTime() & MASK; }
15
16 public int randomInt()
17 { return next(32); }
18
19 public double random0_1()
20 { return (((long) (next(26)) << 27) + next(27) / (double) (1L << 53); }
21
22 /**
23 * Return specified number of random bits
24 * @param bits number of bits to return
25 * @return specified random bits
26 * @throws IllegalArgumentException if bits is more than 32
27 */
28 private int next(int bits)
29 {
30 if(bits <= 0 || bits > 32)
31 throw new IllegalArgumentException();
32
33 state = (A * state + C) & MASK;
34
35 return (int) (state >>> (B - bits));
36 }
37
38 private long state;
39 }

Figure 10.56 48-bit random number generator

2 8 10 11 13 19 20 22 23 29

Figure 10.57 Simple linked list

www.manaraa.com

482 Chapter 10 Algorithm Design Techniques

2
8

10
11

13
19

20
22

23
29

Figure 10.58 Linked list with links to two cells ahead

2
8

10

11

13
19

20

22

23
29

Figure 10.59 Linked list with links to four cells ahead

dropping to a lower link in the same node. Each of these steps consumes at most O(log N)
total time during a search. Notice that the search in this data structure is essentially a binary
search.

The problem with this data structure is that it is much too rigid to allow efficient
insertion. The key to making this data structure usable is to relax the structure conditions
slightly. We define a level k node to be a node that has k links. As Figure 10.60 shows, the ith
link in any level k node (k ≥ i) links to the next node with at least i levels. This is an easy
property to maintain; however, Figure 10.60 shows a more restrictive property than this.
We thus drop the restriction that the ith link links to the node 2i ahead, and we replace it
with the less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must
at this point decide what level the node should be. Examining Figure 10.60, we find that
roughly half the nodes are level 1 nodes, roughly a quarter are level 2, and, in general,
approximately 1/2i nodes are level i. We choose the level of the node randomly, in accor-
dance with this probability distribution. The easiest way to do this is to flip a coin until
a head occurs and use the total number of flips as the node level. Figure 10.61 shows a
typical skip list.

2
8

10
11

13
19

20

22

23
29

Figure 10.60 Linked list with links to 2i cells ahead

2
8

10
11

13

19
20

22
23

29

Figure 10.61 A skip list

www.manaraa.com

10.4 Randomized Algorithms 483

2

8
10

11

13

19
20

* 23
29

*

*

2
8

10
11

13

19
20

22
23

29

Figure 10.62 Before and after an insertion

Given this, the skip list algorithms are simple to describe. To perform a search, we start
at the highest link at the header. We traverse along this level until we find that the next
node is larger than the one we are looking for (or null). When this occurs, we go to the
next lower level and continue the strategy. When progress is stopped at level 1, either we
are in front of the node we are looking for, or it is not in the list. To perform an insert, we
proceed as in a search, and keep track of each point where we switch to a lower level. The
new node, whose level is determined randomly, is then spliced into the list. This operation
is shown in Figure 10.62.

A cursory analysis shows that since the expected number of nodes at each level is
unchanged from the original (nonrandomized) algorithm, the total amount of work that is
expected to be performed traversing to nodes on the same level is unchanged. This tells
us that these operations have O(log N) expected costs. Of course, a more formal proof is
required, but it is not much different from this.

Skip lists are similar to hash tables, in that they require an estimate of the number of
elements that will be in the list (so that the number of levels can be determined). If an esti-
mate is not available, we can assume a large number or use a technique similar to rehashing.
Experiments have shown that skip lists are as efficient as many balanced search tree imple-
mentations and are certainly much simpler to implement in many languages. Skip lists also
have efficient concurrent implementations, unlike balanced binary search trees. Hence they
are provided in the Java library class java.util.concurrent.ConcurrentSkipList.

10.4.3 Primality Testing
In this section we examine the problem of determining whether or not a large number is
prime. As was mentioned at the end of Chapter 2, some cryptography schemes depend
on the difficulty of factoring a large, 400-digit number into two 200-digit primes. In order
to implement this scheme, we need a method of generating these two primes. If d is the
number of digits in N, the obvious method of testing for the divisibility by odd numbers
from 3 to

√
N requires roughly 1

2

√
N divisions, which is about 10d/2 and is completely

impractical for 200-digit numbers.

www.manaraa.com

484 Chapter 10 Algorithm Design Techniques

In this section, we will give a polynomial-time algorithm that can test for primality. If
the algorithm declares that the number is not prime, we can be certain that the number is
not prime. If the algorithm declares that the number is prime, then, with high probability
but not 100 percent certainty, the number is prime. The error probability does not depend
on the particular number that is being tested but instead depends on random choices made
by the algorithm. Thus, this algorithm occasionally makes a mistake, but we will see that
the error ratio can be made arbitrarily negligible.

The key to the algorithm is a well-known theorem due to Fermat.

Theorem 10.10. (Fermat’s Lesser Theorem)
If P is prime, and 0 < A < P, then AP−1 ≡ 1 (mod P).

Proof.
A proof of this theorem can be found in any textbook on number theory.

For instance, since 67 is prime, 266 ≡ 1 (mod 67). This suggests an algorithm to
test whether a number N is prime. Merely check whether 2N−1 ≡ 1 (mod N). If 2N−1 �≡
1 (mod N), then we can be certain that N is not prime. On the other hand, if the
equality holds, then N is probably prime. For instance, the smallest N that satisfies
2N−1 ≡ 1 (mod N) but is not prime is N = 341.

This algorithm will occasionally make errors, but the problem is that it will always
make the same errors. Put another way, there is a fixed set of N for which it does not work.
We can attempt to randomize the algorithm as follows: Pick 1 < A < N − 1 at random. If
AN−1 ≡ 1 (mod N), declare that N is probably prime, otherwise declare that N is definitely
not prime. If N = 341, and A = 3, we find that 3340 ≡ 56 (mod 341). Thus, if the
algorithm happens to choose A = 3, it will get the correct answer for N = 341.

Although this seems to work, there are numbers that fool even this algorithm for most
choices of A. One such set of numbers is known as the Carmichael numbers. These are
not prime but satisfy AN−1 ≡ 1 (mod N) for all 0 < A < N that are relatively prime to N.
The smallest such number is 561. Thus, we need an additional test to improve the chances
of not making an error.

In Chapter 7, we proved a theorem related to quadratic probing. A special case of this
theorem is the following:

Theorem 10.11.
If P is prime and 0 < X < P, the only solutions to X2 ≡ 1 (mod P) are X = 1, P − 1.

Proof.
X2 ≡ 1 (mod P) implies that X2 − 1 ≡ 0 (mod P). This implies (X − 1)(X + 1) ≡ 0
(mod P). Since P is prime, 0 < X < P, and P must divide either (X − 1) or (X + 1), the
theorem follows.

Therefore, if at any point in the computation of AN−1 (mod N) we discover a viola-
tion of this theorem, we can conclude that N is definitely not prime. If we use pow, from
Section 2.4.4, we see that there will be several opportunities to apply this test. We mod-
ify this routine to perform operations mod N, and apply the test of Theorem 10.11. This
strategy is implemented in the pseudocode shown in Figure 10.63.

www.manaraa.com

1 /**
2 * Method that implements the basic primality test. If witness does not return 1,
3 * n is definitely composite. Do this by computing aˆi (mod n) and looking for
4 * nontrivial square roots of 1 along the way.
5 */
6 private static long witness(long a, long i, long n)
7 {
8 if(i == 0)
9 return 1;

10
11 long x = witness(a, i / 2, n);
12 if(x == 0) // If n is recursively composite, stop
13 return 0;
14
15 // n is not prime if we find a nontrivial square root of 1
16 long y = (x * x) % n;
17 if(y == 1 && x != 1 && x != n - 1)
18 return 0;
19
20 if(i % 2 != 0)
21 y = (a * y) % n;
22
23 return y;
24 }
25
26 /**
27 * The number of witnesses queried in randomized primality test.
28 */
29 public static final int TRIALS = 5;
30
31 /**
32 * Randomized primality test.
33 * Adjust TRIALS to increase confidence level.
34 * @param n the number to test.
35 * @return if false, n is definitely not prime.
36 * If true, n is probably prime.
37 */
38 public static boolean isPrime(long n)
39 {
40 Random r = new Random();
41
42 for(int counter = 0; counter < TRIALS; counter++)
43 if(witness(r.randomLong(2, n - 2), n - 1, n) != 1)
44 return false;
45
46 return true;
47 }

Figure 10.63 A probabilistic primality testing algorithm

www.manaraa.com

486 Chapter 10 Algorithm Design Techniques

Recall that if witness returns anything but 1, it has proven that N cannot be prime.
The proof is nonconstructive, because it gives no method of actually finding the factors.
It has been shown that for any (sufficiently large) N, at most (N − 9)/4 values of A fool
this algorithm. Thus, if A is chosen at random, and the algorithm answers that N is (prob-
ably) prime, then the algorithm is correct at least 75 percent of the time. Suppose witness
is run 50 times. The probability that the algorithm is fooled once is at most 1

4 . Thus,
the probability that 50 independent random trials fool the algorithm is never more than
1/450 = 2−100. This is actually a very conservative estimate, which holds for only a few
choices of N. Even so, one is more likely to see a hardware error than an incorrect claim of
primality.

Randomized algorithms for primality testing are important because they have long
been significantly faster than the best nonrandomized algorithms, and although the ran-
domized algorithm can occasionally produce a false positive, the chances of this happening
can be made small enough to be negligible.

For many years, it was suspected that it was possible to test definitively the primality
of a d-digit number in time polynomial in d, but no such algorithm was known. Recently,
however, deterministic polynomial time algorithms for primality testing have been discov-
ered. While these algorithms are tremendously exciting theoretical results, they are not yet
competitive with the randomized algorithms. The end of chapter references provide more
information.

10.5 Backtracking Algorithms
The last algorithm design technique we will examine is backtracking. In many cases, a
backtracking algorithm amounts to a clever implementation of exhaustive search, with
generally unfavorable performance. This is not always the case, however, and even so, in
some cases, the savings over a brute-force exhaustive search can be significant. Performance
is, of course, relative: an O(N2) algorithm for sorting is pretty bad, but an O(N5) algorithm
for the traveling salesman (or any NP-complete) problem would be a landmark result.

A practical example of a backtracking algorithm is the problem of arranging furniture
in a new house. There are many possibilities to try, but typically only a few are actually con-
sidered. Starting with no arrangement, each piece of furniture is placed in some part of the
room. If all the furniture is placed and the owner is happy, then the algorithm terminates.
If we reach a point where all subsequent placement of furniture is undesirable, we have to
undo the last step and try an alternative. Of course, this might force another undo, and so
forth. If we find that we undo all possible first steps, then there is no placement of furni-
ture that is satisfactory. Otherwise, we eventually terminate with a satisfactory arrangement.
Notice that although this algorithm is essentially brute force, it does not try all possibilities
directly. For instance, arrangements that consider placing the sofa in the kitchen are never
tried. Many other bad arrangements are discarded early, because an undesirable subset of
the arrangement is detected. The elimination of a large group of possibilities in one step is
known as pruning.

www.manaraa.com

10.5 Backtracking Algorithms 487

We will see two examples of backtracking algorithms. The first is a problem in com-
putational geometry. Our second example shows how computers select moves in games,
such as chess and checkers.

10.5.1 The Turnpike Reconstruction Problem
Suppose we are given N points, p1, p2, . . . , pN, located on the x-axis. xi is the x coordinate
of pi. Let us further assume that x1 = 0 and the points are given from left to right. These
N points determine N(N − 1)/2 (not necessarily unique) distances d1, d2, . . . , dN between
every pair of points of the form |xi − xj| (i �= j). It is clear that if we are given the set
of points, it is easy to construct the set of distances in O(N2) time. This set will not be
sorted, but if we are willing to settle for an O(N2 log N) time bound, the distances can be
sorted, too. The turnpike reconstruction problem is to reconstruct a point set from the
distances. This finds applications in physics and molecular biology (see the references for
pointers to more specific information). The name derives from the analogy of points to
turnpike exits on East Coast highways. Just as factoring seems harder than multiplication,
the reconstruction problem seems harder than the construction problem. Nobody has been
able to give an algorithm that is guaranteed to work in polynomial time. The algorithm that
we will present generally runs in O(N2 log N) but can take exponential time in the worst
case.

Of course, given one solution to the problem, an infinite number of others can be
constructed by adding an offset to all the points. This is why we insist that the first point is
anchored at 0 and that the point set that constitutes a solution is output in nondecreasing
order.

Let D be the set of distances, and assume that |D| = M = N(N − 1)/2. As an example,
suppose that

D = {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10}
Since |D| = 15, we know that N = 6. We start the algorithm by setting x1 = 0. Clearly,
x6 = 10, since 10 is the largest element in D. We remove 10 from D. The points that we
have placed and the remaining distances are as shown in the following figure.

x1 = 0 x6 = 10
D = {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8}

The largest remaining distance is 8, which means that either x2 = 2 or x5 = 8. By
symmetry, we can conclude that the choice is unimportant, since either both choices lead
to solutions (which are mirror images of each other), or neither do, so we can set x5 = 8
without affecting the solution. We then remove the distances x6 − x5 = 2 and x5 − x1 = 8
from D, obtaining

x1 = 0 x6 = 10
D = {1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7}

x5 = 8

www.manaraa.com

488 Chapter 10 Algorithm Design Techniques

The next step is not obvious. Since 7 is the largest value in D, either x4 = 7 or x2 = 3.
If x4 = 7, then the distances x6 −7 = 3 and x5 −7 = 1 must also be present in D. A quick
check shows that indeed they are. On the other hand, if we set x2 = 3, then 3−x1 = 3 and
x5 − 3 = 5 must be present in D. These distances are also in D, so we have no guidance
on which choice to make. Thus, we try one and see if it leads to a solution. If it turns out
that it does not, we can come back and try the other. Trying the first choice, we set x4 = 7,
which leaves

x1 = 0 x6 = 10
D = {2, 2, 3, 3, 4, 5, 5, 5, 6}

x5 = 8x4 = 7

At this point, we have x1 = 0, x4 = 7, x5 = 8, and x6 = 10. Now the largest distance
is 6, so either x3 = 6 or x2 = 4. But if x3 = 6, then x4 − x3 = 1, which is impossible,
since 1 is no longer in D. On the other hand, if x2 = 4 then x2 − x0 = 4, and x5 − x2 = 4.
This is also impossible, since 4 only appears once in D. Thus, this line of reasoning leaves
no solution, so we backtrack.

Since x4 = 7 failed to produce a solution, we try x2 = 3. If this also fails, we give up
and report no solution. We now have

x1 = 0 x6 = 10
D = {1, 2, 2, 3, 3, 4, 5, 5, 6}
x2 = 3 x5 = 8

Once again, we have to choose between x4 = 6 and x3 = 4. x3 = 4 is impossible,
because D only has one occurrence of 4, and two would be implied by this choice. x4 = 6
is possible, so we obtain

x1 = 0 x6 = 10
D = {1, 2, 3, 5, 5}

x2 = 3 x4 = 6 x5 = 8

The only remaining choice is to assign x3 = 5; this works because it leaves D empty, and
so we have a solution.

x1 = 0 x6 = 10
D = {}

x2 = 3 x4 = 6x3 = 5 x5 = 8

Figure 10.64 shows a decision tree representing the actions taken to arrive at the solu-
tion. Instead of labeling the branches, we have placed the labels in the branches’ destination
nodes. A node with an asterisk indicates that the points chosen are inconsistent with the
given distances; nodes with two asterisks have only impossible nodes as children, and thus
represent an incorrect path.

The pseudocode to implement this algorithm is mostly straightforward. The driving
routine, turnpike, is shown in Figure 10.65. It receives the point array x (which need not

www.manaraa.com

10.5 Backtracking Algorithms 489

x 1=0, x6=10

x 5=8

x 4=7** x 2=3

x 3=6* x 2=4* x 3=4* x 4=6

x 3=5

Figure 10.64 Decision tree for the worked turnpike reconstruction example

boolean turnpike(int [] x, DistSet d, int n)
{

x[1] = 0;
x[n] = d.deleteMax();
x[n - 1] = d.deleteMax();
if(x[n] - x[n - 1] ∈ d)
{

d.remove(x[n] - x[n - 1]);
return place(x, d, n, 2, n - 2);

}
else

return false;
}

Figure 10.65 Turnpike reconstruction algorithm: driver routine (pseudocode)

be initialized) and the distance set D and N.4 If a solution is discovered, then true will be
returned, the answer will be placed in x, and D will be empty. Otherwise, false will be
returned, x will be undefined, and the distance set D will be untouched. The routine sets
x1, xN−1, and xN, as described above, alters D, and calls the backtracking algorithm place
to place the other points. We presume that a check has already been made to ensure that
|D| = N(N − 1)/2.

4 We have used one-letter variable names, which is generally poor style, for consistency with the worked
example. We also, for simplicity, do not give the type of variables. Finally, we index arrays starting at 1,
instead of 0.

www.manaraa.com

490 Chapter 10 Algorithm Design Techniques

The more difficult part is the backtracking algorithm, which is shown in Figure 10.66.
Like most backtracking algorithms, the most convenient implementation is recursive. We
pass the same arguments plus the boundaries Left and Right; xLeft, . . . , xRight are the x coor-
dinates of points that we are trying to place. If D is empty (or Left > Right), then a solution
has been found, and we can return. Otherwise, we first try to place xRight = Dmax. If all the
appropriate distances are present (in the correct quantity), then we tentatively place this
point, remove these distances, and try to fill from Left to Right − 1. If the distances are not
present, or the attempt to fill Left to Right − 1 fails, then we try setting xLeft = xN − dmax,
using a similar strategy. If this does not work, then there is no solution; otherwise a solution
has been found, and this information is eventually passed back to turnpike by the return
statement and x array.

The analysis of the algorithm involves two factors. Suppose lines 9 through 11 and 18
through 20 are never executed. We can maintain D as a balanced binary search (or splay)
tree (this would require a code modification, of course). If we never backtrack, there are
at most O(N2) operations involving D, such as deletion and the contains implied at lines
4 and 12 to 13. This claim is obvious for deletions, since D has O(N2) elements and no
element is ever reinserted. Each call to place uses at most 2N contains, and since place
never backtracks in this analysis, there can be at most 2N2 contains operations. Thus, if
there is no backtracking, the running time is O(N2 log N).

Of course, backtracking happens, and if it happens repeatedly, then the performance
of the algorithm is affected. This can be forced to happen by construction of a patholog-
ical case. Experiments have shown that if the points have integer coordinates distributed
uniformly and randomly from [0, Dmax], where Dmax = �(N2), then, almost certainly, at
most one backtrack is performed during the entire algorithm.

10.5.2 Games
As our last application, we will consider the strategy that a computer might use to play a
strategic game, such as checkers or chess. We will use, as an example, the much simpler
game of tic-tac-toe, because it makes the points easier to illustrate.

Tic-tac-toe is a draw if both sides play optimally. By performing a careful case-by-case
analysis, it is not a difficult matter to construct an algorithm that never loses and always
wins when presented the opportunity. This can be done, because certain positions are
known traps and can be handled by a lookup table. Other strategies, such as taking the
center square when it is available, make the analysis simpler. If this is done, then by using
a table we can always choose a move based only on the current position. Of course, this
strategy requires the programmer, and not the computer, to do most of the thinking.

Minimax Strategy
The more general strategy is to use an evaluation function to quantify the “goodness” of a
position. A position that is a win for a computer might get the value of +1; a draw could
get 0; and a position that the computer has lost would get a −1. A position for which this
assignment can be determined by examining the board is known as a terminal position.

www.manaraa.com

10.5 Backtracking Algorithms 491

/**
* Backtracking algorithm to place the points x[left] ... x[right].

* x[1]...x[left-1] and x[right+1]...x[n] already tentatively placed.

* If place returns true, then x[left]...x[right] will have values.

*/
boolean place(int [] x, DistSet d, int n, int left, int right)
{

int dmax;
boolean found = false;

1 if(d.isEmpty())
2 return true;

3 dmax = d.findMax();

// Check if setting x[right] = dmax is feasible.
4 if(| x[j] - dmax | ∈ d for all 1≤j<left and right<j≤n)

{
5 x[right] = dmax; // Try x[right]=dmax
6 for(1≤j<left, right<j≤n)
7 d.remove(| x[j] - dmax |);
8 found = place(x, d, n, left, right-1);

9 if(!found) // Backtrack
10 for(1≤j<left, right<j≤n) // Undo the deletion
11 d.insert(| x[j] - dmax |);

}
// If first attempt failed, try to see if setting
// x[left]=x[n]-dmax is feasible.

12 if(!found && (| x[n] - dmax - x[j] | ∈ d
13 for all 1≤j<left and right<j≤n))

{
14 x[left] = x[n] - dmax; // Same logic as before
15 for(1≤j<left, right<j≤n)
16 d.remove(| x[n] - dmax - x[j] |);
17 found = place(x, d, n, left+1, right);

18 if(!found) // Backtrack
19 for(1≤j<left, right<j≤n) // Undo the deletion
20 d.insert(| x[n] - dmax - x[j] |);

}
21 return found;

}

Figure 10.66 Turnpike reconstruction algorithm: backtracking steps (pseudocode)

www.manaraa.com

492 Chapter 10 Algorithm Design Techniques

If a position is not terminal, the value of the position is determined by recursively
assuming optimal play by both sides. This is known as a minimax strategy, because one
player (the human) is trying to minimize the value of the position, while the other player
(the computer) is trying to maximize it.

A successor position of P is any position Ps that is reachable from P by playing one
move. If the computer is to move when in some position P, it recursively evaluates the
value of all the successor positions. The computer chooses the move with the largest value;
this is the value of P. To evaluate any successor position Ps, all of Ps’s successors are recur-
sively evaluated, and the smallest value is chosen. This smallest value represents the most
favorable reply for the human player.

The code in Figure 10.67 makes the computer’s strategy more clear. Lines 22 through
25 evaluate immediate wins or draws. If neither of these cases apply, then the position
is nonterminal. Recalling that value should contain the maximum of all possible succes-
sor positions, line 28 initializes it to the smallest possible value, and the loop in lines 29
through 42 searches for improvements. Each successor position is recursively evaluated
in turn by lines 32 through 34. This is recursive, because, as we will see, findHumanMove
calls findCompMove. If the human’s response to a move leaves the computer with a more
favorable position than that obtained with the previously best computer move, then the
value and bestMove are updated. Figure 10.68 shows the method for the human’s move
selection. The logic is virtually identical, except that the human player chooses the move
that leads to the lowest-valued position. Indeed, it is not difficult to combine these two
procedures into one by passing an extra variable, which indicates whose turn it is to
move. This does make the code somewhat less readable, so we have stayed with separate
routines.

Since these routines must pass back both the value of the position and the best move,
we pass these two variables in a MoveInfo object.

We leave supporting routines as an exercise. The most costly computation is the case
where the computer is asked to pick the opening move. Since at this stage the game is a
forced draw, the computer selects square 1.5 A total of 97,162 positions were examined,
and the calculation took a few seconds. No attempt was made to optimize the code. When
the computer moves second, the number of positions examined is 5,185 if the human
selects the center square, 9,761 when a corner square is selected, and 13,233 when a
noncorner edge square is selected.

For more complex games, such as checkers and chess, it is obviously infeasible to
search all the way to the terminal nodes.6 In this case, we have to stop the search after a
certain depth of recursion is reached. The nodes where the recursion is stopped become
terminal nodes. These terminal nodes are evaluated with a function that estimates the

5 We numbered the squares starting from the top left and moving right. However, this is only important for
the supporting routines.

6 It is estimated that if this search were conducted for chess, at least 10100 positions would be examined for
the first move. Even if the improvements described later in this section were incorporated, this number
could not be reduced to a practical level.

www.manaraa.com

1 public class MoveInfo
2 {
3 public int move;
4 public int value;
5
6 public MoveInfo(int m, int v)
7 { move = m; value = v; }
8 }
9

10 /**
11 * Recursive method to find best move for computer.
12 * MoveInfo.move returns a number from 1-9 indicating square.
13 * Possible evaluations satisfy COMP_LOSS < DRAW < COMP_WIN.
14 * Complementary method findHumanMove is Figure 10.68.
15 */
16 public MoveInfo findCompMove()
17 {
18 int i, responseValue;
19 int value, bestMove = 1;
20 MoveInfo quickWinInfo;
21
22 if(fullBoard())
23 value = DRAW;
24 else if((quickWinInfo = immediateCompWin()) != null)
25 return quickWinInfo;
26 else
27 {
28 value = COMP_LOSS;
29 for(i = 1; i <= 9; i++) // Try each square
30 if(isEmpty(i))
31 {
32 place(i, COMP);
33 responseValue = findHumanMove().value;
34 unplace(i); // Restore board
35
36 if(responseValue > value)
37 {
38 // Update best move
39 value = responseValue;
40 bestMove = i;
41 }
42 }
43 }
44
45 return new MoveInfo(bestMove, value);
46 }

Figure 10.67 Minimax tic-tac-toe algorithm: computer selection

www.manaraa.com

494 Chapter 10 Algorithm Design Techniques

1 public MoveInfo findHumanMove()
2 {
3 int i, responseValue;
4 int value, bestMove = 1;
5 MoveInfo quickWinInfo;
6
7 if(fullBoard())
8 value = DRAW;
9 else

10 if((quickWinInfo = immediateHumanWin()) != null)
11 return quickWinInfo;
12 else
13 {
14 value = COMP_WIN;
15 for(i = 1; i <= 9; i++) // Try each square
16 {
17 if(isEmpty(i))
18 {
19 place(i, HUMAN);
20 responseValue = findCompMove().value;
21 unplace(i); // Restore board
22
23 if(responseValue < value)
24 {
25 // Update best move
26 value = responseValue;
27 bestMove = i;
28 }
29 }
30 }
31 }
32
33 return new MoveInfo(bestMove, value);
34 }

Figure 10.68 Minimax tic-tac-toe algorithm: human selection

value of the position. For instance, in a chess program, the evaluation function mea-
sures such variables as the relative amount and strength of pieces and positional factors.
The evaluation function is crucial for success, because the computer’s move selection is
based on maximizing this function. The best computer chess programs have surprisingly
sophisticated evaluation functions.

Nevertheless, for computer chess, the single most important factor seems to be number
of moves of look-ahead the program is capable of. This is sometimes known as ply; it is

www.manaraa.com

10.5 Backtracking Algorithms 495

X XO X O X

...

X X O X O X

...

Figure 10.69 Two searches that arrive at identical position

equal to the depth of the recursion. To implement this, an extra parameter is given to the
search routines.

The basic method to increase the look-ahead factor in game programs is to come up
with methods that evaluate fewer nodes without losing any information. One method
which we have already seen is to use a table to keep track of all positions that have been
evaluated. For instance, in the course of searching for the first move, the program will
examine the positions in Figure 10.69. If the values of the positions are saved, the second
occurrence of a position need not be recomputed; it essentially becomes a terminal posi-
tion. The data structure that records this is known as a transposition table; it is almost
always implemented by hashing. In many cases, this can save considerable computation.
For instance, in a chess endgame, where there are relatively few pieces, the time savings
can allow a search to go several levels deeper.

ααα–βββ Pruning
Probably the most significant improvement one can obtain in general is known as
ααα–βββ pruning. Figure 10.70 shows the trace of the recursive calls used to evaluate some
hypothetical position in a hypothetical game. This is commonly referred to as a game tree.
(We have avoided the use of this term until now, because it is somewhat misleading: No
tree is actually constructed by the algorithm. The game tree is just an abstract concept.)
The value of the game tree is 44.

Figure 10.71 shows the evaluation of the same game tree, with several (but not all
possible) unevaluated nodes. Almost half of the terminal nodes have not been checked.
We show that evaluating them would not change the value at the root.

First, consider node D. Figure 10.72 shows the information that has been gath-
ered when it is time to evaluate D. At this point, we are still in findHumanMove
and are contemplating a call to findCompMove on D. However, we already know that
findHumanMove will return at most 40, since it is a min node. On the other hand, its max
node parent has already found a sequence that guarantees 44. Nothing that D does can
possibly increase this value. Therefore, D does not need to be evaluated. This pruning

www.manaraa.com

496 Chapter 10 Algorithm Design Techniques

3612555362968578764271940302373377917783173685044986727272542

36553668872740737978736844862742

3636274078684427

36407844

3644

44

Max

Min

Max

Min

Max

Figure 10.70 A hypothetical game tree

271940302373A73685044986727272542

B274073736844862742

2740C684427

D406844

4044

44

Max

Min

Max

Min

Max

Figure 10.71 A pruned game tree

of the tree is known as α pruning. An identical situation occurs at node B. To imple-
ment α pruning, findCompMove passes its tentative maximum (α) to findHumanMove. If the
tentative minimum of findHumanMove falls below this value, then findHumanMove returns
immediately.

A similar thing happens at nodes A and C. This time, we are in the middle of a
findCompMove and are about to make a call to findHumanMove to evaluate C. Figure 10.73
shows the situation that is encountered at node C. However, the findHumanMove, at the min
level, which has called findCompMove, has already determined that it can force a value of
at most 44 (recall that low values are good for the human side). Since findCompMove has
a tentative maximum of 68, nothing that C does will affect the result at the min level.
Therefore, C should not be evaluated. This type of pruning is known as β pruning; it is
the symmetric version of α pruning. When both techniques are combined, we have α–β

pruning.
Implementing α–β pruning requires surprisingly little code. Figure 10.74 shows half

of the α–β pruning scheme (minus type declarations); you should have no trouble coding
the other half.

www.manaraa.com

10.5 Backtracking Algorithms 497

≥

≤

44

44 40

40 D?

Max

Min

Figure 10.72 The node marked ? is unimportant

44

44 ≥

≤

68

68 C?

Min

Max

Figure 10.73 The node marked ? is unimportant

To take full advantage of α–β pruning, game programs usually try to apply the eval-
uation function to nonterminal nodes in an attempt to place the best moves early in the
search. The result is even more pruning than one would expect from a random ordering of
the nodes. Other techniques, such as searching deeper in more active lines of play, are also
employed.

In practice, α–β pruning limits the searching to only O(
√

N) nodes, where N is the size
of the full game tree. This is a huge savings and means that searches using α–β pruning can
go twice as deep as compared to an unpruned tree. Our tic-tac-toe example is not ideal,
because there are so many identical values, but even so, the initial search of 97,162 nodes
is reduced to 4,493 nodes. (These counts include nonterminal nodes.)

In many games, computers are among the best players in the world. The techniques
used are very interesting and can be applied to more serious problems. More details can be
found in the references.

www.manaraa.com

498 Chapter 10 Algorithm Design Techniques

1 /**
2 * Same as before, but perform alpha-beta pruning.
3 * The main routine should make the call with
4 * alpha = COMP_LOSS and beta = COMP_WIN.
5 */
6 public MoveInfo findCompMove(int alpha, int beta)
7 {
8 int i, responseValue;
9 int value, bestMove = 1;

10 MoveInfo quickWinInfo;
11
12 if(fullBoard())
13 value = DRAW;
14 else
15 if((quickWinInfo = immediateCompWin()) != null)
16 return quickWinInfo;
17 else
18 {
19 value = alpha;
20 for(i = 1; i <= 9 && value < beta; i++) // Try each square
21 {
22 if(isEmpty(i))
23 {
24 place(i, COMP);
25 responseValue = findHumanMove(value, beta).value;
26 unplace(i); // Restore board
27
28 if(responseValue > value)
29 {
30 // Update best move
31 value = responseValue;
32 bestMove = i;
33 }
34 }
35 }
36 }
37
38 return new MoveInfo(bestMove, value);
39 }

Figure 10.74 Minimax tic-tac-toe algorithm with α–β pruning: computer selection

www.manaraa.com

Exercises 499

Summary

This chapter illustrates five of the most common techniques found in algorithm design.
When confronted with a problem, it is worthwhile to see if any of these methods apply. A
proper choice of algorithm, combined with judicious use of data structures, can often lead
quickly to efficient solutions.

Exercises

10.1 Show that the greedy algorithm to minimize the mean completion time for
multiprocessor job scheduling works.

10.2 The input is a set of jobs j1, j2, . . . , jN, each of which takes one time unit to com-
plete. Each job ji earns di dollars if it is completed by the time limit ti, but no
money if completed after the time limit.
a. Give an O(N2) greedy algorithm to solve the problem.

��b. Modify your algorithm to obtain an O(N log N) time bound. (Hint: The time
bound is due entirely to sorting the jobs by money. The rest of the algorithm
can be implemented, using the disjoint set data structure, in o(N log N).)

10.3 A file contains only colons, spaces, newlines, commas, and digits in the follow-
ing frequency: colon (100), space (605), newline (100), comma (705), 0 (431),
1 (242), 2 (176), 3 (59), 4 (185), 5 (250), 6 (174), 7 (199), 8 (205), 9 (217).
Construct the Huffman code.

10.4 Part of the encoded file must be a header indicating the Huffman code. Give
a method for constructing the header of size at most O(N) (in addition to the
symbols), where N is the number of symbols.

10.5 Complete the proof that Huffman’s algorithm generates an optimal prefix code.

10.6 Show that if the symbols are sorted by frequency, Huffman’s algorithm can be
implemented in linear time.

10.7 Write a program to implement file compression (and uncompression) using
Huffman’s algorithm.

�10.8 Show that any online bin-packing algorithm can be forced to use at least 3
2 the

optimal number of bins, by considering the following sequence of items: N items
of size 1

6 − 2ε, N items of size 1
3 + ε, N items of size 1

2 + ε.

10.9 Give a simple analysis to show the performance bound for first fit decreasing bin
packing when
a. The smallest item size is larger than 1

3 .
�b. The smallest item size is larger than 1

4 .
�c. The smallest item size is smaller than 2

11 .

10.10 Explain how to implement first fit and best fit in O(N log N) time.

www.manaraa.com

500 Chapter 10 Algorithm Design Techniques

10.11 Show the operation of all the bin-packing strategies discussed in Section 10.1.3
on the input 0.42, 0.25, 0.27, 0.07, 0.72, 0.86, 0.09, 0.44, 0.50, 0.68, 0.73, 0.31,
0.78, 0.17, 0.79, 0.37, 0.73, 0.23, 0.30.

10.12 Write a program that compares the performance (both in time and number of bins
used) of the various bin-packing heuristics.

10.13 Prove Theorem 10.7.

10.14 Prove Theorem 10.8.
�10.15 N points are placed in a unit square. Show that the distance between the closest

pair is O(N−1/2).
�10.16 Argue that for the closest-points algorithm, the average number of points in the

strip is O(
√

N). (Hint: Use the result of the previous exercise.)

10.17 Write a program to implement the closest-pair algorithm.

10.18 What is the asymptotic running time of quickselect, using a median-of-median-
of-three partitioning strategy?

10.19 Show that quickselect with median-of-median-of-seven partitioning is linear. Why
is median-of-median-of-seven partitioning not used in the proof?

10.20 Implement the quickselect algorithm in Chapter 7, quickselect using median-
of-median-of-five partitioning, and the sampling algorithm at the end of
Section 10.2.3. Compare the running times.

10.21 Much of the information used to compute the median-of-median-of-five is thrown
away. Show how the number of comparisons can be reduced by more careful use
of the information.

�10.22 Complete the analysis of the sampling algorithm described at the end of
Section 10.2.3, and explain how the values of δ and s are chosen.

10.23 Show how the recursive multiplication algorithm computes XY, where X = 1234
and Y = 4321. Include all recursive computations.

10.24 Show how to multiply two complex numbers X = a + bi and Y = c + di using
only three multiplications.

10.25 a. Show that

XLYR + XRYL = (XL + XR)(YL + YR) − XLYL − XRYR

b. This gives an O(N1.59) algorithm to multiply N-bit numbers. Compare this
method to the solution in the text.

10.26 �a. Show how to multiply two numbers by solving five problems that are roughly
one-third of the original size.

��b. Generalize this problem to obtain an O(N1+ε) algorithm for any constant ε>0.
c. Is the algorithm in part (b) better than O(N log N)?

10.27 Why is it important that Strassen’s algorithm does not use commutativity in the
multiplication of 2 × 2 matrices?

www.manaraa.com

Exercises 501

10.28 Two 70×70 matrices can be multiplied using 143,640 multiplications. Show how
this can be used to improve the bound given by Strassen’s algorithm.

10.29 What is the optimal way to compute A1A2A3A4A5A6, where the dimensions of
the matrices are A1 : 10 × 20, A2 : 20 × 1, A3 : 1 × 40, A4 : 40 × 5, A5 : 5 × 30,
A6 : 30 × 15?

10.30 Show that none of the following greedy algorithms for chained matrix multiplica-
tion work. At each step
a. Compute the cheapest multiplication.
b. Compute the most expensive multiplication.
c. Compute the multiplication between the two matrices Mi and Mi+1, such that

the number of columns in Mi is minimized (breaking ties by one of the rules
above).

10.31 Write a program to compute the best ordering of matrix multiplication. Include
the routine to print out the actual ordering.

10.32 Show the optimal binary search tree for the following words, where the frequency
of occurrence is in parentheses: a (0.18), and (0.19), I (0.23), it (0.21), or (0.19).

�10.33 Extend the optimal binary search tree algorithm to allow for unsuccessful searches.
In this case, qj, for 1 ≤ j < N, is the probability that a search is performed for any
word W satisfying wj < W < wj+1. q0 is the probability of performing a search
for W < w1, and qN is the probability of performing a search for W > wN. Notice
that

∑N
i=1 pi + ∑N

j=0 qj = 1.
�10.34 Suppose Ci,i = 0 and that otherwise

Ci,j = Wi,j + min
i<k≤j

(Ci,k−1 + Ck,j)

Suppose that W satisfies the quadrangle inequality, namely, for all i ≤ i′ ≤ j ≤ j′,

Wi,j + Wi′,j′ ≤ Wi′,j + Wi,j′

Suppose further, that W is monotone: If i ≤ i′ and j ≤ j′, then Wi,j ≤ Wi′,j′ .
a. Prove that C satisfies the quadrangle inequality.
b. Let Ri,j be the largest k that achieves the minimum Ci,k−1 + Ck,j. (That is, in

case of ties, choose the largest k.) Prove that

Ri,j ≤ Ri,j+1 ≤ Ri+1,j+1

c. Show that R is nondecreasing along each row and column.
d. Use this to show that all entries in C can be computed in O(N2) time.
e. Which of the dynamic programming algorithms can be solved in O(N2) using

these techniques?

10.35 Write a routine to reconstruct the shortest paths from the algorithm in
Section 10.3.4.

10.36 The binomial coefficients C(N, k) can be defined recursively as follows: C(N,0)=1,
C(N, N) = 1, and, for 0 < k < N, C(N, k) = C(N − 1, k) + C(N − 1, k − 1).

www.manaraa.com

502 Chapter 10 Algorithm Design Techniques

1 CoinSide flip()
2 {
3 if((random() % 2) == 0)
4 return HEADS;
5 else
6 return TAILS;
7 }

Figure 10.75 Questionable coin flipper

Write a method and give an analysis of the running time to compute the binomial
coefficients as follows:
a. recursively
b. using dynamic programming

10.37 Write the routines to perform insertion, deletion, and searching in skip lists.

10.38 Give a formal proof that the expected time for the skip list operations is O(log N).

10.39 Figure 10.75 shows a routine to flip a coin, assuming that random returns an integer
(which is prevalent in many systems). What is the expected performance of the
skip list algorithms if the random number generator uses a modulus of the form
M = 2B (which is unfortunately prevalent on many systems)?

10.40 a. Use the exponentiation algorithm to prove that 2340 ≡ 1 (mod 341).
b. Show how the randomized primality test works for N = 561 with several

choices of A.

10.41 Implement the turnpike reconstruction algorithm.

10.42 Two point sets are homometric if they yield the same distance set and are not
rotations of each other. The following distance set gives two distinct point sets:
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17 }. Find the two point sets.

10.43 Extend the reconstruction algorithm to find all homometric point sets given a
distance set.

10.44 Show the result of α–β pruning of the tree in Figure 10.76.

3312765885607763894920507950654149553836819259869088683959651794

33768577895079655538928690686594

3377506538866865

77658668

6568

68

Max

Min

Max

Min

Max

Figure 10.76 Game tree, which can be pruned

www.manaraa.com

Exercises 503

2

1

2

9.656

Figure 10.77 Sample for circle packing problem

10.45 a. Does the code in Figure 10.74 implement α pruning or β pruning?
b. Implement the complementary routine.

10.46 Write the remaining procedures for tic-tac-toe.

10.47 The one-dimensional circle packing problem is as follows: You have N circles of
radii r1, r2, . . . , rN. These circles are packed in a box such that each circle is tan-
gent to the bottom of the box and are arranged in the original order. The problem
is to find the width of the minimum-sized box. Figure 10.77 shows an exam-
ple with circles of radii 2, 1, 2 respectively. The minimum-sized box has width
4 + 4

√
2.

�10.48 Suppose that the edges in an undirected graph G satisfy the triangle inequality:
cu,v + cv,w ≥ cu,w. Show how to compute a traveling salesman tour of cost at most
twice optimal. (Hint: Construct a minimum spanning tree.)

�10.49 You are a tournament director and need to arrange a round robin tournament
among N = 2k players. In this tournament, everyone plays exactly one game each
day; after N − 1 days, a match has occurred between every pair of players. Give a
recursive algorithm to do this.

�10.50 a. Prove that in a round robin tournament it is always possible to arrange the
players in an order pi1 , pi2 , . . . , piN such that for all 1 ≤ j < N, pij has won the
match against pij+1 .

b. Give an O(N log N) algorithm to find one such arrangement. Your algorithm
may serve as a proof for part (a).

�10.51 We are given a set P = p1, p2, . . . , pN of N points in a plane. A Voronoi diagram
is a partition of the plane into N regions Ri such that all points in Ri are closer
to pi than any other point in P. Figure 10.78 shows a sample Voronoi diagram
for seven (nicely arranged) points. Give an O(N log N) algorithm to construct the
Voronoi diagram.

�10.52 A convex polygon is a polygon with the property that any line segment whose
endpoints are on the polygon lies entirely within the polygon. The convex hull

www.manaraa.com

504 Chapter 10 Algorithm Design Techniques

Figure 10.78 Voronoi diagram

Figure 10.79 Example of a convex hull

problem consists of finding the smallest (area) convex polygon that encloses a set
of points in the plane. Figure 10.79 shows the convex hull for a set of 40 points.
Give an O(N log N) algorithm to find the convex hull.

�10.53 Consider the problem of right-justifying a paragraph. The paragraph contains a
sequence of words w1, w2, . . . , wN of length a1, a2, . . . , aN, which we wish to
break into lines of length L. Words are separated by blanks whose ideal length
is b (millimeters), but blanks can stretch or shrink as necessary (but must be >0),
so that a line wiwi+1 . . . wj has length exactly L. However, for each blank b′ we
charge |b′ − b| ugliness points. The exception to this is the last line, for which we
charge only if b′ < b (in other words, we charge only for shrinking), since the last
line does not need to be justified. Thus, if bi is the length of the blank between ai

and ai+1, then the ugliness of setting any line (but the last) wiwi+1 . . . wj for j > i is∑j−1
k=i |bk − b| = (j − i)|b′ − b|, where b′ is the average size of a blank on this line.

This is true of the last line only if b′ < b, otherwise the last line is not ugly at all.

www.manaraa.com

Exercises 505

a. Give a dynamic programming algorithm to find the least ugly setting of
w1, w2, . . . , wN into lines of length L. (Hint: For i = N, N − 1, . . . , 1, compute
the best way to set wi, wi+1, . . . , wN.)

b. Give the time and space complexities for your algorithm (as a function of the
number of words, N).

c. Consider the special case where we are using a fixed-width font, and assume
the optimal value of b is 1 (space). In this case, no shrinking of blanks is
allowed, since the next smallest blank space would be 0. Give a linear-time
algorithm to generate the least ugly setting for this case.

�10.54 The longest increasing subsequence problem is as follows: Given numbers a1, a2, . . . ,
aN, find the maximum value of k such that ai1 < ai2 < · · · < aik , and i1 < i2 <

· · · < ik. As an example, if the input is 3, 1, 4, 1, 5, 9, 2, 6, 5, the maximum
increasing subsequence has length four (1, 4, 5, 9 among others). Give an O(N2)
algorithm to solve the longest increasing subsequence problem.

�10.55 The longest common subsequence problem is as follows: Given two sequences
A = a1, a2, . . . , aM, and B = b1, b2, . . . , bN, find the length, k, of the longest
sequence C = c1, c2, . . . , ck such that C is a subsequence (not necessarily
continguous) of both A and B. As an example, if

A = d,y,n,a,m,i,c

and

B = p,r,o,g,r,a,m,m,i,n,g,

then the longest common subsequence is a,m,i and has length 3. Give an algo-
rithm to solve the longest common subsequence problem. Your algorithm should
run in O(MN) time.

�10.56 The pattern-matching problem is as follows: Given a string S of text, and a pat-
tern P, find the first occurrence of P in S. Approximate pattern matching allows k
mismatches of three types:

1. A character can be in S that is not in P.
2. A character can be in P that is not in S.
3. P and S can differ in a position.

As an example, if we are searching for the pattern “textbook” with at most three
mismatches in the string “data structures txtborpk”, we find a match (insert an e,
change an r to an o, delete a p). Give an O(MN) algorithm to solve the approximate
string matching problem, where M = |P| and N = |S|.

�10.57 One form of the knapsack problem is as follows: We are given a set of integers
A = a1, a2, . . . , aN and an integer K. Is there a subset of A whose sum is exactly K?
a. Give an algorithm that solves the knapsack problem in O(NK) time.
b. Why does this not show that P = NP?

www.manaraa.com

506 Chapter 10 Algorithm Design Techniques

�10.58 You are given a currency system with coins of (decreasing) value c1, c2, . . . , cN

cents.
a. Give an algorithm that computes the minimum number of coins required to

give K cents in change.
b. Give an algorithm that computes the number of different ways to give K cents

in change.

�10.59 Consider the problem of placing eight queens on an (eight-by-eight) chess board.
Two queens are said to attack each other if they are on the same row, column, or
(not necessarily main) diagonal.
a. Give a randomized algorithm to place eight nonattacking queens on the board.
b. Give a backtracking algorithm to solve the same problem.
c. Implement both algorithms and compare the running time.

�10.60 In the game of chess, a knight in row R and column C may move to row 1 ≤ R′ ≤ B
and column 1 ≤ C′ ≤ B (where B is the size of the board) provided that either

|R − R′| = 2 and |C − C′| = 1

or

|R − R′| = 1 and |C − C′| = 2

A knight’s tour is a sequence of moves that visits all squares exactly once before
returning to the starting point.
a. If B is odd, show that a knight’s tour cannot exist.
b. Give a backtracking algorithm to find a knight’s tour.

10.61 Consider the recursive algorithm in Figure 10.80 for finding the shortest weighted
path in an acyclic graph, from s to t.

Distance shortest(s, t)
{

Distance dt, tmp;

if(s == t)
return 0;

dt = ∞;
for each Vertex v adjacent to s
{

tmp = shortest(v, t);
if(cs,v + tmp < dt)

dt = cs,v + tmp;
}
return dt;

}

Figure 10.80 Recursive shortest-path algorithm pseudocode

www.manaraa.com

Exercises 507

a. Why does this algorithm not work for general graphs?
b. Prove that this algorithm terminates for acyclic graphs.
c. What is the worst-case running time of the algorithm?

10.62 Let A be an N-by-N matrix of zeros and ones. A submatrix S of A is any group of
contiguous entries that forms a square.
a. Design an O(N2) algorithm that determines the size of the largest submatrix of

ones in A. For instance, in the matrix that follows, the largest submatrix is a
4-by-4 square.

10111000
00010100
00111000
00111010
00111111
01011110
01011110
00011110

��b. Repeat part (a) if S is allowed to be a rectangle instead of a square. Largest is
measured by area.

10.63 Even if the computer has a move that gives an immediate win, it may not make it if
it detects another move that is also guaranteed to win. Some early chess programs
were problematic in that they would get into a repetition of position when a forced
win was detected, thereby allowing the opponent to claim a draw. In tic-tac-toe,
this is not a problem, because the program eventually will win. Modify the tic-tac-
toe algorithm so that when a winning position is found, the move that leads to
the shortest win is always taken. You can do this by adding 9-depth to COMP_WIN so
that the quickest win gives the highest value.

10.64 Write a program to play 5-by-5 tic-tac-toe, where 4 in a row wins. Can you search
to terminal nodes?

10.65 The game of Boggle consists of a grid of letters and a word list. The object is to
find words in the grid that are subject to the constraint that two adjacent letters
must be adjacent in the grid, and each item in the grid can be used, at most, once
per word. Write a program to play Boggle.

10.66 Write a program to play MAXIT. The board is represented as an N-by-N grid of
numbers randomly placed at the start of the game. One position is designated
as the initial current position. Two players alternate turns. At each turn, a player
must select a grid element in the current row or column. The value of the selected
position is added to the player’s score, and that position becomes the current
position and cannot be selected again. Players alternate until all grid elements in
the current row and column are already selected, at which point the game ends
and the player with the higher score wins.

10.67 Othello played on a 6-by-6 board is a forced win for black. Prove this by writing
a program. What is the final score if play on both sides is optimal?

www.manaraa.com

508 Chapter 10 Algorithm Design Techniques

References

The original paper on Huffman codes is [25]. Variations on the algorithm are discussed in
[33], [34], and [37]. Another popular compression scheme is Ziv–Lempel encoding [67],
[68]. Here the codes have a fixed length but represent strings instead of characters. [9] and
[39] are good surveys of the common compression schemes.

The analysis of bin-packing heuristics first appeared in Johnson’s Ph.D. thesis and was
published in [26]. Improvements in the additive constants of the bounds for first fit and
first fit decreasing were given in [63] and [16], respectively. The improved lower bound
for online bin packing given in Exercise 10.8 is from [64]; this result has been improved
further in [41] and [61]. [54] describes another approach to online bin packing.

Theorem 10.7 is from [8]. The closest points algorithm appeared in [56]. [58] and
describes the turnpike reconstruction problem and its applications. The exponential worst-
case input was given by [66]. Books on computational geometry include [17], [50], [45],
and [46]. [2] contains the lecture notes for a computational geometry course taught at MIT;
it includes an extensive bibliography.

The linear-time selection algorithm appeared in [10]. The best bound for selecting the
median is currently ∼2.95N comparisons [15]. [20] discusses the sampling approach that
finds the median in 1.5N expected comparisons. The O(N1.59) multiplication is from [27].
Generalizations are discussed in [11] and [29]. Strassen’s algorithm appears in the short
paper [59]. The paper states the results and not much else. Pan [47] gives several divide-
and-conquer algorithms, including the one in Exercise 10.28. The best-known bound is
O(N2.376), which is due to Coppersmith and Winograd [14].

The classic references on dynamic programming are the books [6] and [7]. The matrix
ordering problem was first studied in [22]. It was shown in [24] that the problem can be
solved in O(N log N) time.

An O(N2) algorithm was provided for the construction of optimal binary search trees
by Knuth [30]. The all-pairs shortest-path algorithm is from Floyd [19]. A theoretically
better O(N3(log log N/ log N)1/3) algorithm is given by Fredman [21], but not surprisingly,
it is not practical. A slightly improved bound (with 1/2 instead of 1/3) is given in [60],
and the current best bound is O(N3

√
log log N/ log N) [69]; see also [4] for related results.

For undirected graphs, the all-pairs problem can be solved in O(|E||V| log α(|E|, |V|)),
where α was previously seen in the union / find analysis in Chapter 8 [49]. Under certain
conditions, the running time of dynamic programs can automatically be improved by a
factor of N or more. This is discussed in Exercise 10.34, [18], and [65].

The discussion of random number generators is based on [48]. Park and Miller
attribute the portable implementation to Schrage [57]. Skip lists are discussed by Pugh
in [51]. An alternative, namely the treap, is discussed in Chapter 12. The randomized
primality-testing algorithm is due to Miller [42] and Rabin [53]. The theorem that at most
(N−9)/4 values of A fool the algorithm is from Monier [43]. In 2002, an O(d12) determin-
istic polynomial-time primality testing algorithm was discovered [3], and subsequently an
improved algorithm with running time O(d6) was found [40]. However, these algorithms
are slower than the randomized algorithm. Other randomized algorithms are discussed in
[52]. More examples of randomization techniques can be found in [24], [28], and [44].

www.manaraa.com

References 509

More information on α–β pruning can be found in [1], [31], and [34]. The top pro-
grams that play chess, checkers, Othello, and backgammon all achieved world class status
in the 1990s. The world’s leading checkers program, Chinook, has improved to the point
that in 2007, it probably could not lose a game [55]. [38] describes an Othello program.
The paper appears in a special issue on computer games (mostly chess); this issue is a
gold mine of ideas. One of the papers describes the use of dynamic programming to solve
chess endgames completely when only a few pieces are left on the board. Related research
resulted in the change in 1989 (later revoked in 1992) of the 50-move rule in certain cases.

Exercise 10.42 is solved in [9]. Determining whether a homometric point set with
no duplicate distances exists for N > 6 is open. Christofides [13] gives a solution
to Exercise 10.48, and also an algorithm that generates a tour at most 3

2 optimal.
Exercise 10.53 is discussed in [32]. Exercise 10.56 is solved in [62]. An O(kN) algorithm
is given in [35]. Exercise 10.58 is discussed in [12], but do not be misled by the title of the
paper.

1. B. Abramson, “Control Strategies for Two-Player Games,” ACM Computing Surveys, 21
(1989), 137–161.

2. A. Aggarwal and J. Wein, Computational Geometry: Lecture Notes for 18.409, MIT Laboratory
for Computer Science, 1988.

3. M. Agrawal, N. Kayal, and N. Saxena, “Primes in P (preprint)” (2002) (see
http://www.cse.iitk.ac.in/news/primality.pdf).

4. N. Alon, Z. Galil, and O. Margalit, “On the Exponent of the All-Pairs Shortest Path
Problem,” Proceedings of the Thirty-Second Annual Symposium on the Foundations of Computer
Science (1991), 569–575.

5. T. Bell, I. H. Witten, and J. G. Cleary, “Modeling for Text Compression,” ACM Computing
Surveys, 21 (1989), 557–591.

6. R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, N. J., 1957.
7. R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton University Press,

Princeton, N.J., 1962.
8. J. L. Bentley, D. Haken, and J. B. Saxe, “A General Method for Solving Divide-and-Conquer

Recurrences,” SIGACT News, 12 (1980), 36–44.
9. G. S. Bloom, “A Counterexample to the Theorem of Piccard,” Journal of Combinatorial

Theory A (1977), 378–379.
10. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, “Time Bounds for

Selection,” Journal of Computer and System Sciences, 7 (1973), 448–461.
11. A. Borodin and J. I. Munro, The Computational Complexity of Algebraic and Numerical

Problems, American Elsevier, New York, 1975.
12. L. Chang and J. Korsh, “Canonical Coin Changing and Greedy Solutions,” Journal of the

ACM, 23 (1976), 418–422.
13. N. Christofides, “Worst-case Analysis of a New Heuristic for the Traveling Salesman

Problem,” Management Science Research Report #388, Carnegie-Mellon University,
Pittsburgh, Pa., 1976.

14. D. Coppersmith and S. Winograd, “Matrix Multiplication via Arithmetic Progressions,”
Proceedings of the Nineteenth Annual ACM Symposium on the Theory of Computing (1987),
1–6.

http://www.cse.iitk.ac.in/news/primality.pdf

www.manaraa.com

510 Chapter 10 Algorithm Design Techniques

15. D. Dor and U. Zwick, “Selecting the Median,” SIAM Journal on Computing, 28 (1999),
1722–1758.

16. G. Dosa, “The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is
FFD (I)=(11/9)OPT(I)+6/9,” Combinatorics, Algorithms, Probabilistic and Experimental
Methodologies (ESCAPE 2007), (2007), 1–11.

17. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.
18. D. Eppstein, Z. Galil, and R. Giancarlo, “Speeding up Dynamic Programming,” Proceedings

of the Twenty-ninth Annual IEEE Symposium on the Foundations of Computer Science (1988),
488–495.

19. R. W. Floyd, “Algorithm 97: Shortest Path,” Communications of the ACM, 5 (1962), 345.
20. R. W. Floyd and R. L. Rivest, “Expected Time Bounds for Selection,” Communications of the

ACM, 18 (1975), 165–172.
21. M. L. Fredman, “New Bounds on the Complexity of the Shortest Path Problem,” SIAM

Journal on Computing, 5 (1976), 83–89.
22. S. Godbole, “On Efficient Computation of Matrix Chain Products,” IEEE Transactions on

Computers, 9 (1973), 864–866.
23. R. Gupta, S. A. Smolka, and S. Bhaskar, “On Randomization in Sequential and Distributed

Algorithms,” ACM Computing Surveys, 26 (1994), 7–86.
24. T. C. Hu and M. R. Shing, “Computations of Matrix Chain Products, Part I,” SIAM Journal

on Computing, 11 (1982), 362–373.
25. D. A. Huffman, “A Method for the Construction of Minimum Redundancy Codes,”

Proceedings of the IRE, 40 (1952), 1098–1101.
26. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-case

Performance Bounds for Simple One-Dimensional Packing Algorithms,” SIAM Journal on
Computing, 3 (1974), 299–325.

27. A. Karatsuba and Y. Ofman, “Multiplication of Multi-digit Numbers on Automata,” Doklady
Akademii Nauk SSSR, 145 (1962), 293–294.

28. D. R. Karger, “Random Sampling in Graph Optimization Problems,” Ph. D. thesis, Stanford
University, 1995.

29. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, 3d ed.,
Addison-Wesley, Reading, Mass., 1998.

30. D. E. Knuth, “Optimum Binary Search Trees,” Acta Informatica, 1 (1971), 14–25.
31. D. E. Knuth, “An Analysis of Alpha-Beta Cutoffs,” Artificial Intelligence, 6 (1975), 293–326.
32. D. E. Knuth, TEX and Metafont, New Directions in Typesetting, Digital Press, Bedford, Mass.,

1981.
33. D. E. Knuth, “Dynamic Huffman Coding,” Journal of Algorithms, 6 (1985), 163–180.
34. D. E. Knuth and R. W. Moore, “Estimating the Efficiency of Backtrack Programs,”

Mathematics of Computation, 29 (1975), 121–136.
35. G. M. Landau and U. Vishkin, “Introducing Efficient Parallelism into Approximate String

Matching and a New Serial Algorithm,” Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing (1986), 220–230.

36. L. L. Larmore, “Height-Restricted Optimal Binary Trees,” SIAM Journal on Computing, 16
(1987), 1115–1123.

www.manaraa.com

References 511

37. L. L. Larmore and D. S. Hirschberg, “A Fast Algorithm for Optimal Length-Limited
Huffman Codes,” Journal of the ACM, 37 (1990), 464–473.

38. K. Lee and S. Mahajan, “The Development of a World Class Othello Program,” Artificial
Intelligence, 43 (1990), 21–36.

39. D. A. Lelewer and D. S. Hirschberg, “Data Compression,” ACM Computing Surveys, 19
(1987), 261–296.

40. H. W. Lenstra, Jr. and C. Pomerance, “Primality Testing with Gaussian Periods,” manuscript
(2003).

41. F. M. Liang, “A Lower Bound for On-line Bin Packing,” Information Processing Letters, 10
(1980), 76–79.

42. G. L. Miller, “Riemann’s Hypothesis and Tests for Primality,” Journal of Computer and System
Sciences, 13 (1976), 300–317.

43. L. Monier, “Evaluation and Comparison of Two Efficient Probabilistic Primality Testing
Algorithms,” Theoretical Computer Science, 12 (1980), 97–108.

44. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New
York, 1995.

45. K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice Hall, Englewood Cliffs, N.J., 1994.

46. J. O’Rourke, Computational Geometry in C, Cambridge University Press, New York, 1994.
47. V. Pan, “Strassen’s Algorithm Is Not Optimal,” Proceedings of the Nineteenth Annual IEEE

Symposium on the Foundations of Computer Science (1978), 166–176.
48. S. K. Park and K. W. Miller, “Random Number Generators: Good Ones Are Hard to Find,”

Communications of the ACM, 31 (1988), 1192–1201. (See also Technical Correspondence, in
36 (1993) 105–110.)

49. S. Pettie and V. Ramachandran, “A Shortest Path Algorithm for Undirected Graphs,” SIAM
Journal on Computing, 34 (2005), 1398–1431.

50. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

51. W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees,” Communications of the
ACM, 33 (1990), 668–676.

52. M. O. Rabin, “Probabilistic Algorithms,” in Algorithms and Complexity, Recent Results and
New Directions (J. F. Traub, ed.), Academic Press, New York, 1976, 21–39.

53. M. O. Rabin, “Probabilistic Algorithms for Testing Primality,” Journal of Number Theory, 12
(1980), 128–138.

54. P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee, “On-line Bin Packing in Linear Time,”
Journal of Algorithms, 10 (1989), 305–326.

55. J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, and
S. Sutphen, “Checkers in Solved,” Science, 317 (2007), 1518–1522.

56. M. I. Shamos and D. Hoey, “Closest-Point Problems,” Proceedings of the Sixteenth Annual
IEEE Symposium on the Foundations of Computer Science (1975), 151–162.

57. L. Schrage, “A More Portable FORTRAN Random Number Generator,” ACM Transactions
on Mathematics Software, 5 (1979), 132–138.

58. S. S. Skiena, W. D. Smith, and P. Lemke, “Reconstructing Sets from Interpoint Distances,”
Proceedings of the Sixth Annual ACM Symposium on Computational Geometry (1990),
332–339.

www.manaraa.com

512 Chapter 10 Algorithm Design Techniques

59. V. Strassen, “Gaussian Elimination Is Not Optimal,” Numerische Mathematik, 13 (1969),
354–356.

60. T. Takaoka, “A New Upper Bound on the Complexity of the All-Pairs Shortest Path
Problem,” Information Processing Letters, 43 (1992), 195–199.

61. A. van Vliet, “An Improved Lower Bound for On-Line Bin Packing Algorithms,” Information
Processing Letters, 43 (1992), 277–284.

62. R. A. Wagner and M. J. Fischer, “The String-to-String Correction Problem,” Journal of the
ACM, 21 (1974), 168–173.

63. B. Xia and Z. Tan, “Tighter Bounds of the First Fit Algorithm for the Bin-packing Problem,”
Discrete Applied Mathematics, (2010), 1668–1675.

64. A. C. Yao, “New Algorithms for Bin Packing,” Journal of the ACM, 27 (1980), 207–227.
65. F. F. Yao, “Efficient Dynamic Programming Using Quadrangle Inequalities,” Proceedings of

the Twelfth Annual ACM Symposium on the Theory of Computing (1980), 429–435.
66. Z. Zhang, “An Exponential Example for a Partial Digest Mapping Algorithm,” Journal of

Computational Molecular Biology, 1 (1994), 235–239.
67. J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE

Transactions on Information Theory IT23 (1977), 337–343.
68. J. Ziv and A. Lempel, “Compression of Individual Sequences via Variable-rate Coding,”

IEEE Transactions on Information Theory IT24 (1978), 530–536.
69. U. Zwick, “A Slightly Improved Sub-cubic Algorithm for the All Pairs Shortest Paths

Problem with Real Edge Lengths,” Proceedings of the 15th International Symposium on
Algorithms and Computation (2004), 921–932.

www.manaraa.com

C H A P T E R 11

Amortized Analysis

In this chapter, we will analyze the running times for several of the advanced data structures
that have been presented in Chapters 4 and 6. In particular, we will consider the worst-case
running time for any sequence of M operations. This contrasts with the more typical
analysis, in which a worst-case bound is given for any single operation.

As an example, we have seen that AVL trees support the standard tree operations in
O(log N) worst-case time per operation. AVL trees are somewhat complicated to implement,
not only because there are a host of cases, but also because height balance information must
be maintained and updated correctly. The reason that AVL trees are used is that a sequence
of �(N) operations on an unbalanced search tree could require �(N2) time, which would
be expensive. For search trees, the O(N) worst-case running time of an operation is not the
real problem. The major problem is that this could happen repeatedly. Splay trees offer a
pleasant alternative. Although any operation can still require �(N) time, this degenerate
behavior cannot occur repeatedly, and we can prove that any sequence of M operations
takes O(M log N) worst-case time (total). Thus, in the long run this data structure behaves
as though each operation takes O(log N). We call this an amortized time bound.

Amortized bounds are weaker than the corresponding worst-case bounds, because
there is no guarantee for any single operation. Since this is generally not important, we
are willing to sacrifice the bound on a single operation, if we can retain the same bound
for the sequence of operations and at the same time simplify the data structure. Amortized
bounds are stronger than the equivalent average-case bound. For instance, binary search
trees have O(log N) average time per operation, but it is still possible for a sequence of M
operations to take O(MN) time.

Because deriving an amortized bound requires us to look at an entire sequence of
operations instead of just one, we expect that the analysis will be more tricky. We will see
that this expectation is generally realized.

In this chapter we shall

� Analyze the binomial queue operations.
� Analyze skew heaps.
� Introduce and analyze the Fibonacci heap.
� Analyze splay trees.

513

www.manaraa.com

514 Chapter 11 Amortized Analysis

11.1 An Unrelated Puzzle
Consider the following puzzle: Two kittens are placed on opposite ends of a football field,
100 yards apart. They walk toward each other at the speed of 10 yards per minute. At the
same time, their mother is at one end of the field. She can run at 100 yards per minute.
The mother runs from one kitten to the other, making turns with no loss of speed, until
the kittens (and thus the mother) meet at midfield. How far does the mother run?

It is not hard to solve this puzzle with a brute-force calculation. We leave the details
to you, but one expects that this calculation will involve computing the sum of an infinite
geometric series. Although this straightforward calculation will lead to an answer, it turns
out that a much simpler solution can be arrived at by introducing an extra variable,
namely, time.

Because the kittens are 100 yards apart and approach each other at a combined velocity
of 20 yards per minute, it takes them five minutes to get to midfield. Since the mother runs
100 yards per minute, her total is 500 yards.

This puzzle illustrates the point that sometimes it is easier to solve a problem indirectly
than directly. The amortized analyses that we will perform will use this idea. We will intro-
duce an extra variable, known as the potential, to allow us to prove results that seem very
difficult to establish otherwise.

11.2 Binomial Queues
The first data structure we will look at is the binomial queue of Chapter 6, which we now
review briefly. Recall that a binomial tree B0 is a one-node tree, and for k > 0, the binomial
tree Bk is built by melding two binomial trees Bk−1 together. Binomial trees B0 through B4

are shown in Figure 11.1.
The rank of a node in a binomial tree is equal to the number of children; in particular,

the rank of the root of Bk is k. A binomial queue is a collection of heap-ordered binomial
trees, in which there can be at most one binomial tree Bk for any k. Two binomial queues,
H1 and H2, are shown in Figure 11.2.

The most important operation is merge. To merge two binomial queues, an operation
similar to addition of binary integers is performed: At any stage we may have zero, one,
two, or possibly three Bk trees, depending on whether or not the two priority queues
contain a Bk tree and whether or not a Bk tree is carried over from the previous step. If
there is zero or one Bk tree, it is placed as a tree in the resultant binomial queue. If there are
two Bk trees, they are melded into a Bk+1 tree and carried over; if there are three Bk trees,
one is placed as a tree in the binomial queue and the other two are melded and carried
over. The result of merging H1 and H2 is shown in Figure 11.3.

Insertion is performed by creating a one-node binomial queue and performing a merge.
The time to do this is M + 1, where M represents the smallest type of binomial tree BM not
present in the binomial queue. Thus, insertion into a binomial queue that has a B0 tree but
no B1 tree requires two steps. Deletion of the minimum is accomplished by removing the

www.manaraa.com

11.2 Binomial Queues 515

B 3B 2B 1B 0

B 4

Figure 11.1 Binomial trees B0, B1, B2, B3, and B4

12

21 24

65

H 2:

H 1:

13 23

24

65

51

14

26

16

18

Figure 11.2 Two binomial queues H1 and H2

H 3:
13 23

24

65

51

12

21 24

65

14

26 16

18

Figure 11.3 Binomial queue H3: the result of merging H1 and H2

www.manaraa.com

516 Chapter 11 Amortized Analysis

minimum and splitting the original binomial queue into two binomial queues, which are
then merged. A less terse explanation of these operations is given in Chapter 6.

We consider a very simple problem first. Suppose we want to build a binomial queue
of N elements. We know that building a binary heap of N elements can be done in O(N),
so we expect a similar bound for binomial queues.

Claim.
A binomial queue of N elements can be built by N successive insertions in O(N) time.

The claim, if true, would give an extremely simple algorithm. Since the worst-case
time for each insertion is O(log N), it is not obvious that the claim is true. Recall that if this
algorithm were applied to binary heaps, the running time would be O(N log N).

To prove the claim, we could do a direct calculation. To measure the running time, we
define the cost of each insertion to be one time unit plus an extra unit for each linking step.
Summing this cost over all insertions gives the total running time. This total is N units plus
the total number of linking steps. The 1st, 3rd, 5th, and all odd-numbered steps require no
linking steps, since there is no B0 present at the time of insertion. Thus, half the insertions
require no linking steps. A quarter of the insertions require only one linking step (2nd,
6th, 10th, and so on). An eighth requires two, and so on. We could add this all up and
bound the number of linking steps by N, proving the claim. This brute-force calculation
will not help when we try to analyze a sequence of operations that include more than just
insertions, so we will use another approach to prove this result.

Consider the result of an insertion. If there is no B0 tree present at the time of the
insertion, then the insertion costs a total of one unit, using the same accounting as above.
The result of the insertion is that there is now a B0 tree, and thus we have added one tree to
the forest of binomial trees. If there is a B0 tree but no B1 tree, then the insertion costs two
units. The new forest will have a B1 tree but will no longer have a B0 tree, so the number
of trees in the forest is unchanged. An insertion that costs three units will create a B2 tree
but destroy a B0 and B1 tree, yielding a net loss of one tree in the forest. In fact, it is easy to
see that, in general, an insertion that costs c units results in a net increase of 2 − c trees in
the forest, because a Bc−1 tree is created but all Bi trees 0 ≤ i < c − 1 are removed. Thus,
expensive insertions remove trees, while cheap insertions create trees.

Let Ci be the cost of the ith insertion. Let Ti be the number of trees after the ith
insertion. T0 = 0 is the number of trees initially. Then we have the invariant

Ci + (Ti − Ti−1) = 2 (11.1)

We then have

C1 + (T1 − T0) = 2

C2 + (T2 − T1) = 2

...

CN−1 + (TN−1 − TN−2) = 2

CN + (TN − TN−1) = 2

www.manaraa.com

11.2 Binomial Queues 517

If we add all these equations, most of the Ti terms cancel, leaving

N∑
i=1

Ci + TN − T0 = 2N

or equivalently,

N∑
i=1

Ci = 2N − (TN − T0)

Recall that T0 = 0 and TN, the number of trees after the N insertions, is certainly not
negative, so (TN − T0) is not negative. Thus

N∑
i=1

Ci ≤ 2N

which proves the claim.
During the buildBinomialQueue routine, each insertion had a worst-case time of

O(log N), but since the entire routine used at most 2N units of time, the insertions behaved
as though each used no more than two units each.

This example illustrates the general technique we will use. The state of the data struc-
ture at any time is given by a function known as the potential. The potential function is not
maintained by the program but rather is an accounting device that will help with the anal-
ysis. When operations take less time than we have allocated for them, the unused time is
“saved” in the form of a higher potential. In our example, the potential of the data structure
is simply the number of trees. In the analysis above, when we have insertions that use only
one unit instead of the two units that are allocated, the extra unit is saved for later by an
increase in potential. When operations occur that exceed the allotted time, then the excess
time is accounted for by a decrease in potential. One may view the potential as represent-
ing a savings account. If an operation uses less than its allotted time, the difference is saved
for use later on by more expensive operations. Figure 11.4 shows the cumulative running
time used by buildBinomialQueue over a sequence of insertions. Observe that the running
time never exceeds 2N and that the potential in the binomial queue after any insertion
measures the amount of savings.

Once a potential function is chosen, we write the main equation:

Tactual + Potential = Tamortized (11.2)

Tactual, the actual time of an operation, represents the exact (observed) amount of time
required to execute a particular operation. In a binary search tree, for example, the actual
time to perform a contains(x) is 1 plus the depth of the node containing x. If we sum the
basic equation over the entire sequence, and if the final potential is at least as large as the
initial potential, then the amortized time is an upper bound on the actual time used during
the execution of the sequence. Notice that while Tactual varies from operation to operation,
Tamortized is stable.

Picking a potential function that proves a meaningful bound is a very tricky task; there
is no one method that is used. Generally, many potential functions are tried before the one

www.manaraa.com

518 Chapter 11 Amortized Analysis

0 4 8 12 16 20 24 28 32 36 40 44
0

23

46

69

92

115

2N
Total Time

Total Potential

Figure 11.4 A sequence of N inserts

that works is found. Nevertheless, the discussion above suggests a few rules, which tell us
the properties that good potential functions have. The potential function should

� Always assume its minimum at the start of the sequence. A popular method of choosing
potential functions is to ensure that the potential function is initially 0, and always
nonnegative. All the examples that we will encounter use this strategy.

� Cancel a term in the actual time. In our case, if the actual cost was c, then the potential
change was 2 − c. When these are added, an amortized cost of 2 is obtained. This is
shown in Figure 11.5.

We can now perform a complete analysis of binomial queue operations.

Theorem 11.1.
The amortized running times of insert, deleteMin, and merge are O(1), O(log N), and
O(log N), respectively, for binomial queues.

Proof.
The potential function is the number of trees. The initial potential is 0, and the
potential is always nonnegative, so the amortized time is an upper bound on the actual
time. The analysis for insert follows from the argument above. For merge, assume the
two queues have N1 and N2 nodes with T1 and T2 trees, respectively. Let N = N1 +N2.
The actual time to perform the merge is O(log(N1) + log(N2)) = O(log N). After
the merge, there can be at most log N trees, so the potential can increase by at most
O(log N). This gives an amortized bound of O(log N). The deleteMin bound follows in
a similar manner.

www.manaraa.com

11.3 Skew Heaps 519

0 4 8 12 16 20 24 28 32 36 40 44 48

−10

−8

−6

−4

−2

0

2

4

6

8

10

insert cost

Potential Change

Figure 11.5 The insertion cost and potential change for each operation in a sequence

11.3 Skew Heaps
The analysis of binomial queues is a fairly easy example of an amortized analysis. We now
look at skew heaps. As is common with many of our examples, once the right potential
function is found, the analysis is easy. The difficult part is choosing a meaningful potential
function.

Recall that for skew heaps, the key operation is merging. To merge two skew heaps, we
merge their right paths and make this the new left path. For each node on the new path,
except the last, the old left subtree is attached as the right subtree. The last node on the
new left path is known to not have a right subtree, so it is silly to give it one. The bound
does not depend on this exception, and if the routine is coded recursively, this is what will
happen naturally. Figure 11.6 shows the result of merging two skew heaps.

Suppose we have two heaps, H1 and H2, and there are r1 and r2 nodes on their respec-
tive right paths. Then the actual time to perform the merge is proportional to r1 + r2, so we
will drop the Big-Oh notation and charge one unit of time for each node on the paths. Since
the heaps have no structure, it is possible that all the nodes in both heaps lie on the right
path, and this would give a �(N) worst-case bound to merge the heaps (Exercise 11.3 asks
you to construct an example). We will show that the amortized time to merge two skew
heaps is O(log N).

What is needed is some sort of a potential function that captures the effect of skew heap
operations. Recall that the effect of a merge is that every node on the right path is moved
to the left path, and its old left child becomes the new right child. One idea might be to
classify each node as a right node or left node, depending on whether or not it is a right
child, and use the number of right nodes as a potential function. Although the potential is

www.manaraa.com

520 Chapter 11 Amortized Analysis

10

6

16

14

3

9

12

8

17

2

1

11

5

7

17

8

9

12

7

5

11

3

10

6

16

14

1

2+

Figure 11.6 Merging of two skew heaps

initially 0 and always nonnegative, the problem is that the potential does not decrease after
a merge and thus does not adequately reflect the savings in the data structure. The result
is that this potential function cannot be used to prove the desired bound.

A similar idea is to classify nodes as either heavy or light, depending on whether or not
the right subtree of any node has more nodes than the left subtree.

Definition 11.1.
A node p is heavy if the number of descendants of p’s right subtree is at least half of the
number of descendants of p, and light otherwise. Note that the number of descendants
of a node includes the node itself.

As an example, Figure 11.7 shows a skew heap. The nodes with values 15, 3, 6, 12,
and 7 are heavy, and all other nodes are light.

The potential function we will use is the number of heavy nodes in the (collection of)
heaps. This seems like a good choice, because a long right path will contain an inordinate

3

15

21 14

23

6

12 7

8

25

26

18 24

33

17

18

Figure 11.7 Skew heap—heavy nodes are 3, 6, 7, 12, and 15

www.manaraa.com

11.3 Skew Heaps 521

number of heavy nodes. Because nodes on this path have their children swapped, these
nodes will be converted to light nodes as a result of the merge.

Theorem 11.2.
The amortized time to merge two skew heaps is O(log N).

Proof.
Let H1 and H2 be the two heaps, with N1 and N2 nodes respectively. Suppose the right
path of H1 has l1 light nodes and h1 heavy nodes, for a total of l1 + h1. Likewise, H2

has l2 light and h2 heavy nodes on its right path, for a total of l2 + h2 nodes.
If we adopt the convention that the cost of merging two skew heaps is the total

number of nodes on their right paths, then the actual time to perform the merge is
l1 + l2 + h1 + h2. Now the only nodes whose heavy/light status can change are nodes
that are initially on the right path (and wind up on the left path), since no other nodes
have their subtrees altered. This is shown by the example in Figure 11.8.

If a heavy node is initially on the right path, then after the merge it must become
a light node. The other nodes that were on the right path were light and may or may
not become heavy, but since we are proving an upper bound, we will have to assume
the worst, which is that they become heavy and increase the potential. Then the net
change in the number of heavy nodes is at most l1 + l2 − h1 − h2. Adding the actual
time and the potential change [Equation (11.2)] gives an amortized bound of 2(l1+ l2).

Now we must show that l1 + l2 = O(log N). Since l1 and l2 are the number of light
nodes on the original right paths, and the right subtree of a light node is less than half
the size of the tree rooted at the light node, it follows directly that the number of light
nodes on the right path is at most log N1 + log N2, which is O(log N).

The proof is completed by noting that the initial potential is 0 and that the potential
is always nonnegative. It is important to verify this, since otherwise the amortized time
does not bound the actual time and is meaningless.

Since the insert and deleteMin operations are basically just merges, they also have
O(log N) amortized bounds.

10

6

16

14

3

9

12

8

17

2

1

11

5

7

17

8

9

12

7

5

11

3

10

6

16

14

1

2+

L

L

L

H

L

L

L

L

L

L

H

L

Figure 11.8 Change in heavy/light status after a merge

www.manaraa.com

522 Chapter 11 Amortized Analysis

11.4 Fibonacci Heaps
In Section 9.3.2, we showed how to use priority queues to improve on the naïve O(|V|2)
running time of Dijkstra’s shortest-path algorithm. The important observation was that the
running time was dominated by |E| decreaseKey operations and |V| insert and deleteMin
operations. These operations take place on a set of size at most |V|. By using a binary heap,
all these operations take O(log |V|) time, so the resulting bound for Dijkstra’s algorithm can
be reduced to O(|E| log |V|).

In order to lower this time bound, the time required to perform the decreaseKey oper-
ation must be improved. d-heaps, which were described in Section 6.5, give an O(logd |V|)
time bound for the decreaseKey operation as well as for insert, but an O(d logd |V|) bound
for deleteMin. By choosing d to balance the costs of |E| decreaseKey operations with |V|
deleteMin operations, and remembering that d must always be at least 2, we see that a good
choice for d is

d = max(2,
|E|/|V|�)

This improves the time bound for Dijkstra’s algorithm to

O(|E| log(2+
|E|/|V|�) |V|)
The Fibonacci heap is a data structure that supports all the basic heap operations

in O(1) amortized time, with the exception of deleteMin and delete, which take O(log N)
amortized time. It immediately follows that the heap operations in Dijkstra’s algorithm will
require a total of O(|E| + |V| log |V|) time.

Fibonacci heaps1 generalize binomial queues by adding two new concepts:

A different implementation of decreaseKey: The method we have seen before is to per-
colate the element up toward the root. It does not seem reasonable to expect an O(1)
amortized bound for this strategy, so a new method is needed.

Lazy merging: Two heaps are merged only when it is required to do so. This is similar
to lazy deletion. For lazy merging, merges are cheap, but because lazy merging does not
actually combine trees, the deleteMin operation could encounter lots of trees, making
that operation expensive. Any one deleteMin could take linear time, but it is always
possible to charge the time to previous merge operations. In particular, an expensive
deleteMin must have been preceded by a large number of unduly cheap merges, which
were able to store up extra potential.

11.4.1 Cutting Nodes in Leftist Heaps
In binary heaps, the decreaseKey operation is implemented by lowering the value at a node
and then percolating it up toward the root until heap order is established. In the worst

1 The name comes from a property of this data structure, which we will prove later in the section.

www.manaraa.com

11.4 Fibonacci Heaps 523

1

2

3

4

...

N−4

N−3

N−2

N−1

Figure 11.9 Decreasing N − 1 to 0 via percolate up would take �(N) time

31

18

9

10

4

15

8

5

21

11

6

2

12

11

18

17

Figure 11.10 Sample leftist heap H

case, this can take O(log N) time, which is the length of the longest path toward the root
in a balanced tree.

This strategy does not work if the tree that represents the priority queue does not
have O(log N) depth. As an example, if this strategy is applied to leftist heaps, then the
decreaseKey operation could take �(N) time, as the example in Figure 11.9 shows.

We see that for leftist heaps, another strategy is needed for the decreaseKey operation.
Our example will be the leftist heap in Figure 11.10. Suppose we want to decrease the key
with value 9 down to 0. If we make the change, we find that we have created a violation of
heap order, which is indicated by a dashed line in Figure 11.11.

We do not want to percolate the 0 to the root, because, as we have seen, there are cases
where this could be expensive. The solution is to cut the heap along the dashed line, thus
creating two trees, and then merge the two trees back into one. Let X be the node to which
the decreaseKey operation is being applied, and let P be its parent. After the cut, we have

www.manaraa.com

524 Chapter 11 Amortized Analysis

31

18

0

10

4

15

8

5

21

11

6

2

12

11

18

17

P

X

Figure 11.11 Decreasing 9 to 0 creates a heap order violation

31

18

0

10 4

15

8

5

21

11

6

2

12

11

18

17

X

P

H 1 T2

Figure 11.12 The two trees after the cut

two trees, namely, H1 with root X, and T2, which is the original tree with H1 removed. The
situation is shown in Figure 11.12.

If these two trees were both leftist heaps, then they could be merged in O(log N) time,
and we would be done. It is easy to see that H1 is a leftist heap, since none of its nodes
have had any changes in their descendants. Thus, since all of its nodes originally satisfied
the leftist property, they still must.

Nevertheless, it seems that this scheme will not work, because T2 is not necessarily
leftist. However, it is easy to reinstate the leftist heap property by using two observations:

� Only nodes on the path from P to the root of T2 can be in violation of the leftist heap
property; these can be fixed by swapping children.

� Since the maximum right path length has at most
log(N + 1)� nodes, we only need to
check the first
log(N + 1)� nodes on the path from P to the root of T2. Figure 11.13
shows H1 and T2 after T2 is converted to a leftist heap.

www.manaraa.com

11.4 Fibonacci Heaps 525

31

18

0

10 4

15

8

5

21

11

6

2

12

11

18

17

H 1 H 2

Figure 11.13 T2 converted to the leftist heap H2

31

18

0

10

4

15

8

5

21

11

6

2

12

11

18

17

Figure 11.14 decreaseKey(X, 9) completed by merging H1 and H2

Because we can convert T2 to the leftist heap H2 in O(log N) steps, and then merge H1

and H2, we have an O(log N) algorithm for performing the decreaseKey operation in leftist
heaps. The heap that results in our example is shown in Figure 11.14.

11.4.2 Lazy Merging for Binomial Queues
The second idea that is used by Fibonacci heaps is lazy merging. We will apply this idea
to binomial queues and show that the amortized time to perform a merge operation (as well
as insertion, which is a special case) is O(1). The amortized time for deleteMin will still be
O(log N).

The idea is as follows: To merge two binomial queues, merely concatenate the two lists
of binomial trees, creating a new binomial queue. This new queue may have several trees of
the same size, so it violates the binomial queue property. We will call this a lazy binomial
queue in order to maintain consistency. This is a fast operation that always takes constant
(worst-case) time. As before, an insertion is done by creating a one-node binomial queue
and merging. The difference is that the merge is lazy.

www.manaraa.com

526 Chapter 11 Amortized Analysis

10

5 6

9

3

21

15 11

4

8

7

20

18

Figure 11.15 Lazy binomial queue

10

5 6 9

21

15

11

4

8

7

20

18

Figure 11.16 Lazy binomial queue after removing the smallest element (3)

The deleteMin operation is much more painful, because it is where we finally convert
the lazy binomial queue back into a standard binomial queue, but, as we will show, it is
still O(log N) amortized time—but not O(log N) worst-case time, as before. To perform a
deleteMin, we find (and eventually return) the minimum element. As before, we delete it
from the queue, making each of its children new trees. We then merge all the trees into a
binomial queue by merging two equal-sized trees until it is no longer possible.

As an example, Figure 11.15 shows a lazy binomial queue. In a lazy binomial queue,
there can be more than one tree of the same size. To perform the deleteMin, we remove the
smallest element, as before, and obtain the tree in Figure 11.16.

We now have to merge all the trees and obtain a standard binomial queue. A standard
binomial queue has at most one tree of each rank. In order to do this efficiently, we must be
able to perform the merge in time proportional to the number of trees present (T) (or log N,
whichever is larger). To do this, we form an array of lists, L0, L1, . . . , LRmax+1, where Rmax

is the rank of the largest tree. Each list LR contains all of the trees of rank R. The procedure
in Figure 11.17 is then applied.

1 for(R = 0; R <=
log N�; R++)
2 while(|LR| >= 2)
3 {
4 Remove two trees from LR;
5 Merge the two trees into a new tree;
6 Add the new tree to LR+1;
7 }

Figure 11.17 Procedure to reinstate a binomial queue

www.manaraa.com

11.4 Fibonacci Heaps 527

10

5 6

9 21

15

11

4

8

7

20

18

10

5

6

9

21

15

11

4

8

7

20

18

10

5

6

9 21

1511

4

8

7

20

18

10

5

6

9 21

1511

4

8

7

20

18

Figure 11.18 Combining the binomial trees into a binomial queue

Each time through the loop, at lines 4 through 6, the total number of trees is reduced
by 1. This means that this part of the code, which takes constant time per execution, can
only be performed T − 1 times, where T is the number of trees. The for loop counters and
tests at the end of the while loop take O(log N) time, so the running time is O(T + log N),
as required. Figure 11.18 shows the execution of this algorithm on the previous collection
of binomial trees.

Amortized Analysis of Lazy Binomial Queues
To carry out the amortized analysis of lazy binomial queues, we will use the same potential
function that was used for standard binomial queues. Thus, the potential of a lazy binomial
queue is the number of trees.

Theorem 11.3.
The amortized running times of merge and insert are both O(1) for lazy binomial
queues. The amortized running time of deleteMin is O(log N).

www.manaraa.com

528 Chapter 11 Amortized Analysis

Proof.
The potential function is the number of trees in the collection of binomial queues. The
initial potential is 0, and the potential is always nonnegative. Thus, over a sequence of
operations, the total amortized time is an upper bound on the total actual time.

For the merge operation, the actual time is constant, and the number of trees in
the collection of binomial queues is unchanged, so, by Equation (11.2), the amortized
time is O(1).

For the insert operation, the actual time is constant, and the number of trees can
increase by at most 1, so the amortized time is O(1).

The deleteMin operation is more complicated. Let R be the rank of the tree that
contains the minimum element, and let T be the number of trees. Thus, the poten-
tial at the start of the deleteMin operation is T. To perform a deleteMin, the children
of the smallest node are split off into separate trees. This creates T + R trees, which
must be merged into a standard binomial queue. The actual time to perform this is
T + R + log N, if we ignore the constant in the Big-Oh notation, by the argument
above.2 Once this is done, there can be at most log N trees remaining, so the potential
function can increase by at most (log N) − T. Adding the actual time and the change
in potential gives an amortized bound of 2 log N + R. Since all the trees are binomial
trees, we know that R ≤ log N. Thus we arrive at an O(log N) amortized time bound
for the deleteMin operation.

11.4.3 The Fibonacci Heap Operations
As we mentioned before, the Fibonacci heap combines the leftist heap decreaseKey oper-
ation with the lazy binomial queue merge operation. Unfortunately, we cannot use both
operations without a slight modification. The problem is that if arbitrary cuts are made
in the binomial trees, the resulting forest will no longer be a collection of binomial trees.
Because of this, it will no longer be true that the rank of every tree is at most
log N�. Since
the amortized bound for deleteMin in lazy binomial queues was shown to be 2 log N + R,
we need R = O(log N) for the deleteMin bound to hold.

In order to ensure that R = O(log N), we apply the following rules to all nonroot nodes:

� Mark a (nonroot) node the first time that it loses a child (because of a cut).
� If a marked node loses another child, then cut it from its parent. This node now

becomes the root of a separate tree and is no longer marked. This is called a cascading
cut, because several of these could occur in one decreaseKey operation.

Figure 11.19 shows one tree in a Fibonacci heap prior to a decreaseKey operation.
When the node with key 39 is changed to 12, the heap order is violated. Therefore, the
node is cut from its parent, becoming the root of a new tree. Since the node containing 33
is marked, this is its second lost child, and thus it is cut from its parent (10). Now 10 has

2 We can do this because we can place the constant implied by the Big-Oh notation in the potential function
and still get the cancellation of terms, which is needed in the proof.

www.manaraa.com

11.4 Fibonacci Heaps 529

35

33*

41

39

46

10*

13

6

34

5

24 23 22

13

17*

3

8*

47

11* 19

Figure 11.19 A tree in the Fibonacci heap prior to decreasing 39 to 12

35

33

41

12

46

10

13

6

34

5*

24 23 22

13

17*

3

8*

47

11* 19

Figure 11.20 The resulting segment of the Fibonacci heap after the decreaseKey operation

lost its second child, so it is cut from 5. The process stops here, since 5 was unmarked.
The node 5 is now marked. The result is shown in Figure 11.20.

Notice that 10 and 33, which used to be marked nodes, are no longer marked, because
they are now root nodes. This will be a crucial observation in our proof of the time bound.

11.4.4 Proof of the Time Bound
Recall that the reason for marking nodes is that we needed to bound the rank (number of
children) R of any node. We will now show that any node with N descendants has rank
O(log N).

Lemma 11.1.
Let X be any node in a Fibonacci heap. Let ci be the ith oldest child of X. Then the
rank of ci is at least i − 2.

Proof.
At the time when ci was linked to X, X already had (older) children c1, c2, . . . , ci−1.
Thus, X had at least i − 1 children when it linked to ci. Since nodes are linked only
if they have the same rank, it follows that at the time that ci was linked to X, ci had

www.manaraa.com

530 Chapter 11 Amortized Analysis

at least i − 1 children. Since that time, it could have lost at most one child, or else it
would have been cut from X. Thus, ci has at least i − 2 children.

From Lemma 11.1, it is easy to show that any node of rank R must have a lot of
descendants.

Lemma 11.2.
Let Fk be the Fibonacci numbers defined (in Section 1.2) by F0 = 1, F1 = 1, and
Fk = Fk−1 + Fk−2. Any node of rank R ≥ 1 has at least FR+1 descendants (including
itself).

Proof.
Let SR be the smallest tree of rank R. Clearly, S0 = 1 and S1 = 2. By Lemma 11.1,
a tree of rank R must have subtrees of rank at least R − 2, R − 3, . . . , 1, and 0, plus
another subtree, which has at least one node. Along with the root of SR itself, this gives
a minimum value for SR>1 of SR = 2 + ∑R−2

i=0 Si. It is easy to show that SR = FR+1

(Exercise 1.11(a)).

Because it is well known that the Fibonacci numbers grow exponentially, it imme-
diately follows that any node with s descendants has rank at most O(log s). Thus, we
have

Lemma 11.3.
The rank of any node in a Fibonacci heap is O(log N).

Proof.
Immediate from the discussion above.

If all we were concerned about were the time bounds for the merge, insert, and
deleteMin operations, then we could stop here and prove the desired amortized time
bounds. Of course, the whole point of Fibonacci heaps is to obtain an O(1) time bound for
decreaseKey as well.

The actual time required for a decreaseKey operation is 1 plus the number of cascading
cuts that are performed during the operation. Since the number of cascading cuts could be
much more than O(1), we will need to pay for this with a loss in potential. If we look at
Figure 11.20, we see that the number of trees actually increases with each cascading cut, so
we will have to enhance the potential function to include something that decreases during
cascading cuts. Notice that we cannot just throw out the number of trees from the potential
function, since then we will not be able to prove the time bound for the merge operation.
Looking at Figure 11.20 again, we see that a cascading cut causes a decrease in the number
of marked nodes, because each node that is the victim of a cascading cut becomes an
unmarked root. Since each cascading cut costs 1 unit of actual time and increases the tree
potential by 1, we will count each marked node as two units of potential. This way, we
have a chance of canceling out the number of cascading cuts.

Theorem 11.4.
The amortized time bounds for Fibonacci heaps are O(1) for insert, merge, and
decreaseKey and O(log N) for deleteMin.

www.manaraa.com

11.5 Splay Trees 531

Proof.
The potential is the number of trees in the collection of Fibonacci heaps plus twice the
number of marked nodes. As usual, the initial potential is 0 and is always nonnegative.
Thus, over a sequence of operations, the total amortized time is an upper bound on
the total actual time.

For the merge operation, the actual time is constant, and the number of trees and
marked nodes is unchanged, so, by Equation (11.2), the amortized time is O(1).

For the insert operation, the actual time is constant, the number of trees increases
by 1, and the number of marked nodes is unchanged. Thus, the potential increases by
at most 1, so the amortized time is O(1).

For the deleteMin operation, let R be the rank of the tree that contains the minimum
element, and let T be the number of trees before the operation. To perform a deleteMin,
we once again split the children of a tree, creating an additional R new trees. Notice
that, although this can remove marked nodes (by making them unmarked roots), this
cannot create any additional marked nodes. These R new trees, along with the other T
trees, must now be merged, at a cost of T +R+ log N = T +O(log N), by Lemma 11.3.
Since there can be at most O(log N) trees, and the number of marked nodes cannot
increase, the potential change is at most O(log N) − T. Adding the actual time and
potential change gives the O(log N) amortized bound for deleteMin.

Finally, for the decreaseKey operation, let C be the number of cascading cuts. The
actual cost of a decreaseKey is C + 1, which is the total number of cuts performed. The
first (noncascading) cut creates a new tree and thus increases the potential by 1. Each
cascading cut creates a new tree but converts a marked node to an unmarked (root)
node, for a net loss of one unit per cascading cut. The last cut also can convert an
unmarked node (in Figure 11.20 it is node 5) into a marked node, thus increasing the
potential by 2. The total change in potential is thus at most 3 − C. Adding the actual
time and the potential change gives a total of 4, which is O(1).

11.5 Splay Trees
As a final example, we analyze the running time of splay trees. Recall, from Chapter 4, that
after an access of some item X is performed, a splaying step moves X to the root by a series
of three operations: zig, zig-zag, and zig-zig. These tree rotations are shown in Figure 11.21.
We adopt the convention that if a tree rotation is being performed at node X, then prior to
the rotation P is its parent and (if X is not a child of the root) G is its grandparent.

Recall that the time required for any tree operation on node X is proportional to the
number of nodes on the path from the root to X. If we count each zig operation as one
rotation and each zig-zig or zig-zag as two rotations, then the cost of any access is equal to
1 plus the number of rotations.

In order to show an O(log N) amortized bound for the splaying step, we need a poten-
tial function that can increase by at most O(log N) over the entire splaying step but that
will also cancel out the number of rotations performed during the step. It is not at all easy
to find a potential function that satisfies these criteria. A simple first guess at a potential

www.manaraa.com

532 Chapter 11 Amortized Analysis

P

X
C

BA

X

P
A

CB

G

D
P

X
A

CB

X

P G

A B C D

X

BA

P

C

G

D

X

A
P

B
G

C D

Figure 11.21 zig, zig-zag, and zig-zig operations; each has a symmetric case (not shown)

function might be the sum of the depths of all the nodes in the tree. This does not work,
because the potential can increase by �(N) during an access. A canonical example of this
occurs when elements are inserted in sequential order.

A potential function � that does work is defined as

�(T) =
∑
i∈T

log S(i)

where S(i) represents the number of descendants of i (including i itself). The potential
function is the sum, over all nodes i in the tree T, of the logarithm of S(i).

To simplify the notation, we will define

R(i) = log S(i)

This makes

�(T) =
∑
i∈T

R(i)

R(i) represents the rank of node i. The terminology is similar to what we used in the
analysis of the disjoint set algorithm, binomial queues, and Fibonacci heaps. In all these
data structures, the meaning of rank is somewhat different, but the rank is generally meant
to be on the order (magnitude) of the logarithm of the size of the tree. For a tree T with N

www.manaraa.com

11.5 Splay Trees 533

nodes, the rank of the root is simply R(T) = log N. Using the sum of ranks as a potential
function is similar to using the sum of heights as a potential function. The important
difference is that while a rotation can change the heights of many nodes in the tree, only
X, P, and G can have their ranks changed.

Before proving the main theorem, we need the following lemma.

Lemma 11.4.
If a + b ≤ c, and a and b are both positive integers, then

log a + log b ≤ 2 log c − 2

Proof.
By the arithmetic-geometric mean inequality,

√
ab ≤ (a + b)/2

Thus
√

ab ≤ c/2

Squaring both sides gives

ab ≤ c2/4

Taking logarithms of both sides proves the lemma.

With the preliminaries taken care of, we are ready to prove the main theorem.

Theorem 11.5.
The amortized time to splay a tree with root T at node X is at most
3(R(T) − R(X)) + 1 = O(log N).

Proof.
The potential function is the sum of the ranks of the nodes in T.

If X is the root of T, then there are no rotations, so there is no potential change.
The actual time is 1 to access the node; thus, the amortized time is 1 and the theorem
is true. Thus, we may assume that there is at least one rotation.

For any splaying step, let Ri(X) and Si(X) be the rank and size of X before
the step, and let Rf (X) and Sf (X) be the rank and size of X immediately after the
splaying step. We will show that the amortized time required for a zig is at most
3(Rf (X) − Ri(X)) + 1 and that the amortized time for either a zig-zag or zig-zig is
at most 3(Rf (X) − Ri(X)). We will show that when we add over all steps, the sum
telescopes to the desired time bound.

Zig step: For the zig step, the actual time is 1 (for the single rotation), and the
potential change is Rf (X) + Rf (P) − Ri(X) − Ri(P). Notice that the potential change is
easy to compute, because only X’s and P’s trees change size. Thus, using AT to represent
amortized time,

ATzig = 1 + Rf (X) + Rf (P) − Ri(X) − Ri(P)

www.manaraa.com

534 Chapter 11 Amortized Analysis

From Figure 11.21 we see that Si(P) ≥ Sf (P); thus, it follows that Ri(P) ≥ Rf (P). Thus,

ATzig ≤ 1 + Rf (X) − Ri(X)

Since Sf (X) ≥ Si(X), it follows that Rf (X) − Ri(X) ≥ 0, so we may increase the right
side, obtaining

ATzig ≤ 1 + 3(Rf (X) − Ri(X))

Zig-zag step: For the zig-zag case, the actual cost is 2, and the potential change is
Rf (X) + Rf (P) + Rf (G) − Ri(X) − Ri(P) − Ri(G). This gives an amortized time bound of

ATzig-zag = 2 + Rf (X) + Rf (P) + Rf (G) − Ri(X) − Ri(P) − Ri(G)

From Figure 11.21 we see that Sf (X) = Si(G), so their ranks must be equal. Thus, we
obtain

ATzig-zag = 2 + Rf (P) + Rf (G) − Ri(X) − Ri(P)

We also see that Si(P) ≥ Si(X). Consequently, Ri(X) ≤ Ri(P). Making this substitution
gives

ATzig-zag ≤ 2 + Rf (P) + Rf (G) − 2Ri(X)

From Figure 11.21 we see that Sf (P) + Sf (G) ≤ Sf (X). If we apply Lemma 11.4, we
obtain

log Sf (P) + log Sf (G) ≤ 2 log Sf (X) − 2

By the definition of rank, this becomes

Rf (P) + Rf (G) ≤ 2Rf (X) − 2

Substituting this, we obtain

ATzig-zag ≤ 2Rf (X) − 2Ri(X)

≤ 2(Rf (X) − Ri(X))

Since Rf (X) ≥ Ri(X), we obtain

ATzig-zag ≤ 3(Rf (X) − Ri(X))

Zig-zig step: The third case is the zig-zig. The proof of this case is very similar
to the zig-zag case. The important inequalities are Rf (X) = Ri(G), Rf (X) ≥ Rf (P),
Ri(X) ≤ Ri(P), and Si(X) + Sf (G) ≤ Sf (X). We leave the details as Exercise 11.8.

The amortized cost of an entire splay is the sum of the amortized costs of each
splay step. Figure 11.22 shows the steps that are performed in a splay at node 2. Let
R1(2), R2(2), R3(2), and R4(2) be the rank of node 2 in each of the four trees. The cost
of the first step, which is a zig-zag, is at most 3(R2(2) − R1(2)). The cost of the second
step, which is a zig-zig, is 3(R3(2) − R2(2)). The last step is a zig and has cost no larger
than 3(R4(2) − R3(2)) + 1. The total cost thus telescopes to 3(R4(2) − R1(2)) + 1.

www.manaraa.com

11.5 Splay Trees 535

7

6

5

4

1

2 3

3

27

6

5 1 5 5

2 4 6 4 6

1 4 3

7

2 1 7

3

Figure 11.22 The splaying steps involved in splaying at node 2

In general, by adding up the amortized costs of all the rotations, of which at most
one can be a zig, we see that the total amortized cost to splay at node X is at most
3(Rf (X) − Ri(X)) + 1, where Ri(X) is the rank of X before the first splaying step and
Rf (X) is the rank of X after the last splaying step. Since the last splaying step leaves X
at the root, we obtain an amortized bound of 3(R(T) − Ri(X)) + 1, which is O(log N).

Because every operation on a splay tree requires a splay, the amortized cost of any
operation is within a constant factor of the amortized cost of a splay. Thus, all splay tree
access operations take O(log N) amortized time. To show that insertions and deletions take
O(log N), amortized time, potential changes that occur either prior to or after the splaying
step should be accounted for.

In the case of insertion, assume we are inserting into an N−1 node tree. Thus, after the
insertion, we have an N-node tree, and the splaying bound applies. However, the insertion
at the leaf node adds potential prior to the splay to each node on the path from the leaf
node to the root. Let n1, n2, . . . , nk be the nodes on the path prior to the insertion of the
leaf (nk is the root), and assume they have sizes s1, s2, . . . , sk. After the insertions, the sizes
are s1 + 1, s2 + 1, . . . , sk + 1. (The leaf will contribute 0 to the potential so we can ignore
it.) Note that (excluding the root node) sj + 1 ≤ sj+1, so the new rank of nj is no more
than the old rank of nj+1. Thus, the increase of ranks, which is the maximum increase in
potential that results from adding a new leaf, is limited by the new rank of the root, which
is O(log N).

A deletion consists of a nonsplaying step that attaches one tree to another. This does
increase the rank of one node, but that is limited by log N (and is compensated by the
removal of a node, which at the time was a root). Thus the splaying costs accurately bound
the cost of a deletion.

By using a more general potential function, it is possible to show that splay trees have
several remarkable properties. This is discussed in more detail in the exercises.

www.manaraa.com

536 Chapter 11 Amortized Analysis

Summary

In this chapter, we have seen how an amortized analysis can be used to apportion charges
among operations. To perform the analysis, we invent a fictitious potential function. The
potential function measures the state of the system. A high-potential data structure is
volatile, having been built on relatively cheap operations. When the expensive bill comes
for an operation, it is paid for by the savings of previous operations. One can view potential
as standing for potential for disaster, in that very expensive operations can occur only when
the data structure has a high potential and has used considerably less time than has been
allocated.

Low potential in a data structure means that the cost of each operation has been
roughly equal to the amount allocated for it. Negative potential means debt; more time has
been spent than has been allocated, so the allocated (or amortized) time is not a meaningful
bound.

As expressed by Equation (11.2), the amortized time for an operation is equal to the
sum of the actual time and potential change. Taken over an entire sequence of operations,
the amortized time for the sequence is equal to the total sequence time plus the net change
in potential. As long as this net change is positive, then the amortized bound provides an
upper bound for the actual time spent and is meaningful.

The keys to choosing a potential function are to guarantee that the minimum potential
occurs at the beginning of the algorithm, and to have the potential increase for cheap
operations and decrease for expensive operations. It is important that the excess or saved
time be measured by an opposite change in potential. Unfortunately, this is sometimes
easier said than done.

Exercises

11.1 When do M consecutive insertions into a binomial queue take less than 2M time
units?

11.2 Suppose a binomial queue of N = 2k − 1 elements is built. Alternately perform
M insert and deleteMin pairs. Clearly, each operation takes O(log N) time. Why
does this not contradict the amortized bound of O(1) for insertion?

�11.3 Show that the amortized bound of O(log N) for the skew heap operations
described in the text cannot be converted to a worst-case bound, by giving a
sequence of operations that lead to a merge requiring �(N) time.

�11.4 Show how to merge two skew heaps with one top-down pass and reduce the merge
cost to O(1) amortized time.

11.5 Extend skew heaps to support the decreaseKey operation in O(log N) amortized
time.

11.6 Implement Fibonacci heaps and compare their performance with that of binary
heaps when used in Dijkstra’s algorithm.

www.manaraa.com

Exercises 537

11.7 A standard implementation of Fibonacci heaps requires four links per node
(parent, child, and two siblings). Show how to reduce the number of links, at
the cost of at most a constant factor in the running time.

11.8 Show that the amortized time of a zig-zig splay is at most 3(Rf (X) − Ri(X)).

11.9 By changing the potential function, it is possible to prove different bounds for
splaying. Let the weight function W(i) be some function assigned to each node in
the tree, and let S(i) be the sum of the weights of all the nodes in the subtree
rooted at i, including i itself. The special case W(i) = 1 for all nodes corresponds
to the function used in the proof of the splaying bound. Let N be the number of
nodes in the tree, and let M be the number of accesses. Prove the following two
theorems:
a. The total access time is O(M + (M + N) log N).

�b. If qi is the number of times that item i is accessed, and qi > 0 for all i, then the
total access time is

O

(
M +

N∑
i=1

qi log(M/qi)

)

11.10 a. Show how to implement the merge operation on splay trees so that any
sequence of N−1 merges starting from N single-element trees takes O(N log2 N)
time.

�b. Improve the bound to O(N log N).

11.11 In Chapter 5, we described rehashing: When a table becomes more than half full,
a new table twice as large is constructed, and the entire old table is rehashed. Give
a formal amortized analysis, with potential function, to show that the amortized
cost of an insertion is still O(1).

11.12 What is the maximum depth of a Fibonacci heap?

11.13 A deque with heap order is a data structure consisting of a list of items, on which
the following operations are possible:

push(x): Insert item x on the front end of the deque.
pop(): Remove the front item from the deque and return it.
inject(x): Insert item x on the rear end of the deque.
eject(): Remove the rear item from the deque and return it.
findMin(): Return the smallest item from the deque (breaking ties arbitrarily).

a. Describe how to support these operations in constant amortized time per
operation.

��b. Describe how to support these operations in constant worst-case time per
operation.

11.14 Show that the binomial queues actually support merging in O(1) amortized time.
Define the potential of a binomial queue to be the number of trees plus the rank
of the largest tree.

www.manaraa.com

538 Chapter 11 Amortized Analysis

11.15 Suppose that in an attempt to save time, we splay on every second tree operation.
Does the amortized cost remain logarithmic?

11.16 Using the potential function in the proof of the splay tree bound, what is the
maximum and minimum potential of a splay tree? By how much can the potential
function decrease in one splay? By how much can the potential function increase
in one splay? You may give Big-Oh answers.

11.17 As a result of a splay, most of the nodes on the access path are moved halfway
towards the root, while a couple of nodes on the path move down one level. This
suggests using the sum over all nodes of the logarithm of each node’s depth as a
potential function.
a. What is the maximum value of the potential function?
b. What is the minimum value of the potential function?
c. The difference in the answers to parts (a) and (b) gives some indication that

this potential function isn’t too good. Show that a splaying operation could
increase the potential by �(N/ log N).

References

An excellent survey of amortized analysis is provided in [10].
Most of the references below duplicate citations in earlier chapters. We cite them again

for convenience and completeness. Binomial queues were first described in [11] and ana-
lyzed in [1]. Solutions to Exercises 11.3 and 11.4 appear in [9]. Fibonacci heaps are
described in [3]. Exercise 11.9(a) shows that splay trees are optimal, to within a constant
factor of the best static search trees. Exercise 11.9(b) shows that splay trees are optimal, to
within a constant factor of the best optimal search trees. These, as well as two other strong
results, are proved in the original splay tree paper [7].

Amortization is used in [2] to merge a balanced seach tree efficiently. The merge oper-
ation for splay trees is described in [6]. A solution to Exercise 11.13 can be found in [4].
Exercise 11.14 is from [5].

Amortized analysis is used in [8] to design an online algorithm that processes a series
of queries in time only a constant factor larger than any off-line algorithm in its class.

1. M. R. Brown, “Implementation and Analysis of Binomial Queue Algorithms,” SIAM Journal
on Computing, 7 (1978), 298–319.

2. M. R. Brown and R. E. Tarjan, “Design and Analysis of a Data Structure for Representing
Sorted Lists,” SIAM Journal on Computing, 9 (1980), 594–614.

3. M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms,” Journal of the ACM, 34 (1987), 596–615.

4. H. Gajewska and R. E. Tarjan, “Deques with Heap Order,” Information Processing Letters,
22 (1986), 197–200.

5. C. M. Khoong and H. W. Leong, “Double-Ended Binomial Queues,” Proceedings of the
Fourth Annual International Symposium on Algorithms and Computation (1993), 128–137.

www.manaraa.com

References 539

6. G. Port and A. Moffat, “A Fast Algorithm for Melding Splay Trees,” Proceedings of First
Workshop on Algorithms and Data Structures (1989), 450–459.

7. D. D. Sleator and R. E. Tarjan, “Self-adjusting Binary Search Trees,” Journal of the ACM, 32
(1985), 652–686.

8. D. D. Sleator and R. E. Tarjan, “Amortized Efficiency of List Update and Paging Rules,”
Communications of the ACM, 28 (1985), 202–208.

9. D. D. Sleator and R. E. Tarjan, “Self-adjusting Heaps,” SIAM Journal on Computing, 15
(1986), 52–69.

10. R. E. Tarjan, “Amortized Computational Complexity,” SIAM Journal on Algebraic and
Discrete Methods, 6 (1985), 306–318.

11. J. Vuillemin, “A Data Structure for Manipulating Priority Queues,” Communications of the
ACM, 21 (1978), 309–314.

www.manaraa.com

This page intentionally left blank

www.manaraa.com

C H A P T E R 12

Advanced Data Structures
and Implementation

In this chapter, we discuss six data structures with an emphasis on practicality. We begin by
examining alternatives to the AVL tree discussed in Chapter 4. These include an optimized
version of the splay tree, the red-black tree, and the treap. We also examine the suffix tree,
which allows searching for a pattern in a large text.

We then examine a data structure that can be used for multidimensional data. In this
case, each item may have several keys. The k-d tree allows searching relative to any key.

Finally, we examine the pairing heap, which seems to be the most practical alternative
to the Fibonacci heap.

Recurring themes include

� Nonrecursive, top-down (instead of bottom-up) search tree implementations when
appropriate.

� Detailed, optimized implementations that make use of, among other things, sentinel
nodes.

12.1 Top-Down Splay Trees
In Chapter 4, we discussed the basic splay tree operation. When an item X is inserted as a
leaf, a series of tree rotations, known as a splay, makes X the new root of the tree. A splay
is also performed during searches, and if an item is not found, a splay is performed on the
last node on the access path. In Chapter 11, we showed that the amortized cost of a splay
tree operation is O(log N).

A direct implementation of this strategy requires a traversal from the root down the
tree, and then a bottom-up traversal to implement the splaying step. This can be done
either by maintaining parent links, or by storing the access path on a stack. Unfortunately,
both methods require a substantial amount of overhead, and both must handle many spe-
cial cases. In this section, we show how to perform rotations on the initial access path. The
result is a procedure that is faster in practice, uses only O(1) extra space, but retains the
O(log N) amortized time bound.

Figure 12.1 shows the rotations for the zig, zig-zig, and zig-zag cases. (As is customary,
three symmetric rotations are omitted.) At any point in the access, we have a current node 541

www.manaraa.com

542 Chapter 12 Advanced Data Structures and Implementation

L R L R

B

BA

A

Y A
Y

X

X

R

CA

X

L R L

C

B

Y

Z

A
ZX

R

B C

Y

X

B

L R L

C

A

Y

Z

B
ZX

Y

Figure 12.1 Top-down splay rotations: zig, zig-zig, and zig-zag

X that is the root of its subtree; this is represented in our diagrams as the “middle” tree.1

Tree L stores nodes in the tree T that are less than X, but not in X’s subtree; similarly tree
R stores nodes in the tree T that are larger than X, but not in X’s subtree. Initially, X is the
root of T, and L and R are empty.

If the rotation should be a zig, then the tree rooted at Y becomes the new root of the
middle tree. X and subtree B are attached as a left child of the smallest item in R; X’s left
child is logically made null.2 As a result, X is the new smallest item in R. Note carefully
that Y does not have to be a leaf for the zig case to apply. If we are searching for an item
that is smaller than Y, and Y has no left child (but does have a right child), then the zig
case will apply.

For the zig-zig case, we have a similar dissection. The crucial point is that a rotation
between X and Y is performed. The zig-zag case brings the bottom node Z to the top in the
middle tree and attaches subtrees X and Y to R and L, respectively. Note that Y is attached
to, and then becomes, the largest item in L.

The zig-zag step can be simplified somewhat because no rotations are performed.
Instead of making Z the root of the middle tree, we make Y the root. This is shown in
Figure 12.2. This simplifies the coding because the action for the zig-zag case becomes

1 For simplicity we don’t distinguish between a “node” and the item in the node.
2 In the code, the smallest node in R does not have a null left link because there is no need for it. This means

that printTree(r) will include some items that logically are not in R.

www.manaraa.com

12.1 Top-Down Splay Trees 543

L R

C A B

Y

Z

A B

Y

Z

X
L R

C

X

Figure 12.2 Simplified top-down zig-zag

L R

BA

X

L R

A B

X

Figure 12.3 Final arrangement for top-down splaying

identical to the zig case. This would seem advantageous because testing for a host of cases
is time-consuming. The disadvantage is that by descending only one level, we have more
iterations in the splaying procedure.

Once we have performed the final splaying step, Figure 12.3 shows how L, R, and the
middle tree are arranged to form a single tree. Note carefully that the result is different from
bottom-up splaying. The crucial fact is that the O(log N) amortized bound is preserved
(Exercise 12.1).

An example of the top-down splaying algorithm is shown in Figure 12.4. We attempt
to access 19 in the tree. The first step is a zig-zag. In accordance with (a symmetric version
of) Figure 12.2, we bring the subtree rooted at 25 to the root of the middle tree and attach
12 and its left subtree to L.

Next we have a zig-zig: 15 is elevated to the root of the middle tree, and a rotation
between 20 and 25 is performed, with the resulting subtree being attached to R. The search
for 19 then results in a terminal zig. The middle tree’s new root is 18, and 15 and its left
subtree are attached as a right child of L’s largest node. The reassembly, in accordance with
Figure 12.3, terminates the splay step.

We will use a header with left and right links to eventually reference the roots of the
left and right trees. Since these trees are initially empty, a header is used to correspond to
the min or max node of the right or left tree, respectively, in this initial state. This way the
code can avoid checking for empty trees. The first time the left tree becomes nonempty,
the right link will get initialized and will not change in the future; thus it will contain the
root of the left tree at the end of the top-down search. Similarly, the left link will eventually
contain the root of the right tree.

The SplayTree class, whose skeleton is shown in Figure 12.5, includes a constructor
that is used to allocate the nullNode sentinel. We use the sentinel nullNode to represent
logically a null reference. We will repeatedly use this technique to simplify the code (and
consequently make the code somewhat faster). Figure 12.6 (shown on page 546) gives the

www.manaraa.com

544 Chapter 12 Advanced Data Structures and Implementation

Empty Empty

Empty

simplified zig-zag

zig-zig

zig

reassemble

5 25

3020

2415

1813

16

25

3020

2415

1813

15

18

15

18

18

13

16

16

16

20

25

24 30

12

5

12

5

12

5

12 20

25

2413

155

12

13 16

30

20

25

24 30

Figure 12.4 Steps in top-down splay (access 19 in top tree)

www.manaraa.com

12.1 Top-Down Splay Trees 545

1 public class SplayTree<AnyType extends Comparable<? super AnyType>>
2 {
3 public SplayTree()
4 {
5 nullNode = new BinaryNode<>(null);
6 nullNode.left = nullNode.right = nullNode;
7 root = nullNode;
8 }
9

10 private BinaryNode<AnyType> splay(AnyType x, BinaryNode<AnyType> t)
11 { /* Figure 12.6 */ }
12 public void insert(AnyType x)
13 { /* Figure 12.7 */ }
14 public void remove(AnyType x)
15 { /* Figure 12.8 */ }
16
17 public AnyType findMin()
18 { /* See online code */ }
19 public AnyType findMax()
20 { /* See online code */ }
21 public boolean contains(AnyType x)
22 { /* See online code */ }
23 public void makeEmpty()
24 { root = nullNode; }
25 public boolean isEmpty()
26 { return root == nullNode; }
27
28 // Basic node stored in unbalanced binary search trees
29 private static class BinaryNode<AnyType>
30 { /* Same as in Figure 4.16 */ }
31
32 private BinaryNode<AnyType> root;
33 private BinaryNode<AnyType> nullNode;
34 private BinaryNode<AnyType> header = new BinaryNode<>(null); // For splay
35 private BinaryNode<AnyType> newNode = null; // Used between different inserts
36
37 private BinaryNode<AnyType> rotateWithLeftChild(BinaryNode<AnyType> k2)
38 { /* See online code */ }
39 private BinaryNode<AnyType> rotateWithRightChild(BinaryNode<AnyType> k1)
40 { /* See online code */ }
41 }

Figure 12.5 Splay trees: class skeleton

www.manaraa.com

1 /**
2 * Internal method to perform a top-down splay.
3 * The last accessed node becomes the new root.
4 * @param x the target item to splay around.
5 * @param t the root of the subtree to splay.
6 * @return the subtree after the splay.
7 */
8 private BinaryNode<AnyType> splay(AnyType x, BinaryNode<AnyType> t)
9 {

10 BinaryNode<AnyType> leftTreeMax, rightTreeMin;
11
12 header.left = header.right = nullNode;
13 leftTreeMax = rightTreeMin = header;
14
15 nullNode.element = x; // Guarantee a match
16
17 for(; ;)
18 if(x.compareTo(t.element) < 0)
19 {
20 if(x.compareTo(t.left.element) < 0)
21 t = rotateWithLeftChild(t);
22 if(t.left == nullNode)
23 break;
24 // Link Right
25 rightTreeMin.left = t;
26 rightTreeMin = t;
27 t = t.left;
28 }
29 else if(x.compareTo(t.element) > 0)
30 {
31 if(x.compareTo(t.right.element) > 0)
32 t = rotateWithRightChild(t);
33 if(t.right == nullNode)
34 break;
35 // Link Left
36 leftTreeMax.right = t;
37 leftTreeMax = t;
38 t = t.right;
39 }
40 else
41 break;
42
43 leftTreeMax.right = t.left;
44 rightTreeMin.left = t.right;
45 t.left = header.right;
46 t.right = header.left;
47 return t;
48 }

Figure 12.6 Top-down splaying method

www.manaraa.com

12.1 Top-Down Splay Trees 547

1 /**
2 * Insert into the tree.
3 * @param x the item to insert.
4 */
5 public void insert(AnyType x)
6 {
7 if(newNode == null)
8 newNode = new BinaryNode<>(null);
9 newNode.element = x;

10
11 if(root == nullNode)
12 {
13 newNode.left = newNode.right = nullNode;
14 root = newNode;
15 }
16 else
17 {
18 root = splay(x, root);
19 if(x.compareTo(root.element) < 0)
20 {
21 newNode.left = root.left;
22 newNode.right = root;
23 root.left = nullNode;
24 root = newNode;
25 }
26 else
27 if(x.compareTo(root.element) > 0)
28 {
29 newNode.right = root.right;
30 newNode.left = root;
31 root.right = nullNode;
32 root = newNode;
33 }
34 else
35 return; // No duplicates
36 }
37 newNode = null; // So next insert will call new
38 }

Figure 12.7 Top-down splay tree insert

code for the splaying procedure. The header node allows us to be certain that we can attach
X to the largest node in R without having to worry that R might be empty (and similarly
for the symmetric case dealing with L).

www.manaraa.com

548 Chapter 12 Advanced Data Structures and Implementation

As we mentioned above, before the reassembly at the end of the splay, header.left and
header.right reference the roots of R and L, respectively (this is not a typo—follow the
links). Except for this detail, the code is relatively straightforward.

Figure 12.7 shows the method to insert an item into a tree. A new node is allocated
(if necessary), and if the tree is empty, a one-node tree is created. Otherwise we splay
root around the inserted value x. If the data in the new root is equal to x, we have a
duplicate; instead of reinserting x, we preserve newNode for a future insertion and return
immediately. If the new root contains a value larger than x, then the new root and its right
subtree become a right subtree of newNode, and root’s left subtree becomes the left subtree
of newNode. Similar logic applies if root’s new root contains a value smaller than x. In either
case, newNode becomes the new root.

In Chapter 4, we showed that deletion in splay trees is easy, because a splay will
place the target of the deletion at the root. We close by showing the deletion routine in
Figure 12.8. It is indeed rare that a deletion procedure is shorter than the corresponding
insertion procedure.

1 /**
2 * Remove from the tree.
3 * @param x the item to remove.
4 */
5 public void remove(AnyType x)
6 {
7 BinaryNode<AnyType> newTree;
8
9 // If x is found, it will be at the root

10 root = splay(x, root);
11 if(root.element.compareTo(x) != 0)
12 return; // Item not found; do nothing
13
14 if(root.left == nullNode)
15 newTree = root.right;
16 else
17 {
18 // Find the maximum in the left subtree
19 // Splay it to the root; and then attach right child
20 newTree = root.left;
21 newTree = splay(x, newTree);
22 newTree.right = root.right;
23 }
24 root = newTree;
25 }

Figure 12.8 Top-down deletion procedure

www.manaraa.com

12.2 Red-Black Trees 549

12.2 Red-Black Trees
A historically popular alternative to the AVL tree is the red-black tree. Operations on red-
black trees take O(log N) time in the worst case, and, as we will see, a careful nonrecursive
implementation (for insertion) can be done relatively effortlessly (compared with AVL trees).

A red-black tree is a binary search tree with the following coloring properties:

1. Every node is colored either red or black.

2. The root is black.

3. If a node is red, its children must be black.

4. Every path from a node to a null reference must contain the same number of black
nodes.

A consequence of the coloring rules is that the height of a red-black tree is at
most 2 log(N + 1). Consequently, searching is guaranteed to be a logarithmic operation.
Figure 12.9 shows a red-black tree. Red nodes are shown with double circles.

The difficulty, as usual, is inserting a new item into the tree. The new item, as usual,
is placed as a leaf in the tree. If we color this item black, then we are certain to violate
condition 4, because we will create a longer path of black nodes. Thus the item must be
colored red. If the parent is black, we are done. If the parent is already red, then we will
violate condition 3 by having consecutive red nodes. In this case, we have to adjust the
tree to ensure that condition 3 is enforced (without introducing a violation of condition 4).
The basic operations that are used to do this are color changes and tree rotations.

12.2.1 Bottom-Up Insertion
As we have already mentioned, if the parent of the newly inserted item is black, we are
done. Thus insertion of 25 into the tree in Figure 12.9 is trivial.

10 20

15 70

30

60 85

5 50

40 55

65 80 90

Figure 12.9 Example of a red-black tree (insertion sequence is: 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55)

www.manaraa.com

550 Chapter 12 Advanced Data Structures and Implementation

There are several cases (each with a mirror image symmetry) to consider if the parent
is red. First, suppose that the sibling of the parent is black (we adopt the convention that
null nodes are black). This would apply for an insertion of 3 or 8, but not for the insertion
of 99. Let X be the newly added leaf, P be its parent, S be the sibling of the parent (if it
exists), and G be the grandparent. Only X and P are red in this case; G is black, because
otherwise there would be two consecutive red nodes prior to the insertion, in violation of
red-black rules. Adopting the splay tree terminology, X, P, and G can form either a zig-zig
chain or a zig-zag chain (in either of two directions). Figure 12.10 shows how we can rotate
the tree for the case where P is a left child (note there is a symmetric case). Even though X
is a leaf, we have drawn a more general case that allows X to be in the middle of the tree.
We will use this more general rotation later.

The first case corresponds to a single rotation between P and G, and the second case
corresponds to a double rotation, first between X and P and then between X and G.
When we write the code, we have to keep track of the parent, the grandparent, and, for
reattachment purposes, the great-grandparent.

In both cases, the subtree’s new root is colored black, and so even if the original
great-grandparent was red, we removed the possibility of two consecutive red nodes.
Equally important, the number of black nodes on the paths into A, B, and C has remained
unchanged as a result of the rotations.

So far so good. But what happens if S is red, as is the case when we attempt to insert
79 in the tree in Figure 12.9? In that case, initially there is one black node on the path
from the subtree’s root to C. After the rotation, there must still be only one black node.
But in both cases, there are three nodes (the new root, G, and S) on the path to C. Since
only one may be black, and since we cannot have consecutive red nodes, it follows that
we’d have to color both S and the subtree’s new root red, and G (and our fourth node)
black. That’s great, but what happens if the great-grandparent is also red? In that case, we

C A

B B
A

A A B1 B2

C

P S

X

G

X

X G

P

S

C

B1 B2

P S

C

S

G X

P G

Figure 12.10 Zig rotation and zig-zag rotation work if S is black

www.manaraa.com

12.2 Red-Black Trees 551

could percolate this procedure up toward the root as is done for B-trees and binary heaps,
until we no longer have two consecutive red nodes, or we reach the root (which will be
recolored black).

12.2.2 Top-Down Red-Black Trees
Implementing the percolation would require maintaining the path using a stack or parent
links. We saw that splay trees are more efficient if we use a top-down procedure, and it
turns out that we can apply a top-down procedure to red-black trees that guarantees that
S won’t be red.

The procedure is conceptually easy. On the way down, when we see a node X that has
two red children, we make X red and the two children black. (If X is the root, after the color
flip it will be red but can be made black immediately to restore property 2.) Figure 12.11
shows this color flip. This will induce a red-black violation only if X’s parent P is also red.
But in that case, we can apply the appropriate rotations in Figure 12.10. What if X’s parent’s
sibling is red? This possibility has been removed by our actions on the way down, and so
X’s parent’s sibling can’t be red! Specifically, if on the way down the tree we see a node Y
that has two red children, we know that Y ’s grandchildren must be black, and that since Y ’s
children are made black too, even after the rotation that may occur, we won’t see another
red node for two levels. Thus when we see X, if X’s parent is red, it is not possible for X’s
parent’s sibling to be red also.

As an example, suppose we want to insert 45 into the tree in Figure 12.9. On the way
down the tree, we see node 50, which has two red children. Thus, we perform a color flip,
making 50 red, and 40 and 55 black. Now 50 and 60 are both red. We perform the single
rotation between 60 and 70, making 60 the black root of 30’s right subtree, and 70 and 50
both red. We then continue, performing an identical action if we see other nodes on the
path that contain two red children. When we get to the leaf, we insert 45 as a red node,
and since the parent is black, we are done. The resulting tree is shown in Figure 12.12.

As Figure 12.12 shows, the red-black tree that results is frequently very well balanced.
Experiments suggest that the average red-black tree is about as deep as an average AVL tree
and that, consequently, the searching times are typically near optimal. The advantage of
red-black trees is the relatively low overhead required to perform insertion, and the fact
that in practice rotations occur relatively infrequently.

An actual implementation is complicated not only by the host of possible rotations, but
also by the possibility that some subtrees (such as 10’s right subtree) might be empty, and
the special case of dealing with the root (which among other things, has no parent). Thus,
we use two sentinel nodes: one for the root, and nullNode, which indicates a null reference,

c1 c2 c1 c2

X X

Figure 12.11 Color flip: Only if X’s parent is red do we continue with a rotation

www.manaraa.com

552 Chapter 12 Advanced Data Structures and Implementation

10 20

15 60

30

50 70

5 40

45 80 90

55 65 85

Figure 12.12 Insertion of 45 into Figure 12.9

as it did for splay trees. The root sentinel will store the key −∞ and a right link to the
real root. Because of this, the searching and printing procedures need to be adjusted. The
recursive routines are trickiest. Figure 12.13 shows how the inorder traversal is rewritten.

Figure 12.14 shows the RedBlackTree skeleton (omitting the methods), along with the
constructors. Next, Figure 12.15 shows the routine to perform a single rotation. Because

1 /**
2 * Print the tree contents in sorted order.
3 */
4 public void printTree()
5 {
6 if(isEmpty())
7 System.out.println("Empty tree");
8 else
9 printTree(header.right);

10 }
11
12 /**
13 * Internal method to print a subtree in sorted order.
14 * @param t the node that roots the subtree.
15 */
16 private void printTree(RedBlackNode<AnyType> t)
17 {
18 if(t != nullNode)
19 {
20 printTree(t.left);
21 System.out.println(t.element);
22 printTree(t.right);
23 }
24 }

Figure 12.13 Inorder traversal for tree and two sentinels

www.manaraa.com

12.2 Red-Black Trees 553

1 public class RedBlackTree<AnyType extends Comparable<? super AnyType>>
2 {
3 /**
4 * Construct the tree.
5 */
6 public RedBlackTree()
7 {
8 nullNode = new RedBlackNode<>(null);
9 nullNode.left = nullNode.right = nullNode;

10 header = new RedBlackNode<>(null);
11 header.left = header.right = nullNode;
12 }
13
14 private static class RedBlackNode<AnyType>
15 {
16 // Constructors
17 RedBlackNode(AnyType theElement)
18 { this(theElement, null, null); }
19
20 RedBlackNode(AnyType theElement, RedBlackNode<AnyType> lt, RedBlackNode<AnyType> rt)
21 { element = theElement; left = lt; right = rt; color = RedBlackTree.BLACK; }
22
23 AnyType element; // The data in the node
24 RedBlackNode<AnyType> left; // Left child
25 RedBlackNode<AnyType> right; // Right child
26 int color; // Color
27 }
28
29 private RedBlackNode<AnyType> header;
30 private RedBlackNode<AnyType> nullNode;
31
32 private static final int BLACK = 1; // BLACK must be 1
33 private static final int RED = 0;
34 }

Figure 12.14 Class skeleton and initialization routines

the resultant tree must be attached to a parent, rotate takes the parent node as a parameter.
Rather than keeping track of the type of rotation as we descend the tree, we pass item as a
parameter. Since we expect very few rotations during the insertion procedure, it turns out
that it is not only simpler, but actually faster, to do it this way. rotate simply returns the
result of performing an appropriate single rotation.

Finally, we provide the insertion procedure in Figure 12.16. The routine handleReorient
is called when we encounter a node with two red children, and also when we insert a leaf.

www.manaraa.com

554 Chapter 12 Advanced Data Structures and Implementation

1 /**
2 * Internal routine that performs a single or double rotation.
3 * Because the result is attached to the parent, there are four cases.
4 * Called by handleReorient.
5 * @param item the item in handleReorient.
6 * @param parent the parent of the root of the rotated subtree.
7 * @return the root of the rotated subtree.
8 */
9 private RedBlackNode<AnyType> rotate(AnyType item, RedBlackNode<AnyType> parent)

10 {
11 if(compare(item, parent) < 0)
12 return parent.left = compare(item, parent.left) < 0 ?
13 rotateWithLeftChild(parent.left) : // LL
14 rotateWithRightChild(parent.left) ; // LR
15 else
16 return parent.right = compare(item, parent.right) < 0 ?
17 rotateWithLeftChild(parent.right) : // RL
18 rotateWithRightChild(parent.right); // RR
19 }
20
21 /**
22 * Compare item and t.element, using compareTo, with
23 * caveat that if t is header, then item is always larger.
24 * This routine is called if it is possible that t is header.
25 * If it is not possible for t to be header, use compareTo directly.
26 */
27 private final int compare(AnyType item, RedBlackNode<AnyType> t)
28 {
29 if(t == header)
30 return 1;
31 else
32 return item.compareTo(t.element);
33 }

Figure 12.15 rotate method

The most tricky part is the observation that a double rotation is really two single rotations,
and is done only when branching to X (represented in the insert method by current) takes
opposite directions. As we mentioned in the earlier discussion, insert must keep track of
the parent, grandparent, and great-grandparent as the tree is descended. Since these are
shared with handleReorient, we make these class members. Note that after a rotation, the
values stored in the grandparent and great-grandparent are no longer correct. However, we
are assured that they will be restored by the time they are next needed.

www.manaraa.com

12.2 Red-Black Trees 555

1 // Used in insert routine and its helpers
2 private RedBlackNode<AnyType> current;
3 private RedBlackNode<AnyType> parent;
4 private RedBlackNode<AnyType> grand;
5 private RedBlackNode<AnyType> great;
6
7 /**
8 * Internal routine that is called during an insertion
9 * if a node has two red children. Performs flip and rotations.

10 * @param item the item being inserted.
11 */
12 private void handleReorient(AnyType item)
13 {
14 // Do the color flip
15 current.color = RED;
16 current.left.color = BLACK;
17 current.right.color = BLACK;
18
19 if(parent.color == RED) // Have to rotate
20 {
21 grand.color = RED;
22 if((compare(item, grand) < 0) !=
23 (compare(item, parent) < 0))
24 parent = rotate(item, grand); // Start dbl rotate
25 current = rotate(item, great);
26 current.color = BLACK;
27 }
28 header.right.color = BLACK; // Make root black
29 }
30
31 /**
32 * Insert into the tree.
33 * @param item the item to insert.
34 */
35 public void insert(AnyType item)
36 {
37 current = parent = grand = header;
38 nullNode.element = item;
39
40 while(compare(item, current) != 0)
41 {
42 great = grand; grand = parent; parent = current;
43 current = compare(item, current) < 0 ? current.left : current.right;
44

Figure 12.16 Insertion procedure

www.manaraa.com

556 Chapter 12 Advanced Data Structures and Implementation

45 // Check if two red children; fix if so
46 if(current.left.color == RED && current.right.color == RED)
47 handleReorient(item);
48 }
49
50 // Insertion fails if already present
51 if(current != nullNode)
52 return;
53 current = new RedBlackNode<>(item, nullNode, nullNode);
54
55 // Attach to parent
56 if(compare(item, parent) < 0)
57 parent.left = current;
58 else
59 parent.right = current;
60 handleReorient(item);
61 }

Figure 12.16 (continued)

12.2.3 Top-Down Deletion
Deletion in red-black trees can also be performed top-down. Everything boils down to
being able to delete a leaf. This is because to delete a node that has two children, we
replace it with the smallest node in the right subtree; that node, which must have at most
one child, is then deleted. Nodes with only a right child can be deleted in the same manner,
while nodes with only a left child can be deleted by replacement with the largest node in
the left subtree, and subsequent deletion of that node. Note that for red-black trees, we
don’t want to use the strategy of bypassing for the case of a node with one child because
that may connect two red nodes in the middle of the tree, making enforcement of the
red-black condition difficult.

Deletion of a red leaf is, of course, trivial. If a leaf is black, however, the deletion is
more complicated because removal of a black node will violate condition 4. The solution
is to ensure during the top-down pass that the leaf is red.

Throughout this discussion, let X be the current node, T be its sibling, and P be their
parent. We begin by coloring the root sentinel red. As we traverse down the tree, we
attempt to ensure that X is red. When we arrive at a new node, we are certain that P is
red (inductively, by the invariant we are trying to maintain), and that X and T are black
(because we can’t have two consecutive red nodes). There are two main cases.

First, suppose X has two black children. Then there are three subcases, which are
shown in Figure 12.17. If T also has two black children, we can flip the colors of X, T,
and P to maintain the invariant. Otherwise, one of T’s children is red. Depending on which

www.manaraa.com

12.2 Red-Black Trees 557

X T

P

X T

P

X T

P

R

P

A

A
R1 R2

C2

T

R

C2R2R1
X

X T

P

R

P

A

A
R1 R2

C1

R

T

R2R1C1
X

Figure 12.17 Three cases when X is a left child and has two black children

one it is,3 we can apply the rotation shown in the second and third cases of Figure 12.17.
Note carefully that this case will apply for the leaf, because nullNode is considered to be
black.

Otherwise, one of X’s children is red. In this case, we fall through to the next level,
obtaining new X, T, and P. If we’re lucky, X will land on the red child, and we can continue
onward. If not, we know that T will be red, and X and P will be black. We can rotate T
and P, making X’s new parent red; X and its grandparent will, of course, be black. At this
point we can go back to the first main case.

3 If both children are red, we can apply either rotation. As usual, there are symmetric rotations for the case
when X is a right child that are not shown.

www.manaraa.com

558 Chapter 12 Advanced Data Structures and Implementation

12.3 Treaps
Our last type of binary search tree, known as the treap, is probably the simplest of all.
Like the skip list, it uses random numbers and gives O(log N) expected time behavior for
any input. Searching time is identical to an unbalanced binary search tree (and thus slower
than balanced search trees), while insertion time is only slightly slower than a recursive
unbalanced binary search tree implementation. Although deletion is much slower, it is still
O(log N) expected time.

The treap is so simple that we can describe it without a picture. Each node in the tree
stores an item, a left and right link, and a priority that is randomly assigned when the node
is created. A treap is a binary search tree with the property that the node priorities satisfy
heap order: Any node’s priority must be at least as large as its parent’s.

A collection of distinct items each of which has a distinct priority can only be repre-
sented by one treap. This is easily deduced by induction, since the node with the lowest
priority must be the root. Consequently, the tree is formed on the basis of the N! possi-
ble arrangements of priority instead of the N! item orderings. The node declarations are
straightforward, requiring only the addition of the priority field, as shown in Figure 12.18.
The sentinel nullNode will have priority of ∞. A single, shared, Random object generates
random priorities.

Insertion into the treap is simple: After an item is added as a leaf, we rotate it up
the treap until its priority satisfies heap order. It can be shown that the expected num-
ber of rotations is less than 2. After the item to be deleted has been found, it can be
deleted by increasing its priority to ∞ and rotating it down through the path of low-
priority children. Once it is a leaf, it can be removed. The routines in Figure 12.19 and
Figure 12.20 implement these strategies using recursion. A nonrecursive implementation
is left for the reader (Exercise 12.11). For deletion, note that when the node is logically a

1 private static class TreapNode<AnyType>
2 {
3 // Constructors
4 TreapNode(AnyType theElement)
5 { this(theElement, null, null); }
6 TreapNode(AnyType theElement, TreapNode<AnyType> lt, TreapNode<AnyType> rt)
7 { element = theElement; left = lt; right = rt; priority = randomObj.randomInt(); }
8
9 AnyType element; // The data in the node

10 TreapNode<AnyType> left; // Left child
11 TreapNode<AnyType> right; // Right child
12 int priority; // Priority
13
14 private static Random randomObj = new Random();
15 }

Figure 12.18 Node declaration for treaps

www.manaraa.com

12.3 Treaps 559

1 /**
2 * Internal method to insert into a subtree.
3 * @param x the item to insert.
4 * @param t the node that roots the subtree.
5 * @return the new root of the subtree.
6 */
7 private TreapNode<AnyType> insert(AnyType x, TreapNode<AnyType> t)
8 {
9 if(t == nullNode)

10 return new TreapNode<>(x, nullNode, nullNode);
11
12 int compareResult = x.compareTo(t.element);
13
14 if(compareResult < 0)
15 {
16 t.left = insert(x, t.left);
17 if(t.left.priority < t.priority)
18 t = rotateWithLeftChild(t);
19 }
20 else if(compareResult > 0)
21 {
22 t.right = insert(x, t.right);
23 if(t.right.priority < t.priority)
24 t = rotateWithRightChild(t);
25 }
26 // Otherwise, it’s a duplicate; do nothing
27
28 return t;
29 }

Figure 12.19 Treaps: insertion routine

leaf, it still has nullNode as both its left and right children. Consequently, it is rotated with
the right child. After the rotation, t is nullNode, and the left child stores the item that is to
be deleted. Thus we change t.left to reference the nullNode sentinel. Note also that our
implementation assumes that there are no duplicates; if this is not true, then the remove
could fail (why?).

The treap is particularly easy to implement because we never have to worry about
adjusting the priority field. One of the difficulties of the balanced tree approaches is that
it is difficult to track down errors that result from failing to update balance information in
the course of an operation. In terms of total lines for a reasonable insertion and deletion
package, the treap, especially a nonrecursive implementation, seems like the hands-down
winner.

www.manaraa.com

560 Chapter 12 Advanced Data Structures and Implementation

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the subtree.
5 * @return the new root of the subtree.
6 */
7 private TreapNode<AnyType> remove(AnyType x, TreapNode<AnyType> t)
8 {
9 if(t != nullNode)

10 {
11 int compareResult = x.compareTo(t.element);
12
13 if(compareResult < 0)
14 t.left = remove(x, t.left);
15 else if(compareResult > 0)
16 t.right = remove(x, t.right);
17 else
18 {
19 // Match found
20 if(t.left.priority < t.right.priority)
21 t = rotateWithLeftChild(t);
22 else
23 t = rotateWithRightChild(t);
24
25 if(t != nullNode) // Continue on down
26 t = remove(x, t);
27 else
28 t.left = nullNode; // At a leaf
29 }
30 }
31 return t;
32 }

Figure 12.20 Treaps: deletion procedure

12.4 Suffix Arrays and Suffix Trees
One of the most fundamental problems in data processing is to find the location of a pattern
P in a text T. For instance, we may be interested in answering questions such as

� Is there a substring of T matching P?
� How many times does P appear in T?
� Where are all occurrences of P in T?

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 561

Assuming that the size of P is less than T (and usually it is significantly less), then we would
reasonably expect that the time to solve this problem for a given P and T would be at least
linear in the length of T, and in fact there are several O(| T |) algorithms.

However, we are interested in a more common problem, in which T is fixed, and
queries with different P occur frequently. For instance, T could be a huge archive of email
messages, and we are interested in repeatedly searching the email messages for different
patterns. In this case, we are willing to preprocess T into a nice form that would make each
individual search much more efficient, taking time significantly less than linear in the size
of T—either logarithmic in the size of T, or even better, independent of T and dependent
only on the length of P.

One such data structure is the suffix array and suffix tree (that sounds like two data
structures, but as we will see, they are basically equivalent, and trade time for space).

12.4.1 Suffix Arrays
A suffix array for a text T is simply an array of all suffixes of T arranged in sorted order.
For instance, suppose our text string is banana. Then the suffix array for banana is shown in
Figure 12.21:

A suffix array that stores the suffixes explicitly would seem to require quadratic space,
since it stores one string of each length 1 to N (where N is the length of T). In Java, this is
not exactly true, since Java strings are implemented by maintaining an array of characters
and a starting and ending index. This means that when a String is created via a call to
substring, the same array of characters is shared, and the additional memory requirement
is only the starting and ending index for the new substring. Nonetheless, even this could
be considered to be too much space: The suffix array would be constructed for the text, not
the pattern, and the text could be huge. Thus it is common for a practical implementation
to store only the starting indices of the suffixes in the suffix array, instead of the entire
substring. Figure 12.22 shows the indices that would be stored.

The suffix array by itself is extremely powerful. For instance, if a pattern P occurs in
the text, then it must be a prefix of some suffix. A binary search of the suffix array would
be enough to determine if the pattern P is in the text: The binary search either lands on P,
or P would be between two values, one smaller than P and one larger than P. If P is a prefix
of some substring, it is a prefix of the larger value found at the end of the binary search.

0

1

2

3

4

5

a

ana

anana

banana

na

nana

Figure 12.21 Suffixes for “banana”

www.manaraa.com

562 Chapter 12 Advanced Data Structures and Implementation

0

1

2

3

4

5

Index Substring Being Represented

5 a

3 ana

1 anana

0 banana

4 na

2 nana

Figure 12.22 Suffix array that stores only Indices (full substrings shown for reference)

Immediately, this reduces the query time to O(| P | log | T |), where the log | T | is the
binary search, and the | P | is the cost of the comparison at each step.

We can also use the suffix array to find the number of occurrences of P: They will
be stored sequentially in the suffix array, thus two binary searches suffix to find a range of
suffixes that will be guaranteed to begin with P. One way to speed this search is to compute
the longest common prefix (LCP) for each consecutive pair of substrings; if this computation
is done as the suffix array is built, then each query to find the number of occurrences of P
can be sped up to O(| P | + log | T |) although this is not obvious. Figure 12.23 shows
the LCP computed for each substring, relative to the preceding substring.

The longest common prefix also provides information about the longest pattern that
occurs twice in the text: Look for the largest LCP value, and take that many characters of
the corresponding substring. In Figure 12.23, this is 3, and the longest repeated pattern is
ana.

Figure 12.24 shows simple code to compute the suffix array and longest common
prefix information for any string. Lines 28–30 compute the suffixes, and then the suffixes
are sorted at line 32. Lines 34–35 compute the suffixes’ starting indices, and lines 37–39
compute the longest common prefixes for adjacent entries by calling the computeLCP routine
written at lines 4–13.

The running time of the suffix array computation is dominated by the sorting
step, which uses O(N log N) comparisons. In many circumstances this can be rea-
sonably acceptable performance. For instance, a suffix array for a 3,000,000-character

0

1

2

3

4

5

Index LCP Substring Being Represented

5 - a

3 1 ana

1 3 anana

0 0 banana

4 0 na

2 2 nana

Figure 12.23 Suffix array for “banana”; includes longest common prefix (LCP)

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 563

1 /*
2 * Returns the LCP for any two strings
3 */
4 public static int computeLCP(String s1, String s2)
5 {
6 int i = 0;
7
8 while(i < s1.length() && i < s2.length()
9 && s1.charAt(i) == s2.charAt(i))

10 i++;
11
12 return i;
13 }
14
15 /*
16 * Fill in the suffix array and LCP information for String str
17 * @param str the input String
18 * @param SA existing array to place the suffix array
19 * @param LCP existing array to place the LCP information
20 */
21 public static void createSuffixArray(String str, int [] SA, int [] LCP)
22 {
23 if(SA.length != str.length() || LCP.length != str.length())
24 throw new IllegalArgumentException();
25
26 int N = str.length();
27
28 String [] suffixes = new String[N];
29 for(int i = 0; i < N; i++)
30 suffixes[i] = str.substring(i);
31
32 Arrays.sort(suffixes);
33
34 for(int i = 0; i < N; i++)
35 SA[i] = N - suffixes[i].length();
36
37 LCP[0] = 0;
38 for(int i = 1; i < N; i++)
39 LCP[i] = computeLCP(suffixes[i - 1], suffixes[i]);
40 }

Figure 12.24 Simple algorithm to create suffix array and LCP array

www.manaraa.com

564 Chapter 12 Advanced Data Structures and Implementation

English-language novel can be built in just a few seconds. However, the O(N log N) cost,
based on the number of comparisons, hides the fact that a String comparison between
s1 and s2 takes time that depends on LCP(s1, s2), So while it is true that almost all these
comparisons end quickly when run on the suffixes found in natural language processing,
the comparisons will be expensive in applications where there are many long common
substrings. One such example occurs in pattern searching of DNA, whose alphabet consists
of four characters (A, C, G, T) and whose strings can be huge. For instance, the DNA string
for a human chromosome 22 has roughly 35 million characters, with a maximum LCP
of approximately 200,000, and an average LCP of nearly 2,000. And even the HTML/Java
distribution for JDK 1.3 (much smaller than the current distribution) is nearly 70 million
characters, with a maximum LCP of roughly 37,000 and an average LCP of roughly 14,000.
In the degenerate case of a String that contains only one character, repeated N times, it is
easy to see that each comparison takes O(N) time, and the total cost is O(N2 log N).

In Section 12.4.3, we will show a linear-time algorithm to construct the suffix array.

12.4.2 Suffix Trees
Suffix arrays are easily searchable by binary search, but the binary search itself automat-
ically implies log T cost. What we would like to do is find a matching suffix even more
efficiently. One idea is to store the suffixes in a trie. A binary trie was seen in our discussion
of Huffman codes in Section 10.1.2.

The basic idea of the trie is to store the suffixes in a tree. At the root, instead of having
two branches, we would have one branch for each possible first character. Then at the next
level, we would have one branch for the next character, and so on. At each level we are
doing multiway branching, much like radix sort, and thus we can find a match in time that
would depend only on the length of the match.

In Figure 12.25, we see on the left a basic trie to store the suffixes of the string deed.
These suffixes are d, deed, ed, and eed. In this trie, internal branching nodes are drawn in
circles, and the suffixes that are reached are drawn in rectangles. Each branch is labeled
with the character that is chosen, but the branch prior to a completed suffix has no label.

This representation could waste significant space if there are many nodes that have only
one child. Thus in Figure 12.25, we see an equivalent representation on the right, known
as a compressed trie. Here, single-branch nodes are collapsed into a single node. Notice
that although the branches now have multicharacter labels, all the labels for the branches
of any given node must have unique first characters. Thus it is still just as easy as before
to choose which branch to take. Thus we can see that a search for a pattern P depends
only on the length of the pattern P, as desired. (We assume that the letters of the alphabet
are represented by numbers 1, 2, Then each node stores an array representing each
possible branch and we can locate the appropriate branch in constant time. The empty
edge label can be represented by 0.)

If the original string has length N, the total number of branches is less than 2N.
However, this by itself does not mean that the compressed trie uses linear space: The
labels on the edges take up space. The total length of all the labels on the compressed
trie in Figure 12.25 is exactly one less than the number of internal branching nodes in
the original trie in Figure 12.25. And of course writing all the suffixes in the leaves could

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 565

d d

d
d edeed

deed ed eed
d

d

d
ed

eed

deed

d

e e

e

e

e

→

Figure 12.25 Left: trie representing the suffixes for deed: {d, deed, ed, eed}; right:
compressed trie that collapses single-node branches

take quadratic space. So if the original used quadratic space, so does the compressed trie.
Fortunately, we can get by with linear space as follows:

1. In the leaves, we use the index where the suffix begins (as in the suffix array).

2. In the internal nodes, we store the number of common characters matched from the
root until the internal node; this number represents the letter depth.

Figure 12.26 shows how the compressed trie is stored for the suffixes of banana. The leaves
are simply the indices of the starting points for each suffix. The internal node with a letter
depth of 1 is representing the common string “a” in all nodes that are below it. The internal
node with a letter depth of 3 is representing the common string “ana” in all nodes that are
below it. And the internal node with a letter depth of 2 is representing the common string
“na” in all nodes that are below it. In fact, this analysis makes clear that a suffix tree is
equivalent to a suffix array plus an LCP array.

a

a

ana anana

na

na

na

na

na nana

banana
banana

0

1 2

4 2

1

0

3

35

→

Figure 12.26 Compressed trie representing the suffixes for banana: {a, ana, anana,
banana, na, nana}. Left: the explicit representation; right: the implicit representation that
stores only one integer (plus branches) per node

www.manaraa.com

566 Chapter 12 Advanced Data Structures and Implementation

If we have a suffix tree, we can compute the suffix array and the LCP array by per-
forming an inorder traversal of the tree (compare Figure 12.23 with the suffix tree in
Figure 12.26). At that time we can compute the LCP as follows: If the suffix node value
PLUS the letter depth of the parent is equal to N, then use the letter depth of the grand-
parent as the LCP; otherwise use the parent’s letter depth as the LCP. In Figure 12.26, if we
proceed inorder, we obtain for our suffixes and LCP values

Suffix = 5, with LCP = 0 (the grandparent) because 5 + 1 equals 6
Suffix = 3, with LCP = 1 (the grandparent) because 3 + 3 equals 6
Suffix = 1, with LCP = 3 (the parent) because 1 + 3 does not equal 6
Suffix = 0, with LCP = 0 (the parent) because 0 + 0 does not equal 6
Suffix = 4, with LCP = 0 (the grandparent) because 4 + 2 equals 6
Suffix = 2, with LCP = 2 (the parent) because 2 + 2 does not equal 6

This transformation can clearly be done in linear time.
The suffix array and LCP array also uniquely define the suffix tree. First, create a root

with letter depth 0. Then search the LCP array (ignoring position 0, for which LCP is not
really defined) for all occurrences of the minimum (which at this phase will be the zeros).
Once these minimums are found, they will partition the array (view the LCP as residing
between adjacent elements). For instance, in our example, there are two zeros in the LCP
array, which partitions the suffix array into three portions: one portion containing the
suffixes {5, 3, 1}, another portion containing the suffix {0}, and the third portion containing
the suffixes {4, 2}. The internal nodes for these portions can be built recursively, and then
the suffix leaves can be attached with an inorder traversal. Although it is not obvious, with
care the suffix tree can be generated in linear time from the suffix array and LCP array.

The suffix tree solves many problems efficiently, especially if we augment each internal
node to also maintain the number of suffixes stored below it. A small sampling of suffix
tree applications includes the following:

1. Find the longest repeated substring in T: Traverse the tree, finding the internal node with
the largest number letter depth; this represents the maximum LCP. The running time
is O(| T |). This generalizes to the longest substring repeated at least k times.

2. Find the longest common substring in two strings T1 and T2: Form a string T1#T2 where #
is a character that is not in either string. Then build a suffix tree for the resulting string
and find the deepest internal node that has at least one suffix that starts prior to the #,
and one that starts after the #. This can be done in time proportional to the total size
of the strings and generalizes to an O(k N) algorithm for k strings of total length N.

3. Find the number of occurrences of the pattern P: Assuming that the suffix tree is augmented
so that each leaf keeps track of the number of suffixes below it, simply follow the path
down the internal node; the first internal node that is a prefix of P provides the answer;
if there is no such node, the answer is either zero or one and is found by checking the
suffix at which the search terminates. This takes time proportional to the length of the
pattern P and is independent of the size of |T|.

4. Find the most common substring of a specified length L > 1: Return the internal node with
largest size amongst those with letter depth at least L. This takes time O(| T |).

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 567

12.4.3 Linear-Time Construction of Suffix Arrays
and Suffix Trees

In Section 12.4.1 we showed the simplest algorithm to construct a suffix array and an LCP
array, but this algorithm has O(N2 log N) worst-case running time for an N-character
string and can occur if the string has suffixes with long common prefixes. In this section
we describe an O(N) worst-case time algorithm to compute the suffix array. This algo-
rithm can also be enhanced to compute the LCP array in linear time, but there is also
a very simple linear-time algorithm to compute the LCP array from the suffix array (see
Exercise 12.9 and complete code in Figure 12.50). Either way, we can thus also build a
suffix tree in linear time.

This algorithm makes use of divide and conquer. The basic idea is as follows:

1. Choose a sample A of suffixes.

2. Sort the sample A by recursion.

3. Sort the remaining suffixes, B, by using the now-sorted sample of suffixes A.

4. Merge A and B.

To get an intuition of how step 3 might work, suppose the sample A of suffixes are all
suffixes that start at an odd index. Then the remaining suffixes B, are those suffixes that
start at an even index. So suppose we have computed the sorted set of suffixes A. To
compute the sorted set of suffixes B, we would in effect need to sort all the suffixes that
start at even indices. But these suffixes each consist of a single first character in an even
position, followed by a string that starts with the second character, which must be in an
odd position. Thus the string that starts in the second character is exactly a string that is
in A. So to sort all the suffixes B, we can do something similar to a radix sort: First sort
the strings in B starting from the second character. This should take linear time, since the
sorted order of A is already known. Then stably sort on the first character of the strings
in B. Thus B could be sorted in linear time, after A is sorted recursively. If A and B could
then be merged in linear time, we would have a linear-time algorithm. The algorithm we
present uses a different sampling step, that admits a simple linear-time merging step.

As we describe the algorithm, we will also show how it computes the suffix array for
the string ABRACADABRA. We adopt the following conventions:

S[i] represents the ith character of string S

S[i =>] represents the suffix of S starting at index i

<> represents an array

Step 1: Sort the characters in the string, assigning them numbers sequentially starting at 1.
Then use those numbers for the remainder of the algorithm. Note that the numbers that
are assigned depend on the text. So, if the text contains DNA characters A, C, G, and T
only, then there will be only four numbers. Then pad the array with three 0’s to avoid
boundary cases. If we assume that the alphabet is a fixed size, then the sort takes some
constant amount of time.

www.manaraa.com

568 Chapter 12 Advanced Data Structures and Implementation

Input String, S A B R A C A D A B R A

New Problem 1 2 5 1 3 1 4 1 2 5 1 0 0 0

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 12.27 Mapping of character in string to an array of integers

Example:
In our example, the mapping is A = 1, B = 2, C = 3, D = 4, and R = 5; the
transformation can be visualized in Figure 12.27.

Step 2: Divide the text into three groups:

S0 =< S[3i]S[3i + 1]S[3i + 2] for i = 0, 1, 2, . . . >

S1 =< S[3i + 1]S[3i + 2]S[3i + 3] for i = 0, 1, 2, . . . >

S2 =< S[3i + 2]S[3i + 3]S[3i + 4] for i = 0, 1, 2, . . . >

The idea is that each of S0, S1, S2 consists of roughly N/3 symbols, but the symbols are no
longer the original alphabet, but instead each new symbol is some group of three symbols
from the original alphabet. We will call these tri-characters. Most importantly, the suffixes
of S0, S1, and S2 combine to form the suffixes of S. Thus one idea would be to recursively
compute the suffixes of S0, S1, and S2 (which by definition implicitly represent sorted
strings) and then merge the results in linear time. However, since this would be three
recursive calls on problems 1/3 the original size, that would result in an O(N log N)
algorithm. So the idea is going to be to avoid one of the three recursive calls, by computing
two of the suffix groups recursively and using that information to compute the third suffix
group.

Example:
In our example, if we look at the original character set and use $ to represent the padded
character, we get

S0 = [ABR], [ACA], [DAB], [RA$]

S1 = [BRA], [CAD], [ABR], [A$$]

S2 = [RAC], [ADA], [BRA]

We can see that in S0, S1, and S2, each tri-character is now a trio of characters from the
original alphabet. Using that alphabet, S0 and S1 are arrays of length four and S2 is an
array of length three. S0, S1, and S2 thus have four, four, and three suffixes, respectively.
S0’s suffixes are [ABR][ACA][DAB][RA$], [ACA][DAB][RA$], [DAB][RA$], [RA$], which
clearly correspond to the suffixes ABRACADABRA, ACADABRA, DABRA, and RA in the
original string S. In the original string S these suffixes are located at indices 0, 3, 6, and 9,
respectively, so looking at all three of S0, S1, and S2, we can see that each Si represents the
suffixes that are located at indices i mod 3 in S.

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 569

Step 3: Concatenate S1 and S2 and recursively compute the suffix array. In order to compute
this suffix array, we will need to sort the new alphabet of tri-characters. This can be done
in linear time by three passes of radix sort, since the old characters were already sorted in
step 1. If in fact all the tri-characters in the new alphabet are unique, then we do not even
need to bother with a recursive call. Making three passes of radix sort takes linear time. If
T(N) is the running time of the suffix array construction algorithm, then the recursive call
takes T(2N/3) time.

Example:
In our example

S1S2 = [BRA], [CAD], [ABR], [A$$], [RAC], [ADA], [BRA]

The sorted suffixes that will be computed recursively will represent tri-character strings as
shown in Figure 12.28.

Notice that these are not exactly the same as the corresponding suffixes in S; however, if
we strip out characters starting at the first $, we do have a match of suffixes. Also note that
the indices returned by the recursive call do not correspond directly to the indices in S,
though it is a simple matter to map them back. So to see how the algorithm actually forms
the recursive call, observe that three passes of radix sort will assign the following alphabet:
[A$$] = 1, [ABR] = 2, [ADA] = 3, [BRA] = 4, [CAD] = 5, [RAC] = 6. Figure 12.29 shows
the mapping of tri-characters, the resulting array that is formed for S1, S2, and the resulting
suffix array that is computed recursively.

Step 4: Compute the suffix array for S0. This is easy to do because

S0[i =>] = S[3i =>]

= S[3i] S[3i + 1 =>]

= S[3i]S1[i =>]

= S0[i]S1[i =>]

Since our recursive call has already sorted all S1[i =>], we can do step 4 with a simple
two-pass radix sort: The first pass is on S1[i =>], and the second pass is on S0[i].

0

1

2

3

4

5

6

Index Substring Being Represented

3 [A$$] [RAC] [ADA] [BRA]

2 [ABR] [A$$] [RAC] [ADA] [BRA]

5 [ADA] [BRA]

6 [BRA]

0 [BRA] [CAD] [ABR] [A$$] [RAC] [ADA] [BRA]

1 [CAD] [ABR] [A$$] [RAC] [ADA] [BRA]

4 [RAC] [ADA] [BRA]

Figure 12.28 Suffix array for S1 S2 in tri-character set

www.manaraa.com

570 Chapter 12 Advanced Data Structures and Implementation

S1S2 [BRA] [CAD] [ABR] [A$$] [RAC] [ADA] [BRA]

Integers 4 5 2 1 6 3 4 0 0 0

SA[S1S2] 3 2 5 6 0 1 4 0 0 0

Index 0 1 2 3 4 5 6 7 8 9

Figure 12.29 Mapping of tri-characters, the resulting array that is formed for S1, S2, and
the resulting suffix array that is computed recursively

Example:
In our example

S0 = [ABR], [ACA], [DAB], [RA$]

From the recursive call in step 3, we can rank the suffixes in S1 and S2. Figure 12.30,
how the indices in the original string can be referenced from the recursively computed
suffix array and shows how the suffix array from Figure 12.29 leads to a ranking of suffixes
among S1 + S2. Entries in the next to last row are easily obtained from the prior two rows.
In the last row, the ith entry is given by the location of i in the row labelled SA[S1, S2].

The ranking established in S1 can be used directly for the first radix sort pass on S0. Then
we do a second pass on the single characters from S, using the prior radix sort to break ties.
Notice that it is convenient if S1 has exactly as many elements as S0. Figure 12.31 shows
how we can compute the suffix array for S0.

At this point, we now have the suffix array for S0 and for the combined group S1 and S2.
Since this is a two-pass radix sort, this step takes O(N).

Step 5: Merge the two suffix arrays using the standard algorithm to merge two sorted lists.
The only issue is that we must be able to compare each suffix pair in constant time. There
are two cases.

Case 1: Comparing an S0 element with an S1 element: Compare the first letter; if they
do not match, we are done; otherwise, compare the remainder of S0 (which is an S1

suffix) with the remainder of S1 (which is an S2 suffix); those are already ordered, so
we are done.

Case 2: Comparing an S0 element with an S2 element: Compare at most the first two
letters; if we still have a match, then at that point compare the remainder of S0 (which

S1 S2

[BRA] [CAD] [ABR] [A$$] [RAC] [ADA] [BRA]

Index in S 1 4 7 10 2 5 8

SA[S1S2] 3 2 5 6 0 1 4

SA using S’s indices 10 7 5 8 1 4 2

Rank in group 5 6 2 1 7 3 4

Figure 12.30 Ranking of suffixes based on suffix array shown in Figure 12.29

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 571

S0

[ABR] [ACA] [DAB] [RA$]

Index 0 3 6 9

Index of second element 1 4 7 10

Radix Pass 1 ordering 5 6 2 1

Radix Pass 2 ordering 1 2 3 4

Rank in group 1 2 3 4

SA, using S’s indices 0 3 6 9

add one to above

last line of Figure 12.30

stably radix sort by first char

using results of previous line

using results of previous line

Figure 12.31 Computing suffix array for S0

after skipping the two letters becomes an S2 suffix) with the remainder of S2 (which
after skipping two letters becomes an S1 suffix); as in case 1, those suffixes are already
ordered by SA12 so we are done.

Example:
In our example, we have to merge

A A D R

SA for S0 0 3 6 9
↑

with

A A A B B C R

SA for S1 and S2 10 7 5 8 1 4 2
↑

The first comparison is between index 0 (an A), which is an S0 element and index 10 (also
an A) which is an S1 element. Since that is a tie, we now have to compare index 1 with
index 11. Normally this would have already been computed, since index 1 is S1, while
index 11 is in S2. However, this is special because index 11 is past the end of the string;
consequently it always represents the earlier suffix lexicographically, and the first element
in the final suffix array is 10. We advance in the second group and now we have.

A A D R

SA for S0 0 3 6 9
↑
A A A B B C R

SA for S1 and S2 10 7 5 8 1 4 2
↑

Final SA 10
Input S A B R A C A D A B R A

Index 0 1 2 3 4 5 6 7 8 9 10

www.manaraa.com

572 Chapter 12 Advanced Data Structures and Implementation

Again the first characters match, so we compare indices 1 and 8, and this is already com-
puted, with index 8 having the smaller string. So that means that now 7 goes into the final
suffix array, and we advance the second group, obtaining

A A D R

SA for S0 0 3 6 9
↑

A A A B B C R

SA for S1 and S2 10 7 5 8 1 4 2
↑

Final SA 10 7
Input S A B R A C A D A B R A

Index 0 1 2 3 4 5 6 7 8 9 10

Once again, the first characters match, so now we have to compare indices 1 and 6. Since
this is a comparison between an S1 element and an S0 element, we cannot look up the
result. Thus we have to compare characters directly. Index 1 contains a B and index 6
contains a D, so index 1 wins. Thus 0 goes into the final suffix array and we advance the
first group.

A A D R

SA for S0 0 3 6 9
↑

A A A B B C R

SA for S1 and S2 10 7 5 8 1 4 2
↑

Final SA 10 7 0
Input S A B R A C A D A B R A

Index 0 1 2 3 4 5 6 7 8 9 10

The same situation occurs on the next comparison between a pair of A’s; the second com-
parison is between index 4 (a C) and index 6 (a D), so the element from the first group
advances.

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 573

A A D R

SA for S0 0 3 6 9
↑

A A A B B C R

SA for S1 and S2 10 7 5 8 1 4 2
↑

Final SA 10 7 0 3
Input S A B R A C A D A B R A

Index 0 1 2 3 4 5 6 7 8 9 10

At this point, there are no ties for a while, so we quickly advance to the last characters of
each group:

A A D R

SA for S0 0 3 6 9
↑

A A A B B C R

SA for S1 and S2 10 7 5 8 1 4 2
↑

Final SA 10 7 0 3 5 8 1 4 6
Input S A B R A C A D A B R A

Index 0 1 2 3 4 5 6 7 8 9 10

Finally, we get to the end. The comparison between two R’s requires that we compare the
next characters, which are at indices 10 and 3. Since this comparison is between an S1

element and an S0 element, as we saw before, we cannot look up the result and must
compare directly. But those are also the same, so now we have to compare indices 11 and
4, which is an automatic winner for index 11 (since it is past the end of the string). Thus
the R in index 9 advances, and then we can finish the merge. Notice that had we not been
at the end of the string, we could have used the fact that the comparison is between an S2

element and an S1 element, which means the ordering would have been obtainable from
the suffix array for S1 + S2.

www.manaraa.com

574 Chapter 12 Advanced Data Structures and Implementation

A A D R

SA for S0 0 3 6 9
↑

A A A B B C R

SA for S1 and S2 10 7 5 8 1 4 2
↑

Final SA 10 7 0 3 5 8 1 4 6 9 2
Input S A B R A C A D A B R A

Index 0 1 2 3 4 5 6 7 8 9 10

Since this is a standard merge, with at most two comparisons per suffix pair, this step takes
linear time. The entire algorithm thus satisfies T(N) = T(2N/3) + O(N) and takes linear
time. Although we have only computed the suffix array, the LCP information can also be

1 /*
2 * Fill in the suffix array and LCP information for String str
3 * @param str the input String
4 * @param sa existing array to place the suffix array
5 * @param LCP existing array to place the LCP information
6 */
7 public static void createSuffixArray(String str, int [] sa, int [] LCP)
8 {
9 if(sa.length != str.length() || LCP.length != str.length())

10 throw new IllegalArgumentException();
11
12 int N = str.length();
13
14 int [] s = new int[N + 3];
15 int [] SA = new int[N + 3];
16
17 for(int i = 0; i < N; i++)
18 s[i] = str.charAt(i);
19
20 makeSuffixArray(s, SA, N, 256);
21
22 for(int i = 0; i < N; i++)
23 sa[i] = SA[i];
24
25 makeLCPArray(s, sa, LCP); // Figure 12.50 and Exercise 12.9
26 }

Figure 12.32 Code to set up the first call to makeSuffixArray; create appropriate size
arrays, and to keep things simple; just use the 256 ASCII character codes

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 575

computed as the algorithm runs, but there are some tricky details that are involved, and
often the LCP information is computed by a separate linear-time algorithm.

We close by providing a working implementation to compute suffix arrays; rather than
fully implementing step 1 to sort the original characters, we’ll assume only a small set of
ASCII characters (residing in values 1–255) are present in the string. In Figure 12.32, we
allocate the arrays that have three extra slots for padding and call makeSuffixArray, which
is the basic linear-time algorithm.

Figure 12.33 shows makeSuffixArray. At lines 12–16, it allocates all the needed arrays
and makes sure that S0 and S1 have the same number of elements (lines 17–22); it then
delegates work to assignNames, computeSl2, computeS0, and merge.

1 // find the suffix array SA of s[0..n-1] in {1..K}ˆn
2 // require s[n] = s[n + 1] = s[n + 2] = 0, n >= 2
3 public static void makeSuffixArray(int [] s, int [] SA,
4 int n, int K)
5 {
6 int n0 = (n + 2) / 3;
7 int n1 = (n + 1) / 3;
8 int n2 = n / 3;
9 int t = n0 - n1; // 1 iff n%3 == 1

10 int n12 = n1 + n2 + t;
11
12 int [] s12 = new int[n12 + 3];
13 int [] SA12 = new int[n12 + 3];
14 int [] s0 = new int[n0];
15 int [] SA0 = new int[n0];
16
17 // generate positions in s for items in s12
18 // the "+t" adds a dummy S1 suffix if n%3 == 1
19 // at that point, the size of s12 is n12
20 for(int i = 0, j = 0; i < n + t; i++)
21 if(i % 3 != 0)
22 s12[j++] = i;
23
24 int K12 = assignNames(s, s12, SA12, n0, n12, K);
25
26 computeS12(s12, SA12, n12, K12);
27 computeS0(s, s0, SA0, SA12, n0, n12, K);
28 merge(s, s12, SA, SA0, SA12, n, n0, n12, t);
29 }

Figure 12.33 The main routine for linear-time suffix array construction

www.manaraa.com

576 Chapter 12 Advanced Data Structures and Implementation

1 // Assigns the new tri-character names.
2 // At end of routine, SA will have indices into s, in sorted order
3 // and s12 will have new character names
4 // Returns the number of names assigned; note that if
5 // this value is the same as n12, then SA is a suffix array for s12.
6 private static int assignNames(int [] s, int [] s12, int [] SA12,
7 int n0, int n12, int K)
8 {
9 // radix sort the new character trios

10 radixPass(s12 , SA12, s, 2, n12, K);
11 radixPass(SA12, s12 , s, 1, n12, K);
12 radixPass(s12 , SA12, s, 0, n12, K);
13
14 // find lexicographic names of triples
15 int name = 0;
16 int c0 = -1, c1 = -1, c2 = -1;
17
18 for(int i = 0; i < n12; i++)
19 {
20 if(s[SA12[i]] != c0 || s[SA12[i] + 1] != c1
21 || s[SA12[i] + 2] != c2)
22 {
23 name++;
24 c0 = s[SA12[i]];
25 c1 = s[SA12[i] + 1];
26 c2 = s[SA12[i] + 2];
27 }
28
29 if(SA12[i] % 3 == 1)
30 s12[SA12[i] / 3] = name; // S1
31 else
32 s12[SA12[i] / 3 + n0] = name; // S2
33 }
34
35 return name;
36 }

Figure 12.34 Routine to compute and assign the tri-character names

assignNames, shown in Figure 12.34, begins by performing three passes of radix sort.
Then, it assigns names (i.e., numbers), sequentially using the next available number if
the current item has a different trio of characters than the prior item (recall that the tri-
characters have already been sorted by the three passes of radix sort, and also recall that
S0 and S1 have the same size, so at line 32, adding n0 adds the number of elements in S1).
We can use the basic counting radix sort from Chapter 7 to obtain a linear-time sort. This

www.manaraa.com

12.4 Suffix Arrays and Suffix Trees 577

1 // stably sort in[0..n-1] with indices into s that has keys in 0..K
2 // into out[0..n-1]; sort is relative to offset into s
3 // uses counting radix sort
4 private static void radixPass(int [] in, int [] out, int [] s,
5 int offset, int n, int K)
6 {
7 int [] count = new int[K + 2];
8
9 for(int i = 0; i < n; i++)

10 count[s[in[i] + offset] + 1]++;
11
12 for(int i = 1; i <= K + 1; i++)
13 count[i] += count[i - 1];
14
15 for(int i = 0; i < n; i++)
16 out[count[s[in[i] + offset]]++] = in[i];
17 }
18
19 // stably sort in[0..n-1] with indices into s that has keys in 0..K
20 // into out[0..n-1]
21 // uses counting radix sort
22 private static void radixPass(int [] in, int [] out, int [] s,
23 int n, int K)
24 {
25 radixPass(in, out, s, 0, n, K);
26 }

Figure 12.35 A counting radix sort for the suffix array

code is shown in Figure 12.35. The array in represents the indexes into s; the result of the
radix sort is that the indices are sorted so that the characters in s are sorted at those indices
(where the indices are offset as specified).

Figure 12.36 contains the routines to compute the suffix arrays for s12, and then s0.
Finally, the merge routine is shown in Figure 12.37, with some supporting routines in

Figure 12.38. The merge routine has the same basic look and feel as the standard merging
algorithm seen in Figure 7.10.

www.manaraa.com

578 Chapter 12 Advanced Data Structures and Implementation

1 // Compute the suffix array for s12, placing result into SA12
2 private static void computeS12(int [] s12, int [] SA12,
3 int n12, int K12)
4 {
5 if(K12 == n12) // if unique names, don’t need recursion
6 for(int i = 0; i < n12; i++)
7 SA12[s12[i] - 1] = i;
8 else
9 {

10 makeSuffixArray(s12, SA12, n12, K12);
11 // store unique names in s12 using the suffix array
12 for(int i = 0; i < n12; i++)
13 s12[SA12[i]] = i + 1;
14 }
15 }
16
17 private static void computeS0(int [] s, int [] s0, int [] SA0,
18 int [] SA12, int n0, int n12, int K)
19 {
20 for(int i = 0, j = 0; i < n12; i++)
21 if(SA12[i] < n0)
22 s0[j++] = 3 * SA12[i];
23
24 radixPass(s0, SA0, s, n0, K);
25 }

Figure 12.36 Compute the suffix array for s12 (possibly recursively) and the suffix array
for s0

12.5 k-d Trees
Suppose that an advertising company maintains a database and needs to generate mailing
labels for certain constituencies. A typical request might require sending out a mailing
to people who are between the ages of 34 and 49 and whose annual income is between
$100,000 and $150,000. This problem is known as a two-dimensional range query. In one
dimension, the problem can be solved by a simple recursive algorithm in O(M + log N)
average time, by traversing a preconstructed binary search tree. Here M is the number of
matches reported by the query. We would like to obtain a similar bound for two or more
dimensions.

The two-dimensional search tree has the simple property that branching on odd levels
is done with respect to the first key, and branching on even levels is done with respect
to the second key. The root is arbitrarily chosen to be an odd level. Figure 12.39 shows
a 2-d tree. Insertion into a 2-d tree is a trivial extension of insertion into a binary search

www.manaraa.com

12.5 k-d Trees 579

1 // merge sorted SA0 suffixes and sorted SA12 suffixes
2 private static void merge(int [] s, int [] s12,
3 int [] SA, int [] SA0, int [] SA12,
4 int n, int n0, int n12, int t)
5 {
6 int p = 0, k = 0;
7
8 while(t != n12 && p != n0)
9 {

10 int i = getIndexIntoS(SA12, t, n0); // S12 index in s
11 int j = SA0[p]; // S0 index in s
12
13 if(suffix12IsSmaller(s, s12, SA12, n0, i, j, t))
14 {
15 SA[k++] = i;
16 t++;
17 }
18 else
19 {
20 SA[k++] = j;
21 p++;
22 }
23 }
24
25 while(p < n0)
26 SA[k++] = SA0[p++];
27 while(t < n12)
28 SA[k++] = getIndexIntoS(SA12, t++, n0);
29 }

Figure 12.37 Merge the suffix arrays SA0 and SA12

tree: As we go down the tree, we need to maintain the current level. To keep our code
simple, we assume that a basic item is an array of two elements. We then need to toggle
the level between 0 and 1. Figure 12.40 shows the code to perform an insertion. We use
recursion in this section; a nonrecursive implementation that would be used in practice is
straightforward and left as Exercise 12.17. One difficulty is duplicates, particularly since
several items can agree in one key. Our code allows duplicates and always places them in
right branches; clearly this can be a problem if there are too many duplicates.

A moment’s thought will convince you that a randomly constructed 2-d tree has the
same structural properties as a random binary search tree: The height is O(log N) on
average, but O(N) in the worst case.

Unlike binary search trees, for which clever O(log N) worst-case variants exist, there
are no schemes that are known to guarantee a balanced 2-d tree. The problem is that such a
scheme would likely be based on tree rotations, and tree rotations don’t work in 2-d trees.

www.manaraa.com

580 Chapter 12 Advanced Data Structures and Implementation

1 private static int getIndexIntoS(int [] SA12, int t, int n0)
2 {
3 if(SA12[t] < n0)
4 return SA12[t] * 3 + 1;
5 else
6 return (SA12[t] - n0) * 3 + 2;
7 }
8
9 // True if [a1 a2] <= [b1 b2]

10 private static boolean leq(int a1, int a2, int b1, int b2)
11 { return a1 < b1 || a1 == b1 && a2 <= b2; }
12
13 // True if [a1 a2 a3] <= [b1 b2 b3]
14 private static boolean leq(int a1, int a2, int a3, int b1, int b2, int b3)
15 { return a1 < b1 || a1 == b1 && leq(a2, a3, b2, b3); }
16
17 private static boolean suffix12IsSmaller(int [] s, int [] s12,
18 int [] SA12, int n0, int i, int j, int t)
19 {
20 if(SA12[t] < n0) // s1 vs s0; can break tie after 1 char
21 return leq(s[i], s12[SA12[t] + n0],
22 s[j], s12[j / 3]);
23 else // s2 vs s0; can break tie after 2 chars
24 return leq(s[i], s[i + 1], s12[SA12[t] - n0 + 1],
25 s[j], s[j + 1], s12[j / 3 + n0]);
26 }

Figure 12.38 Supporting routines for merging the suffix arrays SA0 and SA12

53, 14

27, 28 67, 51

30, 11

29, 16 40, 26 7, 39 32, 29 82, 64

73, 7515, 6138, 23

31, 85 70, 3 99, 90

Figure 12.39 Sample 2-d tree

www.manaraa.com

12.5 k-d Trees 581

1 public void insert(AnyType [] x)
2 {
3 root = insert(x, root, 0);
4 }
5
6 private KdNode<AnyType> insert(AnyType [] x, KdNode<AnyType> t, int level)
7 {
8 if(t == null)
9 t = new KdNode<>(x);

10 else if(x[level].compareTo(t.data[level]) < 0)
11 t.left = insert(x, t.left, 1 - level);
12 else
13 t.right = insert(x, t.right, 1 - level);
14 return t;
15 }

Figure 12.40 Insertion into 2-d trees

The best one can do is to periodically rebalance the tree by reconstructing a subtree, as
described in the exercises. Similarly, there are no deletion algorithms beyond the obvious
lazy deletion strategy. If all the items arrive before we need to process queries, then we can
construct a perfectly balanced 2-d tree in O(N log N) time; we leave this as Exercise 12.15c.

Several kinds of queries are possible on a 2-d tree. We can ask for an exact match, or
a match based on one of the two keys; the latter type of request is a partial match query.
Both of these are special cases of an (orthogonal) range query.

An orthogonal range query gives all items whose first key is between a specified set
of values and whose second key is between another specified set of values. This is exactly
the problem that was described in the introduction to this section. A range query is easily
solved by a recursive tree traversal, as shown in Figure 12.41. By testing before making a
recursive call, we can avoid unnecessarily visiting all nodes.

To find a specific item, we can set low equal to high equal to the item we are searching
for. To perform a partial match query, we set the range for the key not involved in the
match to −∞ to ∞. The other range is set with the low and high point equal to the value
of the key involved in the match.

An insertion or exact match search in a 2-d tree takes time that is proportional to the
depth of the tree, namely, O(log N) on average and O(N) in the worst case. The running
time of a range search depends on how balanced the tree is, whether or not a partial match
is requested, and how many items are actually found. We mention three results that have
been shown.

For a perfectly balanced tree, a range query could take O(M + √
N) time in the worst

case, to report M matches. At any node, we may have to visit two of the four grandchildren,
leading to the equation T(N) = 2T(N/4) + O(1). In practice, however, these searches tend
to be very efficient, and even the worst case is not poor because for typical N, the difference
between

√
N and log N is compensated by the smaller constant that is hidden in the Big-Oh

notation.

www.manaraa.com

582 Chapter 12 Advanced Data Structures and Implementation

1 /**
2 * Print items satisfying
3 * low[0] <= x[0] <= high[0] and
4 * low[1] <= x[1] <= high[1].
5 */
6 public void printRange(AnyType [] low, AnyType [] high)
7 {
8 printRange(low, high, root, 0);
9 }

10
11 private void printRange(AnyType [] low, AnyType [] high,
12 KdNode<AnyType> t, int level)
13 {
14 if(t != null)
15 {
16 if(low[0].compareTo(t.data[0]) <= 0 &&
17 low[1].compareTo(t.data[1]) <= 0 &&
18 high[0].compareTo(t.data[0]) >= 0 &&
19 high[1].compareTo(t.data[1]) >= 0)
20 System.out.println("(" + t.data[0] + ","
21 + t.data[1] + ")");
22
23 if(low[level].compareTo(t.data[level]) <= 0)
24 printRange(low, high, t.left, 1 - level);
25 if(high[level].compareTo(t.data[level]) >= 0)
26 printRange(low, high, t.right, 1 - level);
27 }
28 }

Figure 12.41 2-d trees: range search

For a randomly constructed tree, the average running time of a partial match query is
O(M + Nα), where α = (−3 + √

17)/2 (see below). A recent, and somewhat surprising,
result is that this essentially describes the average running time of a range search of a
random 2-d tree.

For k dimensions, the same algorithm works; we just cycle through the keys at each
level. However, in practice the balance starts getting worse because typically the effect of
duplicates and nonrandom inputs becomes more pronounced. We leave the coding details
as an exercise for the reader and mention the analytical results: For a perfectly balanced
tree, the worst-case running time of a range query is O(M + kN1−1/k). In a randomly
constructed k-d tree, a partial match query that involves p of the k keys takes O(M + Nα),
where α is the (only) positive root of

(2 + α)p(1 + α)k−p = 2k

www.manaraa.com

12.6 Pairing Heaps 583

Computation of α for various p and k is left as an exercise; the value for k = 2 and p = 1
is reflected in the result stated above for partial matching in random 2-d trees.

Although there are several exotic structures that support range searching, the k-d tree
is probably the simplest such structure that achieves respectable running times.

12.6 Pairing Heaps
The last data structure we examine is the pairing heap. The analysis of the pairing heap
is still open, but when decreaseKey operations are needed, it seems to outperform other
heap structures. The most likely reason for its efficiency is its simplicity. The pairing heap
is represented as a heap-ordered tree. Figure 12.42 shows a sample pairing heap.

The actual pairing heap implementation uses a left child, right sibling representation as
discussed in Chapter 4. The decreaseKey operation, as we will see, requires that each node
contain an additional link. A node that is a leftmost child contains a link to its parent;
otherwise the node is a right sibling and contains a link to its left sibling. We’ll refer to this
field as the prev field. Figure 12.43 shows the actual representation of the pairing heap in
Figure 12.42.

2

6 3 4 5 9 7

19171214151181310

16 18

Figure 12.42 Sample pairing heap: abstract representation

2

7954

8

36

10 13 11 15

16 18

14 12 17 19

Figure 12.43 Actual representation of previous pairing heap

www.manaraa.com

584 Chapter 12 Advanced Data Structures and Implementation

F S

A B
C

F

A
B

S
C

+

S

B
A

F
C

F S

F S

Figure 12.44 compareAndLink merges two subheaps

We begin by sketching the basic operations. To merge two pairing heaps, we make
the heap with the larger root a left child of the heap with the smaller root. Insertion is,
of course, a special case of merging. To perform a decreaseKey, we lower the value in the
requested node. Because we are not maintaining parent links for all nodes, we don’t know
if this violates the heap order. Thus we cut the adjusted node from its parent and complete
the decreaseKey by merging the two heaps that result. To perform a deleteMin, we remove
the root, creating a collection of heaps. If there are c children of the root, then c − 1 calls
to the merge procedure will reassemble the heap. The most important detail is the method
used to perform the merge and how the c − 1 merges are applied.

Figure 12.44 shows how two subheaps are combined. The procedure is generalized to
allow the second subheap to have siblings. As we mentioned earlier, the subheap with the
larger root is made a leftmost child of the other subheap. The code is straightforward and
shown in Figure 12.45. Notice that we have several instances in which a node reference
is tested against null before assigning its prev field; this suggests that perhaps it would
be useful to have a nullNode sentinel, which was customary in this chapter’s search tree
implementations.

decreaseKey requires a position object, which is just an interface that PairNode imple-
ments. Figure 12.46 shows the PairNode class and Position interface, which are both nested
in the PairingHeap class.

The insert and decreaseKey operations are, then, simple implementations of the
abstract description. Since the position of an item is determined (irrevocably) when an
item is first inserted, insert returns the PairNode it creates back to the caller. The code is
shown in Figure 12.47. Our routine for decreaseKey throws an exception if the new value
is not smaller than the old; otherwise, the resulting structure might not obey heap order.
The basic deleteMin procedure follows directly from the abstract description and is shown
in Figure 12.48. The element field is set to null, so if the Position is used in a decreaseKey,
it will be possible for decreaseKey to detect that the Position is no longer valid.

The devil, of course, is in the details: How is combineSiblings implemented? Several
variants have been proposed, but none has been shown to provide the same amortized

www.manaraa.com

12.6 Pairing Heaps 585

1 /**
2 * Internal method that is the basic operation to maintain order.
3 * Links first and second together to satisfy heap order.
4 * @param first root of tree 1, which may not be null.
5 * first.nextSibling MUST be null on entry.
6 * @param second root of tree 2, which may be null.
7 * @return result of the tree merge.
8 */
9 private PairNode<AnyType> compareAndLink(PairNode<AnyType> first,

10 PairNode<AnyType> second)
11 {
12 if(second == null)
13 return first;
14
15 if(second.element.compareTo(first.element) < 0)
16 {
17 // Attach first as leftmost child of second
18 second.prev = first.prev;
19 first.prev = second;
20 first.nextSibling = second.leftChild;
21 if(first.nextSibling != null)
22 first.nextSibling.prev = first;
23 second.leftChild = first;
24 return second;
25 }
26 else
27 {
28 // Attach second as leftmost child of first
29 second.prev = first;
30 first.nextSibling = second.nextSibling;
31 if(first.nextSibling != null)
32 first.nextSibling.prev = first;
33 second.nextSibling = first.leftChild;
34 if(second.nextSibling != null)
35 second.nextSibling.prev = second;
36 first.leftChild = second;
37 return first;
38 }
39 }

Figure 12.45 Pairing heaps: routine to merge two subheaps

www.manaraa.com

586 Chapter 12 Advanced Data Structures and Implementation

1 public class PairingHeap<AnyType extends Comparable<? super AnyType>>
2 {
3 /**
4 * The Position interface represents a type that can
5 * be used for the decreaseKey operation.
6 */
7 public interface Position<AnyType>
8 {
9 AnyType getValue();

10 }
11
12 private static class PairNode<AnyType> implements Position<AnyType>
13 {
14 public PairNode(AnyType theElement)
15 { element = theElement; leftChild = nextSibling = prev = null; }
16
17 public AnyType getValue()
18 { return element; }
19
20 public AnyType element;
21 public PairNode<AnyType> leftChild;
22 public PairNode<AnyType> nextSibling;
23 public PairNode<AnyType> prev;
24 }
25
26 private PairNode<AnyType> root;
27 private int theSize;
28
29 // Rest of class follows
30 }

Figure 12.46 PairNode class and Position interface in PairingHeap

bounds as the Fibonacci heap. It has recently been shown that almost all the proposed
methods are in fact theoretically less efficient than the Fibonacci heap. Even so, the method
coded in Figure 12.49 always seems to perform as well as or better than other heap struc-
tures, including the binary heap, for the typical graph theory uses that involve a host of
decreaseKey operations.

This method, known as two-pass merging, is the simplest and most practical of the
many variants that have been suggested. We first scan left to right, merging pairs of chil-
dren.4 After the first scan, we have half as many trees to merge. A second scan is then
performed, right to left. At each step we merge the rightmost tree remaining from the

4 We must be careful if there is an odd number of children. When that happens, we merge the last child
with the result of the rightmost merge to complete the first scan.

www.manaraa.com

1 /**
2 * Insert into the priority queue, and return a Position
3 * that can be used by decreaseKey. Duplicates are allowed.
4 * @param x the item to insert.
5 * @return the Position (PairNode) containing the newly inserted item.
6 */
7 public Position<AnyType> insert(AnyType x)
8 {
9 PairNode<AnyType> newNode = new PairNode<>(x);

10
11 if(root == null)
12 root = newNode;
13 else
14 root = compareAndLink(root, newNode);
15
16 theSize++;
17 return newNode;
18 }
19
20 /**
21 * Change the value of the item stored in the pairing heap.
22 * @param pos any Position returned by insert.
23 * @param newVal the new value, which must be smaller than the currently stored value.
24 * @throws IllegalArgumentException if pos is null, deleteMin has
25 * been performed on pos, or new value is larger than old.
26 */
27 public void decreaseKey(Position<AnyType> pos, AnyType newVal)
28 {
29 PairNode<AnyType> p = (PairNode<AnyType>) pos;
30
31 if(p == null || p.element == null || p.element.compareTo(newVal) < 0)
32 throw new IllegalArgumentException();
33
34 p.element = newVal;
35 if(p != root)
36 {
37 if(p.nextSibling != null)
38 p.nextSibling.prev = p.prev;
39 if(p.prev.leftChild == p)
40 p.prev.leftChild = p.nextSibling;
41 else
42 p.prev.nextSibling = p.nextSibling;
43
44 p.nextSibling = null;
45 root = compareAndLink(root, p);
46 }
47 }

Figure 12.47 Pairing heaps: insert and decreaseKey

www.manaraa.com

588 Chapter 12 Advanced Data Structures and Implementation

1 /**
2 * Remove the smallest item from the priority queue.
3 * @return the smallest item.
4 * @throws UnderflowException if pairing heap is empty.
5 */
6 public AnyType deleteMin()
7 {
8 if(isEmpty())
9 throw new UnderflowException();

10
11 AnyType x = findMin();
12 root.element = null; // null it out in case used in decreaseKey
13 if(root.leftChild == null)
14 root = null;
15 else
16 root = combineSiblings(root.leftChild);
17
18 theSize--;
19 return x;
20 }

Figure 12.48 Pairing heap deleteMin

first scan with the current merged result. As an example, if we have eight children, c1

through c8, the first scan performs the merges c1 and c2, c3 and c4, c5 and c6, and c7

and c8. As a result we obtain d1, d2, d3, and d4. We perform the second pass by merging d3

and d4; d2 is then merged with that result, and then d1 is merged with the result of the
previous merge.

Our implementation requires an array to store the subtrees. In the worst case,
N − 1 items could be children of the root, but declaring an array of size N inside of
combineSiblings would give an O(N) algorithm so we use an expanding array instead.

Other merging strategies are discussed in the exercises. The only simple merging strat-
egy that is easily seen to be poor is a left-to-right single-pass merge (Exercise 12.29). The
pairing heap is a good example of “simple is better” and seems to be the method of choice
for serious applications requiring the decreaseKey or merge operation.

Summary

In this chapter, we’ve seen several efficient variations of the binary search tree. The
top-down splay tree provides O(log N) amortized performance, the treap gives O(log N)
randomized performance, and the red-black tree, gives O(log N) worst-case performance
for the basic operations. The trade-offs between the various structures involve code com-
plexity, ease of deletion, and differing searching and insertion costs. It is difficult to say

www.manaraa.com

Summary 589

1 /**
2 * Internal method that implements two-pass merging.
3 * @param firstSibling the root of the conglomerate;
4 * assumed not null.
5 */
6 private PairNode<AnyType> combineSiblings(PairNode<AnyType> firstSibling)
7 {
8 if(firstSibling.nextSibling == null)
9 return firstSibling;

10
11 // Store the subtrees in an array
12 int numSiblings = 0;
13 for(; firstSibling != null; numSiblings++)
14 {
15 treeArray = doubleIfFull(treeArray, numSiblings);
16 treeArray[numSiblings] = firstSibling;
17 firstSibling.prev.nextSibling = null; // break links
18 firstSibling = firstSibling.nextSibling;
19 }
20 treeArray = doubleIfFull(treeArray, numSiblings);
21 treeArray[numSiblings] = null;
22
23 // Combine subtrees two at a time, going left to right
24 int i = 0;
25 for(; i + 1 < numSiblings; i += 2)
26 treeArray[i] = compareAndLink(treeArray[i], treeArray[i + 1]);
27
28 // j has the result of last compareAndLink.
29 // If an odd number of trees, get the last one.
30 int j = i - 2;
31 if(j == numSiblings - 3)
32 treeArray[j] = compareAndLink(treeArray[j], treeArray[j + 2]);
33
34 // Now go right to left, merging last tree with
35 // next to last. The result becomes the new last.
36 for(; j >= 2; j -= 2)
37 treeArray[j - 2] = compareAndLink(treeArray[j - 2], treeArray[j]);
38
39 return (PairNode<AnyType>) treeArray[0];
40 }

Figure 12.49 Pairing heaps: two-pass merging

www.manaraa.com

590 Chapter 12 Advanced Data Structures and Implementation

41 private PairNode<AnyType> []
42 doubleIfFull(PairNode<AnyType> [] array, int index)
43 {
44 if(index == array.length)
45 {
46 PairNode<AnyType> [] oldArray = array;
47
48 array = new PairNode[index * 2];
49 for(int i = 0; i < index; i++)
50 array[i] = oldArray[i];
51 }
52 return array;
53 }
54
55 // The tree array for combineSiblings
56 private PairNode<AnyType> [] treeArray = new PairNode[5];

Figure 12.49 (continued)

that any one structure is a clear winner. Recurring themes include tree rotations and the
use of sentinel nodes to eliminate many of the annoying tests for null references that would
otherwise be necessary.

The suffix tree and array are a powerful data structure that allows quick repeated
searching for a fixed text. The k-d tree provides a practical method for performing range
searches, even though the theoretical bounds are not optimal.

Finally, we described and coded the pairing heap, which seems to be the most prac-
tical mergeable priority queue, especially when decreaseKey operations are required, even
though it is theoretically less efficient than the Fibonacci heap.

Exercises

12.1 Prove that the amortized cost of a top-down splay is O(log N).
��12.2 Prove that there exist access sequences that require 2 log N rotations per access for

bottom-up splaying. Show that a similar result holds for top-down splaying.

12.3 Modify the splay tree to support queries for the kth smallest item.

12.4 Compare, empirically, the simplified top-down splay with the originally described
top-down splay.

12.5 Write the deletion procedure for red-black trees.

12.6 Prove that the height of a red-black tree is at most 2 log N, and that this bound
cannot be substantially lowered.

12.7 Show that every AVL tree can be colored as a red-black tree. Are all red-black trees
AVL?

www.manaraa.com

Exercises 591

12.8 Draw a suffix tree and show the suffix array and LCP array for the following input
strings:
a. ABCABCABC
b. MISSISSIPPI

12.9 Once the suffix array is constructed, the short routine shown in Figure 12.50 can
be invoked from Figure 12.32 to create the longest common prefix array.
a. In the code, what does rank[i] represent?
b. Suppose that LCP[rank[i]] = h. Show that LCP[rank[i+1]] ≥ h − 1.
c. Show that the algorithm in Figure 12.50 correctly computes the LCP array.
d. Prove that the algorithm in Figure 12.50 runs in linear time.

1 /*
2 * Create the LCP array from the suffix array
3 * @param s the input array populated from 0..N-1, with available pos N
4 * @param sa the already-computed suffix array 0..N-1
5 * @param LCP the resulting LCP array 0..N-1
6 */
7 public static void makeLCPArray(int [] s, int [] sa, int [] LCP)
8 {
9 int N = sa.length;

10 int [] rank = new int[N];
11
12 s[N] = -1;
13 for(int i = 0; i < N; i++)
14 rank[sa[i]] = i;
15
16 int h = 0;
17 for(int i = 0; i < N; i++)
18 if(rank[i] > 0)
19 {
20 int j = sa[rank[i] - 1];
21
22 while(s[i + h] == s[j + h])
23 h++;
24
25 LCP[rank[i]] = h;
26 if(h > 0)
27 h--;
28 }
29 }

Figure 12.50 LCP array construction from suffix array

www.manaraa.com

592 Chapter 12 Advanced Data Structures and Implementation

12.10 Suppose that in the linear-time suffix array construction algorithm, instead of
constructing three groups, we construct seven groups, using for k = 0, 1, 2,
3, 4, 5, 6

Sk = < S[7i + k]S[7i + k + 1]S[7i + k + 2] . . . S[7i + k + 6] for i = 0, 1, 2, . . . >

a. Show that with a recursive call to S3S5S6, we have enough information to sort
the other four groups S0, S1, S2, and S4.

b. Show that this partitioning leads to a linear-time algorithm.

12.11 Implement the insertion routine for treaps nonrecursively by maintaining a stack.
Is it worth the effort?

12.12 We can make treaps self-adjusting by using the number of accesses as a priority
and performing rotations as needed after each access. Compare this method with
the randomized strategy. Alternatively, generate a random number each time an
item X is accessed. If this number is smaller than X’s current priority, use it as X’s
new priority (performing the appropriate rotation).

��12.13 Show that if the items are sorted, then a treap can be constructed in linear time,
even if the priorities are not sorted.

12.14 Implement red-black trees without using the nullNode sentinel. How much coding
effort is saved by using the sentinel?

12.15 Suppose we store, for each node, the number of null links in its subtree; call this
the node’s weight. Adopt the following strategy: If the left and right subtrees have
weights that are not within a factor of 2 of each other, then completely rebuild the
subtree rooted at the node. Show the following:
a. We can rebuild a node in O(S), where S is the weight of the node.
b. The algorithm has amortized cost of O(log N) per insertion.
c. We can rebuild a node in a k-d tree in O(S log S) time, where S is the weight of

the node.
d. We can apply the algorithm to k-d trees, at a cost of O(log2 N) per insertion.

12.16 Suppose we call rotateWithLeftChild on an arbitrary 2-d tree. Explain in detail all
the reasons that the result is no longer a usable 2-d tree.

12.17 Implement the insertion and range search for the k-d tree. Do not use recursion.

12.18 Determine the time for partial match query for values of p corresponding to k = 3,
4, and 5.

12.19 For a perfectly balanced k-d tree, derive the worst-case running time of a range
query that is quoted in the text (see p. 581).

12.20 The 2-d heap is a data structure that allows each item to have two individual keys.
deleteMin can be performed with respect to either of these keys. The 2-d heap is
a complete binary tree with the following order property: For any node X at even
depth, the item stored at X has the smallest key #1 in its subtree, while for any
node X at odd depth, the item stored at X has the smallest key #2 in its subtree.
a. Draw a possible 2-d heap for the items (1, 10), (2, 9), (3, 8), (4, 7), (5, 6).
b. How do we find the item with minimum key #1?

www.manaraa.com

Exercises 593

c. How do we find the item with minimum key #2?
d. Give an algorithm to insert a new item into the 2-d heap.
e. Give an algorithm to perform deleteMin with respect to either key.
f. Give an algorithm to perform buildHeap in linear time.

12.21 Generalize the preceding exercise to obtain a k-d heap, in which each item can
have k individual keys. You should be able to obtain the following bounds: insert
in O(log N), deleteMin in O(2k log N), and buildHeap in O(kN).

12.22 Show that the k-d heap can be used to implement a double-ended priority queue.

12.23 Abstractly, generalize the k-d heap so that only levels that branch on key #1 have
two children (all others have one).
a. Do we need links?
b. Clearly, the basic algorithms still work; what are the new time bounds?

12.24 Use a k-d tree to implement deleteMin. What would you expect the average
running time to be for a random tree?

12.25 Use a k-d heap to implement a double-ended queue that also supports deleteMin.

12.26 Implement the pairing heap with a nullNode sentinel.
��12.27 Show that the amortized cost of each operation is O(log N) for the pairing heap

algorithm in the text.

12.28 An alternative method for combineSiblings is to place all of the siblings on a queue,
and repeatedly dequeue and merge the first two items on the queue, placing the
result at the end of the queue. Implement this variation.

12.29 Show that using a stack instead of a queue in the previous exercise is bad, by
giving a sequence that leads to �(N) cost per operation. This is the left-to-right
single-pass merge.

12.30 Without decreaseKey, we can remove parent links. How competitive is the result
with the skew heap?

12.31 Assume that each of the following is represented as a tree with child and parent
references. Explain how to implement a decreaseKey operation.
a. Binary heap
b. Splay tree

12.32 When viewed graphically, each node in a 2-d tree partitions the plane into regions.
For instance, Figure 12.51 shows the first five insertions into the 2-d tree in

p1

p p2 p2 p2

p3 p3 p1 p3 p1 p5

p4p4

p1p1

2

Figure 12.51 The plane partitioned by a 2-d tree after the insertion of p1 = (53, 14),
p2 = (27, 28), p3 = (30, 11), p4 = (67, 51), p5 = (70, 3)

www.manaraa.com

594 Chapter 12 Advanced Data Structures and Implementation

p1
p2 p2 p2 p2

p3 p3 p1 p3

p4

p1p1 p1
p5

p4

Figure 12.52 The plane partitioned by a quad tree after the insertion of p1 = (53, 14),
p2 = (27, 28), p3 = (30, 11), p4 = (67, 51), p5 = (70, 3)

Figure 12.39. The first insertion, of p1, splits the plane into a left part and a
right part. The second insertion, of p2, splits the left part into a top part and a
bottom part, and so on.
a. For a given set of N items, does the order of insertion affect the final partition?
b. If two different insertion sequences result in the same tree, is the same partition

produced?
c. Give a formula for the number of regions that result from the partition after N

insertions.
d. Show the final partition for the 2-d tree in Figure 12.39.

12.33 An alternative to the 2-d tree is the quad tree. Figure 12.52 shows how a plane is
partitioned by a quad tree. Initially we have a region (which is often a square, but
need not be). Each region may store one point. If a second point is inserted into a
region, then the region is split into four equal-sized quadrants (northeast, south-
east, southwest, and northwest). If this places the points in different quadrants (as
when p2 is inserted), we are done; otherwise, we continue splitting recursively (as
is done when p5 is inserted).
a. For a given set of N items, does the order of insertion affect the final partition?
b. Show the final partition if the same elements that were in the 2-d tree in

Figure 12.39 are inserted into the quad tree.

12.34 A tree data structure can store the quad tree. We maintain the bounds of the
original region. The tree root represents the original region. Each node is either
a leaf that stores an inserted item, or has exactly four children, representing four
quadrants. To perform a search, we begin at the root and repeatedly branch to an
appropriate quadrant until a leaf (or null entry) is reached.
a. Draw the quad tree that corresponds to Figure 12.52.
b. What factors influence how deep the (quad) tree will be?
c. Describe an algorithm that performs an orthogonal range query in a quad tree.

References

Top-down splay trees were described in the original splay tree paper [36]. A similar strat-
egy, but without the crucial rotation, was described in [38]. The top-down red-black tree
algorithm is from [18]; a more accessible description can be found in [35]. An implemen-
tation of top-down red-black trees without sentinel nodes is given in [15]; this provides

www.manaraa.com

References 595

a convincing demonstration of the usefulness of nullNode. Treaps [3] are based on the
Cartesian tree described in [40]. A related data structure is the priority search tree [27].

Suffix trees were first described as a position tree by Weiner [41], who provided a
linear-time algorithm for construction that was simplified by McCreight [28], and then by
Ukkonen [39], who provided the first online linear-time algorithm. Farach [13] provided
an alternate algorithm that is the basis for many of the linear-time suffix array construction
algorithms. Numerous applications of suffix trees can be found in the text by Gusfield [19].

Suffix arrays were described by Manber and Myers [25]. The algorithm presented in
the text is due to Kärkkäinen and Sanders [21]; another linear-time algorithm is due to
Ko and Aluru [23]. The linear-time algorithm for constructing the LCP array from a suffix
array in Exercise 12.9 was given in [22]. A survey of suffix array construction algorithms
can be found in [32].

[1] shows that any problem that is solvable via suffix trees is solvable in equivalent
time with suffix arrays. Because the input sizes for practical applications are so large, space
is important, and thus much recent work has centered on suffix array and LCP array con-
struction. In particular, for many algorithms, a cache-friendly slightly nonlinear algorithm
can be preferable in practice to a noncache friendly linear algorithm [33]. For truly huge
input sizes, in-memory construction is not always feasible. [6] is an example of an algo-
rithm that can generate suffix arrays for 12GB of DNA sequences in a day on a single
machine with only 2GB of RAM; see also [5] for a survey of external memory suffix array
construction algorithms.

The k-d tree was first presented in [7]. Other range-searching algorithms are described
in [8]. The worst case for range searching in a balanced k-d tree was obtained in [24], and
the average-case results cited in the text are from [14] and [10].

The pairing heap and the alternatives suggested in the exercises were described in
[17]. The study [20] suggests that the splay tree is the priority queue of choice when
the decreaseKey operation is not required. Another study [37] suggests that the pairing
heap achieves the same asymptotic bounds as the Fibonacci heap, with better performance
in practice. However, a related study [29] using priority queues to implement minimum
spanning tree algorithms suggests that the amortized cost of decreaseKey is not O(1).
M. Fredman [16] has settled the issue of optimality by proving that there are sequences
for which the amortized cost of a decreaseKey operation is suboptimal (in fact, at least
�(log log N)). However, he has also shown that when used to implement Prim’s minimum
spanning tree algorithm, the pairing heap is optimal if the graph is slightly dense (that is,
the number of edges in the graph is O(N(1+ε)) for any ε). Pettie [32] has shown an upper

bound of O(22
√

log log N) for decreaseKey. However, complete analysis of the pairing heap
is still open.

The solutions to most of the exercises can be found in the primary references.
Exercise 12.15 represents a “lazy” balancing strategy that has become somewhat popular.
[26], [4], [11], and [9] describe specific strategies; [2] shows how to implement all of
these strategies in one framework. A tree that satisfies the property in Exercise 12.15
is weight-balanced. These trees can also be maintained by rotations [30]. Part (d) is
from [31]. A solution to Exercises 12.20 to 12.22 can be found in [12]. Quad trees are
described in [34].

www.manaraa.com

596 Chapter 12 Advanced Data Structures and Implementation

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebush, “Replacing Suffix Trees with Suffix Arrays,”
Journal of Discrete Algorithms, 2 (2004), 53–86.

2. A. Andersson, “General Balanced Trees,” Journal of Algorithms, 30 (1991), 1–28.
3. C. Aragon and R. Seidel, “Randomized Search Trees,” Proceedings of the Thirtieth Annual

Symposium on Foundations of Computer Science (1989), 540–545.
4. J. L. Baer and B. Schwab, “A Comparison of Tree-Balancing Algorithms,” Communications

of the ACM, 20 (1977), 322–330.
5. M. Barsky, U. Stege, and A. Thomo, “A Survey of Practical Algorithms for Suffix Tree

Construction in External Memory,” Software: Practice and Experience, 40 (2010) 965–988.
6. M. Barsky, U. Stege, A. Thomo, and C. Upton, “Suffix Trees for Very Large Genomic

Sequences,” Proceedings of the 18th ACM Conference on Information and Knowledge
Management (2009), 1417–1420.

7. J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,”
Communications of the ACM, 18 (1975), 509–517.

8. J. L. Bentley and J. H. Friedman, “Data Structures for Range Searching,” Computing Surveys,
11 (1979), 397–409.

9. H. Chang and S. S. Iyengar, “Efficient Algorithms to Globally Balance a Binary Search Tree,”
Communications of the ACM, 27 (1984), 695–702.

10. P. Chanzy, “Range Search and Nearest Neighbor Search,” Master’s Thesis, McGill University,
1993.

11. A. C. Day, “Balancing a Binary Tree,” Computer Journal, 19 (1976), 360–361.
12. Y. Ding and M. A. Weiss, “The k-d Heap: An Efficient Multi-Dimensional Priority Queue,”

Proceedings of the Third Workshop on Algorithms and Data Structures (1993), 302–313.
13. M. Farach, “Optimal Suffix Tree Construction with Large Alphabets,” Proceedings of the 38th

Annual IEEE Symposium on Foundations of Computer Science (1997), 137–143.
14. P. Flajolet and C. Puech, “Partial Match Retrieval of Multidimensional Data,” Journal of the

ACM, 33 (1986), 371–407.
15. B. Flamig, Practical Data Structures in C++, John Wiley, New York, 1994.
16. M. Fredman, “Information Theoretic Implications for Pairing Heaps,” Proceedings of the

Thirtieth Annual ACM Symposium on the Theory of Computing (1998), 319–326.
17. M. L Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, “The Pairing Heap: A New

Form of Self-Adjusting Heap,” Algorithmica, 1 (1986), 111–129.
18. L. J. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced Trees,” Proceedings

of the Nineteenth Annual Symposium on Foundations of Computer Science (1978), 8–21.
19. D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational

Biology, Cambridge University Press, Cambridge, U.K., 1997.
20. D. W. Jones, “An Empirical Comparison of Priority-Queue and Event-Set Implementations,”

Communications of the ACM, 29 (1986), 300–311.
21. J. Kärkkäinen and P. Sanders, “Simple Linear Work Suffix Array Construction,” Proceedings

of the 30th International Colloquium on Automata, Languages and Programming (2003),
943–955.

22. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-Time Longest Common-
Prefix Computation in Suffix Arrays and Its Applications,” Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching (2001), 181–192.

www.manaraa.com

References 597

23. P. Ko and S. Aluru, “Space Efficient Linear Time Construction of Suffix Arrays,” Proceedings
of the 14th Annual Symposium on Combinatorial Pattern Matching (2003), 203–210.

24. D. T. Lee and C. K. Wong, “Worst-Case Analysis for Region and Partial Region Searches
in Multidimensional Binary Search Trees and Balanced Quad Trees,” Acta Informatica, 9
(1977), 23–29.

25. U. Manber and G. Myers, “Suffix Arrays: A New Method for On-Line String Searches,”
SIAM Journal on Computing, 22 (1993), 935–948.

26. W. A. Martin and D. N. Ness, “Optimizing Binary Trees Grown with a Sorting Algorithm,”
Communications of the ACM, 15 (1972), 88–93.

27. E. McCreight, “Priority Search Trees,” SIAM Journal of Computing, 14 (1985), 257–276.
28. E. M. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,” Journal of the

ACM, 23 (1976), 262–272.
29. B. M. E. Moret and H. D. Shapiro, “An Empirical Analysis of Algorithms for Constructing

a Minimum Spanning Tree,” Proceedings of the Second Workshop on Algorithms and Data
Structures (1991), 400–411.

30. J. Nievergelt and E. M. Reingold, “Binary Search Trees of Bounded Balance,” SIAM Journal
on Computing, 2 (1973), 33–43.

31. M. H. Overmars and J. van Leeuwen, “Dynamic Multidimensional Data Structures Based
on Quad and K-D Trees,” Acta Informatica, 17 (1982), 267–285.

32. S. Pettie, “Towards a Final Analysis of Pairing Heaps,” Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science (2005), 174–183.

33. S. J. Puglisi, W. F. Smyth, and A. Turpin, “A Taxonomy of Suffix Array Construction
Algorithms,” ACM Computing Surveys, 39 (2007), 1–31.

34. A. H. Samet, “The Quadtree and Related Hierarchical Data Structures,” Computing Surveys,
16 (1984), 187–260.

35. R. Sedgewick and K. Wayne, Algorithms, 4th ed., Addison-Wesley Professional, Boston,
Mass. 2011.

36. D. D. Sleator and R. E. Tarjan, “Self Adjusting Binary Search Trees,” Journal of the ACM, 32
(1985), 652–686.

37. J. T. Stasko and J. S. Vitter, “Pairing Heaps: Experiments and Analysis,” Communications of
the ACM, 30 (1987), 234–249.

38. C. J. Stephenson, “A Method for Constructing Binary Search Trees by Making Insertions at
the Root,” International Journal of Computer and Information Science, 9 (1980), 15–29.

39. E. Ukkonen, “On-Line Construction of Suffix Trees,” Algorithmica, 14 (1995), 249–260.
40. J. Vuillemin, “A Unifying Look at Data Structures,” Communications of the ACM, 23 (1980),

229–239.
41. P. Weiner, “Linear Pattern Matching Algorithm,” Proceedings of the 14th Annual IEEE

Symposium on Switching and Automata Theory, (1973), 1–11.

www.manaraa.com

This page intentionally left blank

www.manaraa.com

INDEX

A
Abouelhoda, M. I., 596
Abramson, B., 509
Abstract data types (ADTs), 57

disjoint sets. See Disjoint sets
hash tables. See Hash tables
lists. See Lists
queues. See Queues
stacks. See Stacks

Ackermann Function, 356
Activation records, 91
Activity-node graphs, 381–382
Acyclic graphs, 359

in shortest-path algorithms,
380–384, 506

topological sorts for, 362–365
add method

collections, 61
ListIterators, 67
lists, 63
MyArrayList, 67–68, 70
MyLinkedList, 76–77, 79
priority queues, 261
Set, 152
TreeMap and TreeSet, 153

addBefore method, 79
addFirst method, 64
addLast method, 64
Adelson-Velskii, G. M., 168
Adjacency lists

for graph representation,
361–362

references for, 425
Adjacency matrices, 361–362
Adjacent vertices, 361
Adversary arguments, 307–310
Aggarwal, A., 509
Agrawal, M., 509

Aho, A. V., 55, 168, 357, 426
Ahuja, R. K., 426
Airport systems, graphs for, 360
Albertson, M. O., 28
Algorithm analysis, 29

components of, 33–35
computational models for, 32
mathematical background for,

29–32
running times. See Running

times
Algorithm design

approximate bin packing. See
Approximate bin packing

backtracking algorithms. See
Backtracking algorithms

divide and conquer strategy. See
Divide and conquer strategy

dynamic programming. See
Dynamic programming

greedy algorithms. See Greedy
algorithms

randomized algorithms,
474–476

primality tests, 483–486
random number generators,

476–480
skip lists, 480–483

All-pairs shortest-path algorithm,
384, 472–474

Allen, B., 168
allocateArray function, 184–185
allPairs function, 473
Alon, N., 509
Alpha-beta pruning, 495–498, 509
Aluru, S., 595, 597
Amortized analysis, 513

binomial queues, 514

Fibonacci heaps. See Fibonacci
heaps

references for, 538
skew heaps, 519–521
splay trees, 137, 531–535

Amortized bound times, 513
Ancestors in trees, 102
Andersson, A., 596
Approximate bin packing, 439

best fit for, 444
first fit for, 442–444
next fit for, 441–442
off-line algorithms for, 442–444
on-line algorithms for, 439–441
references for, 508

Approximate pattern matching,
505

Aragon, C., 596
Arcs, graph, 359
Arbitman, Y., 223
Arikawa, S., 596
Arimura, H., 596
Arithmetic problems

integer multiplication, 459–460
matrix multiplication, 460–462

Arithmetic series, 5
ArrayList interface

implementation, 67–75
overview, 63–66

ArrayListIterator class, 71–74
Arrays

for binary heaps, 226
compatibility of, 16
for complete binary trees, 227
generic, 22
for graph representation, 360
for hash tables. See Hash tables
inversion in, 273–274 599

www.manaraa.com

600 Index

Arrays (continued)
for lists, 58–59
maps for, 154–159
for matrices, 361–362
of parameterized types, 24
for queues, 92–95
for quicksort, 294
in sorting. See Sorting
for stacks, 83

ArrayStoreException class, 16
Articulation points, 402–406
ASCII character set, 433
assignLow function, 404–405
assignNum function, 404–405
Atkinson, M. D., 268
auf der Heide, F. Meyer, 223
Augmenting paths, 390–393
Autoboxing/unboxing, 18
Average-case analysis, 33

binary search trees, 120–122
quicksorts, 288–290

AVL trees, 123–125
deletion, 124
double rotation, 128–135
references for, 168
single rotation, 125–128

AvlNode class, 132
Azar, Y., 223

B
B-trees

with disk access, 147–152
references for, 168

Back edges
in depth-first searches, 409
in undirected graphs, 402

Backtracking algorithms
games, 490

alpha-beta pruning, 495–498
minimax algorithm, 490–495

principles, 486
turnpike reconstruction,

487–490
Bacon numbers, 424
Baer, J. L., 596
Baeza-Yates, R. A., 168, 224, 327
Balance conditions

AVL trees, 123–125

double rotation, 128–136
references for, 168
single rotation, 125–128

binary search trees, 122
Balanced binary search trees, 153
Balancing symbols, stacks for,

84–85
Balls and bins problem, 192–193
Banachowski, L., 357
Barsky, M., 596
Base 2 logarithms, 3
Base cases

induction, 6
recursion, 8–9, 11

Baseball card collector problem,
425

Bavel, Z., 28
Bayer, R., 168
BB-trees (binary B-trees), 551
Bell, T., 224, 509
Bellman, R. E., 425, 509
Bentley, J. L., 55, 168, 328, 509,

596
Best-case analysis, 33, 298
Best-fit bin packing algorithm, 444
bestMove function, 492
Bhaskar, S., 510
Biconnected graphs, 402–405, 426
Big-Oh notation, 30–33, 147
Big-Omega notation, 30
BigInteger class, 48
Bin packing, 417, 432

best fit for, 444
first fit for, 442–444
next fit for, 441–442
off-line algorithms for, 444–447
on-line algorithms for, 395–397
references for, 508

Binary B-trees (BB-trees), 551
Binary heaps, 226–227

heap order, 229
operations

buildHeap, 235–237
decreaseKey, 234
delete, 235
deleteMin, 231–234
increaseKey, 234
insert, 229–231

references for, 267
structure, 227–228

Binary search trees, 101, 107–108,
112–115

average-case analysis, 120–123
AVL trees, 123–125
double rotation, 128–136
references for, 166
single rotation, 125–128
class skeleton for, 113–114
operations

contains, 113
findMin and findMax, 115
insert, 116–118
remove, 118–120

optimal, 469–472, 508
for priority queue

implementation, 226
red-black. See Red-black trees
references for, 167–169

Binary searches, 45–46
Binary trees

expression, 109–112
Huffman code, 433–439
implementations, 108–109
traversing, 145–147

BinaryHeap class, 228
BinaryNode class

binary search trees, 112–123
binary trees, 108
top-down splay trees, 545–546

binarySearch function, 45–46
BinarySearchTree class, 113, 116
Binomial queues, 252

amortized analysis, 514–519
implementation, 256–261
lazy merging for, 525–528
operations, 253–256
references for, 267, 538
structure of, 252–253

Binomial trees, 252–253, 514
BinomialNode class, 258
BinomialQueue class, 258–259
Bipartite graphs, 419
Bitner, J. R., 168
Björnsson, Y., 511
Bloom, G. S., 509
Blum, M., 509
Blum, N., 357

www.manaraa.com

Index 601

Boggle game, 507
Bollobas, B., 357
Bookkeeping costs in recursion, 11
Borodin, A., 509
Borŭvka, O., 426
Bottom-up insertion in red-black

trees, 549–551
Bounds

function growth, 31
type, 21–22
wildcards with, 19–20

BoxingDemo class, 18
Boyer, R. S., 223
Braces ({ }), balancing, 84–85
Bracha, G., 28
Brackets ([]), balancing, 84–85
Breadth-first searches, 368–369
Bright, J. D., 268
Brodal, G. S., 268
Broder, A., 223
Brown, D. J., 511
Brown, M. R., 268, 538
Brualdi, R. A., 28
Bucket sorts, 310–315
buildBinomialQueue function, 517
buildHeap function

for binary heaps, 228, 235–237
for heapsorts, 279
for Huffman algorithm, 438
for leftist heaps, 247

Burch, N., 511

C
caching hash code, 192
capacity function, 258
Carlsson, S., 268
Carmichael numbers, 484
Carter, J. L., 223–224
Carter-Wegman trick, 213, 222
Cartesian trees, 595
Cascading cuts for Fibonacci heaps,

528–529
CaseInsensitiveCompare class,

25–26, 152
Catalan numbers, 467
Chaining for hash tables, 174–178
Chang, H., 596
Chang, L., 509

Chang, S. C., 268
Chanzy, P., 596
Character sets, 433–434
Character substitution problem,

154–160
Chazelle, B., 426
Checkers, 492
Chen, J., 268
Cheriton, D., 268, 426
Cheriyan, J., 426
Chess, 487, 507
Children in trees, 102–103
Christofides, N., 509
Circle packing problem, 503
Circular arrays, 93
Circular linked lists, 100
Circular logic, recursion as, 8
ClassCastException class, 15–16
Classes, generic, 16–17
clear method

for collections, 61
in MyArrayList, 67–69
in MyLinkedList, 76–78

Cleary, J. G., 509
Clique problem, 417, 425
Clocks

for event simulation, 239
for random numbers, 475

Closest points problem
divide and conquer strategy,

451–455
references for, 508

Clustering in hash tables, 179–180
Cohen, J., 223
Coin changing problem, 372–373,

429, 506
Collection interface, 61
Collections, 61

Collection, 61
Iterator, 61–63
List, 63–65
ListIterators, 67

Collisions in hashing, 172–174
double hashing, 183, 187
linear probing, 179–181
quadratic probing, 181–188

Coloring graphs, 417
combineSiblings function, 584,

588–589

combineTrees function, 258–259
Comer, D., 168
Comparable class, 16, 271
Comparable objects for binary

search trees, 112
Comparator interface, 25
Comparators class, 271
compareAndLink function, 585
compareTo method, 14–17, 271
Comparison-based sorting, 271
Comparisons in selection problem,

458
Compatibility of array types, 16
Compilation, hash tables for, 217
Complete binary trees, 227
Complete graphs, 360
Compound interest rule in

recursion, 12
Compression

file, 433–439
path, 340–341

Computational geometry
in divide and conquer strategy,

449
turnpike reconstruction,

487–490
Computational models, 32
computeAdjacentWords function,

156
ConcurrentModificationException

class, 63, 66, 76
Congruential generators, 476–480
Connected graphs, 360
Connectivity

biconnected graphs, 402–405
undirected graphs, 359–360

Consecutive statements in running
time, 37

Constant growth rate, 31
Containers. See Lists; Queues;

Stacks
contains function, 21

for binary search trees, 114–117
for binary searches, 46
for collections, 61
for hash tables, 175, 178,

183–184, 186
for top-down splay trees, 545
TreeMap and TreeSet, 153

www.manaraa.com

602 Index

containsKey function, 153
Contexts, static, 23
Contradiction, proofs by, 7
Convergent series, 4
Conversions, infix to postfix, 87–90
Convex hulls, 503
Convex polygons, 503
Cook, S., 426
Cook’s theorem, 416
Coppersmith, D., 510
Cornell, G., 28
Costs, graph edges, 359
Counterexample, proofs by, 7
Counters in mergesorts, 282–284
Counting radix sort, 312–315,

576–577
countingRadixSort method, 313
Covariant array types, 16
Crane, C. A., 268
createSuffixArray routines, 563,

574
Critical paths, 380–381, 384
Cross edges, 409–410
Cryptography

gcd algorithm in, 49
prime numbers for, 483–486

Cubic growth rate, 31
Cuckoo hashing, 195–206, 208,

210–212, 217, 222–224
CuckooHashTable class, 200–208
Culberson, J., 168
Culik, K., 169
Cutting nodes in leftist heaps,

522–525

D
d-heaps, 240–241, 267
DAGs (directed acyclic graphs),

359, 362–363
Day, A. C., 596
Deap queues, 268
Decision trees

for lower bounds, 302–304
references for, 327

decreaseKey function
for binary heaps, 234
for binomial queues, 259

for Dijkstra’s algorithm, 378
for Fibonacci heaps, 522–525,

528–529
for pairing heaps, 583–584, 587,

589–590
Definitions, recursion in, 10
delete function

binary heaps, 235
Fibonacci heaps, 522

Delete operations
2-d trees, 579
AVL trees, 137
B-trees, 152
binary heaps, 228, 231–234, 237
binary search trees, 114,

118–120
binomial queues, 255–256,

258–259, 262, 514
collections, 61–63
d-heaps, 240
Fibonacci heaps, 522, 525–528,

525–526
hash tables, 175, 178, 182–183,

187
heapsorts, 278
leftist heaps, 243, 246, 265
linked lists, 59–60, 65–66
LinkedListIterator, 80
lists, 58, 98, 100
multiway merges, 317
MyLinkedList, 75, 79
pairing heaps, 584, 588
priority queues, 222–226
red-black trees, 556–557
skew heaps, 249, 521
splay trees, 143, 145, 545, 550
treaps, 558, 560

deleteMax function, 279, 282
deleteMin function

binary heaps, 228, 231–234, 237
binomial queues, 255–258, 262
d-heaps, 240
Dijkstra’s algorithm, 377–378
Fibonacci heaps, 522–523,

525–528, 530–531
heapsorts, 278
Huffman algorithm, 438
Kruskal’s algorithm, 398

leftist heaps, 243, 246
multiway merges, 317
pairing heaps, 584, 588
priority queues, 225–226, 261
skew heaps, 249, 521

Demers, A., 510
Dense graphs, 361, 397
Deo, N., 426
Depth-first searches, 399–401

biconnected graphs, 402–405
directed graphs, 409–411
Euler circuits, 405–409
for strong components, 411–412
undirected graphs, 400–401

Depth of trees, 102
Deques with heap order, 537
Dequeue operations, 92–95, 99
Descendants in trees, 102
Design rule in recursion, 11
Devroye, L., 223
dfs function, 400–401
Diamond dequeues, 268
Diamond operator, 18–19
Dictionaries, recursion in, 10
Dietzfelbinger, M., 223
Digraphs, 359–360

all-pairs shortest paths in,
472–474

depth-first searches, 409–410
representation of, 360–362

Dijkstra, E. W., 28, 426
dijkstra function, 379
Dijkstra’s algorithm, 372–380

for all-pairs shortest paths, 472
and Prim’s algorithm, 394, 396
time bound improvements for,

521–522
Dimensions for k-d trees, 582
Diminishing increment sorts, 274
Ding, Y., 268, 596
Dinic, E. A., 426
Directed acyclic graphs (DAGs),

359, 362
Directed edges, 101
Directed graphs, 359–360

all-pairs shortest paths in,
472–474

depth-first searches, 409–410
representation of, 360–362

www.manaraa.com

Index 603

Directories
in extendible hashing, 214–215
trees for, 103–107

Disjoint sets, 331
dynamic equivalence problem in,

332–333
equivalence relations in, 331
for maze generation, 352–354
path compression for, 340–341
references for, 357–358
smart union algorithms for,

337–339
structure of, 333–337
worst case analysis for

union-by-rank approach,
341–352

DisjSets class, 335–336
Disk I/O operations

in extendible hashing, 214–216
and running times, 147
in sorting, 271

Distances, closest points problem,
451–455

Divide and conquer strategy
closest points problem, 451–455
components, 448
integer multiplication, 459–460
matrix multiplication, 460–462
maximum subsequence sum,

40–45
in mergesorts, 284–288
quicksort. See Quicksort
running time of, 449–451
selection problem, 455–458

Dor, D., 328, 510
Dosa, G., 510
Double hashing, 183, 187, 222
Double rotation operations,

128–136
doubleIfFull function, 590
doubleWithLeftChild function, 136
Doubly linked lists, 60, 75–79
Doyle, J., 357
drand48 function, 479
Dreyfus, S. E., 509
Driscoll, J. R., 268
Du, H. C., 223
Due, M. W., 268
Dumey, A. I., 223

Duplicate elements in quicksorts,
294

Dynamic equivalence problem,
332–333

Dynamic programming, 462
all-pairs shortest path, 472–474
optimal binary search trees,

469–472, 508
ordering matrix multiplications,

466–468
references for, 508
tables vs. recursion, 463–465

E
Edelsbrunner, H., 410
Edges

in depth-first searches, 409–410
graph, 359–361
tree, 101

Edmonds, J., 427
Eight queens problem, 506
Eisenbath, B., 169
element function, 261
Empty lists, 58
Enbody, R. J., 223
enlargeArray function, 228
Enqueue operations, 92–94
ensureCapacity method

for lists, 65
in MyArrayList, 68–69

entrySet function, 153
Eppinger, J. L., 169
Eppstein, D., 510
equals function, 176, 191
Equivalence in disjoint sets,

331–333
Erase operations. See Delete

operations
Erasure, type, 22–23
Eriksson, P., 269
Euclidean distance, 451
Euclid’s algorithm running time,

46–47
Euler circuits, 405–409, 413, 421
Euler tours and paths, 406
Euler’s constant, 5, 300
eval function, 465

Even, S., 427
Event-node graphs, 381–382
Event simulation, 215–216
expandTheTrees function, 234
Exponential growth rate, 31, 38
Exponents and exponentiation

formulas for, 3
running time for, 48–49

Expression trees, 109–112
Extendible hashing, 214–216, 223
External sorting, 315

algorithm, 315–321
model for, 315
need for, 315
references for, 327
replacement selection in,

319–321

F
Factorials, recursion for, 37
Fagin, R., 223
Farach, M., 595–596
Fermat’s lesser theorem, 484
fib function, 463
fibonacci function, 463
Fibonacci heaps, 522–523

cutting nodes in leftist heaps,
522–525

for Dijkstra’s algorithm, 379
lazy merging for binomial

queues, 525–528
operations, 528
for priority queues, 268
time bound proof for, 529–531

Fibonacci numbers
in polyphase merges, 318
proofs for, 6
recursion for, 37, 463–465

File compression, 433–439
File servers, 95
Find operations. See also Searches

biconnected graphs, 402
binary heaps, 228
binary search trees, 114–115
binomial queues, 258
disjoint sets, 332–337, 340–341
lists, 58–59

www.manaraa.com

604 Index

Find operations (continued)
shortest-path algorithms,

384–386
top-down splay trees, 545

findArt function, 405–406
findChain function, 384–386
findCompMove function, 492–493,

495–498
findHumanMove function, 492,

494–496
findKth operations, 58–59
findMax function, 15, 21–22
for binary search trees, 114–115,

117
for top-down splay trees, 545
FindMaxDemo class, 15
findMin function

for binary heaps, 228
for binary search trees, 114–115
for binomial queues, 258
for leftist heaps, 246
for priority queues, 261
for top-down splay trees, 545

findNewVertexOfIndegreeZero
function, 363–364

findPos function, 183–184, 186
First fit algorithm, 442–444
First fit decreasing algorithm,

444–445
Fischer, M. J., 357, 512
Flajolet, P., 169, 223, 596
Flamig, B., 596
Flanagan, D., 28
flip function, 502
Floyd, R. W., 328, 509
for loops in running time, 36
Ford, L. R., 328, 427
Forests

for binomial queues, 252–253
in depth-first spanning, 401
for disjoint sets, 335–336
for Kruskal’s algorithm, 398

Forward edges, 409
Fotakis, D., 223
Fredman, M. L., 223, 268, 357,

427, 508, 538, 596
Friedman, J. H., 596
Frieze, A., 223
Fulkerson, D. R., 427

Full nodes, 161
Full trees, 435
Fuller, S. H., 169
Function objects, 16, 24–26
Functions, recursive, 8–12
Fussenegger, F., 328

G
Gabow, H. N., 268, 328, 357, 427
Gajewska, H., 538
Galil, Z., 427, 509
Galler, B. A., 357
Games, 490

alpha-beta pruning, 495–498
hash tables for, 217
minimax algorithm, 490–495

Garey, M. R., 427, 510
gcd (greatest common divisor)

function, 47, 49
General-purpose sorting

algorithms, 311
Generic components, 12

array type compatibility, 16
autoboxing/unboxing, 18
classes and interfaces, 16–17
genericity in, 13
interface types for, 14–16
primitive type wrappers, 14
restrictions on, 23–24
static methods, 20–21
type bounds, 21–22
type erasure, 22–23
wildcards with bounds, 19–20

Generic mechanisms, 12
GenericMemoryCell class, 17
Geometric series, 4
get method

for lists, 63
for maps, 153
in MyArrayList, 67–75
in MyLinkedList, 77

getChainFromPrevMap function,
385–386

getEntry function, 153
getFirst function, 64
getLast function, 64
getName function, 176

getNode function, 77, 80
getValue function, 153
Giancarlo, R., 510
Global optimums, 429
Godbole, S., 510
Goldberg, A. V., 427
Golin, M., 328
Gonnet, G. H., 169, 224, 269, 328
Gosling, J., 28
Graham, R. L., 28, 510
Grandchildren in trees, 102
Grandparents in trees, 102
Graphs, 359

bipartite, 419
breadth-first searches, 368
coloring, 417
definitions for, 359–360
depth-first searches. See

Depth-first searches
k-colorable, 422
minimum spanning tree,

393–399
multigraphs, 422
network flow problems, 386–393
NP-completeness, 412–417
planar, 422
references for, 422–425
representation of, 360–362
shortest-path algorithms for

acyclic graph, 380–384, 506
all-pairs, 384, 472–474
Dijkstra’s algorithm, 372–379
example, 384–386
negative edge costs, 380
single-source, 366–367
unweighted, 367–372

topological sorts for, 362–365
traveling salesman, 503

Greatest common divisor (GCD)
function, 46–47, 52

Greedy algorithms, 226, 429–430
approximate bin packing. See

Approximate bin packing
for coin changing problem,

429–430
Dijkstra’s algorithm, 372–379
Huffman codes, 433–439
Kruskal’s algorithm, 397–399

www.manaraa.com

Index 605

maximum-flow algorithms, 388
minimum spanning tree,

393–399
processor scheduling, 430–433

Gries, D., 28
Growth rate of functions, 30–32
Gudes, E., 169
Guibas, L. J., 169, 224, 596
Gupta, R., 510
Gusfield, D., 595–596

H
Hagerup, T., 426
Haken, D., 509
Halting problems, 413
Hamiltonian cycle, 409, 413–417
handleReorient function, 554–555
Harary, F., 427
Harmonic numbers, 5
Harries, R., 224
hash function, 172–174
Hash tables, 171

Carter-Wegman trick, 213, 222
cuckoo hashing, 195–205, 208,

210–212, 217, 222
double hashing in, 183–188
extendible hashing, 214–216
hash function, 172–174
hopscotch hashing, 205–211,

217
linear probing in, 179–181
overview, 171–172
perfect hashing, 193–195, 222
quadratic probing in, 181–183
references for, 222–223
rehashing for, 186–187, 537
separate chaining for, 174–179
in Standard Library, 189–192
universal hashing, 211–214, 475

Hasham, A., 269
hashCode function, 176, 191–192
HashEntry class, 183–184
HashMap class, 189–191
HashSet class, 189–191
hasNext method

ArrayListIterator, 70
Iterator, 62

LinkedListIterator, 82
MyLinkedList, 75

hasPrevious method, 67
Header nodes in linked list, 75–76
Heap order, deques with, 537
Heap-order property, 229
Heaps

2-d, 592
binary. See Binary heaps
leftist. See Leftist heaps
pairing, 583–588
priority. See Priority queues
skew, 249–252, 519–521

Heapsort
analysis, 279–282
implementation, 278–279
references for, 328

heapsort function, 281–282
Heavy nodes in skew heaps,

520–521
Height of trees, 102

AVL, 132
binary tree traversals, 146–147
complete binary, 227

Hibbard, T. H., 169, 328
Hibbard’s increments, 277–278
Hirschberg, D. S., 511
Hoare, C. A. R., 328
Hoey, D., 511
Homometric point sets, 502
Hopcroft, J. E., 55, 168, 357–358,

427
Hopscotch hashing, 205–211, 217,

223–224
Horstmann, C. S., 28
Horvath, E. C., 328
Hu, T. C., 510
Huang, B., 328
Huffman, D. A., 510
Huffman codes, 433–439, 508
Hulls, convex, 504
Hutchinson, J. P., 28
Hypotheses in induction, 6–7

I
if/else statements in running

time, 37
Immutable wrapper objects, 14

Impossible problems, 413
Incerpi, J., 328
increaseKey function, 234
Increment sequences in Shellsorts,

274–278
Indegrees of vertices, 362
Inductive proofs

process, 6–7
recursion in, 9–10

Infinite loop-checking programs,
413

Infix to postfix conversion, 87–90
Information-theoretic lower

bounds, 304
Inorder traversal, 109, 145
Input size in running time, 33–35
insert function and insert

operations
2-d trees, 579–580
AVL trees, 123–124

double rotation, 128–136
single rotation, 125–128

B-trees, 149–150
binary heaps, 228–231
binary search trees, 114–118
binary searches, 46
binomial queues, 254–256, 258,

514–518
d-heaps, 240
Fibonacci heaps, 528, 530
hash tables, 174–175, 178,

183–184, 187
Huffman algorithm, 438
leftist heaps, 242, 246
linked lists, 59–60
lists, 58
multiway merges, 317
pairing heaps, 584, 587
priority queues, 225–226, 261
red-black trees, 550–551,

556–557
skew heaps, 249, 521
skip lists, 483
splay trees, 141–142, 545,

547–548
treaps, 558–559

Insertion sorts
algorithm, 272
analysis, 272–273

www.manaraa.com

606 Index

Insertion sorts (continued)
comparing, 320

insertionSort function, 273
instanceof tests, 23
Instantiation on generic types, 23
Integers

greatest common divisors of,
46–47

multiplying, 458–459
Interfaces, 14–16
Internal path lengths, 121
Inversion in arrays, 273–274
isActive function, 184, 186
isEmpty function

for binary heaps, 228
for binary search trees, 114
for binomial queues, 258
for collections, 61
for leftist heaps, 246
for maps, 153
for top-down splay trees, 545

isEmpty method
MyArrayList, 67–75
MyLinkedList, 77

Isomorphic trees, 166
isPrime function, 485
Iterated logarithm, 342
Iterator interface, 61–62
Iterators for maps and sets, 153
Iyengar, S. S., 596

J
Janson, S., 329
Jiang, T., 329
Johnson, D. B., 269, 427
Johnson, D. S., 427, 510
Johnson, S. M., 328
Jonassen, A. T., 169
Jones, D. W., 596
Josephus problem, 96
Joy, B., 28

K
k-colorable graphs, 422
k-d trees, 578–583, 595
Kaas, R., 269
Kaehler, E. B., 169
Kahn, A. B., 427

Kane, D., 223
Karatsuba, A., 510
Karger, D. R., 427, 510
Kärkkäinen, J., 595–596
Karlin, A. R., 223
Karlton, P. L., 169
Karp, R. M., 224, 357, 427–428
Karzanov, A. V., 428
Kasai, T., 596
Kayal, N., 509
Kernighan, B. W., 28, 428
Kevin Bacon Game, 424
Keys

in hashing, 171–174
for maps, 154–159

keySet function, 152–153
Khoong, C. M., 269, 538
King, V., 427
Kirsch, A., 224
Kishimoto, A., 511
Kitten puzzle, 514
Klein, P. N., 427
Knapsack problem, 417, 505
Knight’s tour, 506
Knuth, D. E., 28, 55, 169, 224,

269, 329, 358, 428, 510
Ko, P., 595, 597
Komlos, J., 223
Korsh, J., 509
Kruskal, J. B., Jr., 428
kruskal function, 398–399
Kruskal’s algorithm, 397–399
Kuhn, H. W., 428
Kurtz, S., 596

L
Ladner, R. E., 269
Lake, R., 511
LaMarca, A., 269
Landau, G. M., 510
Landis, E. M., 168
Langston, M., 328
LaPoutre, J. A., 358
Larmore, L. L., 511
Last in, first out (LIFO) lists. See

Stacks
Lawler, E. L., 428
Lazy binomial queues, 525–528

Lazy deletion
AVL trees, 168
binary search trees, 120
leftist heaps, 265
lists, 98–99

Lazy merging
binomial queues, 525–528
Fibonacci heaps, 522

Leaves in trees, 102
Lee, C. C., 511
Lee, D. T., 511, 597
Lee, G., 596
Lee, K., 511
leftChild function, 281
Leftist heaps, 241

cutting nodes in, 522–525
merging with, 242–249
path lengths in, 241–242
references for, 267
skew heaps, 249–252

LeftistHeap class, 246
Lehmer, D., 476
Lelewer, D. A., 511
Lemke, P., 512
Lempel, A., 512
Length

in binary search trees, 120
graph paths, 359
tree paths, 102

Lenstra, H. W., Jr., 511
Leong, H. W., 269, 538
Level-order traversal, 147
Lewis, T. G., 224
L’Hopital’s rule, 31
Liang, F. M., 511
LIFO (last in, first out) lists. See

Stacks
Light nodes in skew heaps,

520–521
Limits of function growth, 31
Li, M., 329
Lin, S., 428
Linear congruential generators,

476–480
Linear-expected-time selection

algorithm, 300–302
Linear growth rate, 31–32
Linear probing, 179–181, 188–190

www.manaraa.com

Index 607

Linear worst-case time in selection
problem, 455

Linked lists, 59–60
circular, 100
MyLinkedList implementation,

75–82
priority queues, 226
skip lists, 480–483
stacks, 83

LinkedList interface
implementation, 75–82
overview, 63–65

LinkedListIterator class, 75,
77–80, 82

List interface, 63–65
listAll function, 104
ListIterators interface, 67
Lists, 58

adjacency, 361–362
ArrayList implementation,

67–75
arrays for, 58–59
collections, 61–67
linked. See Linked lists
LinkedList implementation,

75–82
queues. See Queues
skip, 480–483
stacks. See Stacks

Load factor of hash tables, 177–179
Local optimums, 429
Log-squared growth rate, 31
Logarithmic growth rate, 31
Logarithmic running time, 45

for binary searches, 45–46
for Euclid’s algorithm, 46–47
for exponentiation, 47–49

Logarithms, formulas for, 3
Longest common prefix (LCP),

562–564, 591
Longest common subsequence

problem, 505
Longest increasing subsequence

problem, 505
Look-ahead factors in games,

494–495
Loops

graph, 359
in running time, 36

Lower bounds, 49, 55, 274,
276–277, 302–311, 327,
357, 414

of function growth, 30
maximum and minimum,

307–310
selection, 304–307
for sorting, 273–274, 302–304

Lu, P., 511
Lueker, G., 224

M
M-ary search trees, 148
Mahajan, S, 511
Main memory, sorting in, 271
Majority problem, 54
makeEmpty function

for binary heaps, 228
for binary search trees, 114
for binomial queues, 258
for hash tables, 175, 177,

184–185
for leftist heaps, 246
for lists, 58
for top-down splay trees, 545

makeLCPArray, 591
makeList methods, 64
Manacher, G. K., 329
Manber, U., 595, 597
Maps

examples, 154–159
for hash tables, 171–172
overview, 153
TreeMap class, 101, 153–154,

190
TreeSet class, 101, 153–154

Margalit, O., 509
Martin, W. A., 597
Mathematics review, 2

for algorithm analysis, 29–32
exponents, 3
logarithms, 3
modular arithmetic, 5
proofs, 6–8
recursion, 8–12
series, 4–5

Matrices
adjacency, 361

multiplying, 460–462, 466–468
Maurer, W. D., 224
Maximum and minimum,

307–310, 325, 328
Maximum-flow algorithms,

388–393
Maximum subsequence sum

problem
analyzing, 33–35
running time of, 39–45

MAXIT game, 507
maxSubSum1 function, 39
maxSubSum2 function, 39
maxSubSum3 function, 42
maxSubSum4 function, 44
maxSumRec function, 42
Maze generation, 352–354
McCreight, E. M., 168, 595, 597
McDiarmid, C. J. H., 269
McElroy, M. D., 328
McKenzie, B. J., 224
Median-of-median-of-five

partitioning, 456–457
Median-of-three partitioning, 292,

295–296
median3 function, 295
Medians

samples of, 456–458
in selection problem, 238

Melhorn, K., 169, 223, 426, 428
Melsted, P., 223
Memory

in computational models, 32
sorting in, 271

MemoryCell class, 13
merge function and merge

operations
binomial queues, 253–256,

258–260, 514–519
d-heaps, 241
expression trees, 110
Fibonacci heaps, 522, 530
leftist heaps, 241–249
mergesorts, 284
multiway, 317–318
pairing heaps, 583–590
polyphase, 318
skew heaps, 249–252, 519–521

www.manaraa.com

608 Index

mergeSort function
analysis of, 284–288
external sorting, 315–321
implementation of, 282–284
references for, 328

Methods
stacks for, 90–92
static, 20–21

Miller, G. L., 511
Miller, K. W., 511
Min-cost flow problems, 393
Min-max heaps, 264, 267
Minimax algorithm, 490–495
Minimum spanning trees, 393–399,

503
Kruskal’s algorithm, 397–399
Prim’s algorithm, 394–397
references for, 425

Mitzenmacher, M., 223–224
Modular arithmetic, 5
Moffat, A., 539
Molodowitch, M., 224
Monier, L., 511
Moore, J. S., 223
Moore, R. W., 510
Moret, B. M. E., 428, 597
Morin, P., 223
Morris, J. H., 224
Motwani, R., 511
MoveInfo class, 492–494, 498
Müller, M., 511
Mulmuley, K., 511
Multigraphs, 422
Multiplying

integers, 459–460
matrices, 460–462, 466–468

Multiprocessors in scheduling
problem, 431–432

Multiway merges, 317–318
Munro, J. I., 168, 268, 509
Musser, D. R., 329
MyArrayList class, 67

basic class, 68–71
inner classes, 71–75

Myers, G., 595, 597
myHash function, 176
MyLinkedList class, 75–82

N
Naor, M., 223
Negative-cost cycles, 367
Negative edge costs, 380–381
Ness, D. N., 597
Nested classes, 72–73
Nested loops in running time, 37
Network flow, 386

maximum-flow algorithm,
388–393

references for, 426
Networks, queues for, 95
Newline characters, 435
Next fit algorithm, 441–442
next method

ArrayListIterator, 70
for collections, 61
Iterator, 61
LinkedListIterator, 82
MyLinkedList, 75

Next operations in lists, 58–59
Nievergelt, J., 169, 223, 597
Node class

binomial queues, 258
leftist heaps, 246–247
linked lists, 75–82

Nodes
binary search trees, 112–123
binomial queues, 257–258
binomial trees, 514
decision trees, 302
expression trees, 109
leftist heaps, 242–249, 522–525
linked lists, 59–60, 75–81
pairing heaps, 583
red-black trees, 549
skew heaps, 520–521
splay trees, 533, 542
treaps, 558–560
trees, 101–102

Nondeterminism, 414, 417
Nondeterministic algorithms, 388
Nonpreemptive scheduling,

430–433
Nonprintable characters, 433
Nonterminating recursive

functions, 9
NP-completeness, 412

easy vs. hard, 413–414

NP class, 414–415
references for, 426
traveling salesman problem,

415–417
Null paths in leftist heaps,

241–242, 244
null references, 113–114
null values with maps, 153
NullPointerException class, 113

O
Object class, 14
Objects, function, 15, 24–26
Odlyzko, A., 169
Off-line algorithms

approximate bin packing,
444–447

disjoint sets, 332
Ofman, Y., 510
Ohlebush, E., 596
On-line algorithms

approximate bin packing,
439–447

definition, 45
disjoint sets, 332

One-dimensional circle packing
problem, 503

oneCharOff function, 155
Operands in expression trees, 109
Operators in expression trees,

109–112
Optimal binary search trees,

469–472, 508
optMatrix function, 468
Order

binary heaps, 228
matrix multiplications, 466–468

Orlin, J. B., 426
O’Rourke, J., 511
Orthogonal range queries, 581
Othello game, 507
Ottman, T., 169
Outer classes, 72
Overflow

in B-trees, 152
in hash function, 173
stack, 91

Overmars, M. H., 358, 597

www.manaraa.com

Index 609

P
Package visibility, 72
Pagh, R., 223–224
Pairing heaps, 268, 583–590, 595
PairingHeap class, 586
PairNode class, 586
Pan, V., 508
Papadimitriou, C. H., 428
Papernov, A. A., 329
Paragraphs, right-justifying,

504–505
Parameterized types, arrays of, 24
Parentheses ()

balancing, 84–85
for postfix conversions, 87–90

Parents in trees, 101–103
Park, K., 596
Park, S. K., 511
Parse trees, 160
Partial find, 344
Partial match queries, 581
partialSum function, 36
Partitions

in 2-d trees, 593–594
in quicksorts, 288, 292–294
in selection problem, 455–458

Passes in insertion sorts, 272
Patashnik, O., 28
Paths

augmenting, 388, 390–393
binary search trees, 120
compression, 340–352
in directory structures, 103–107
Euler, 406
graph, 359
halving, 356
leftist heaps, 241–243
shortest. See Shortest-path

algorithms
in trees, 102

Pătraşcu, M., 224
Pattern matching problem, 505
percDown function, 281
percolateDown function, 228, 233,

235–237
Percolation strategies

for binary heaps, 229–234
for heapsorts, 281

Perfect hashing, 193–195, 222–223

Perlis, A. J., 169
Peterson, W. W., 224
Pettie, S., 511, 595, 597
Phases in Shellsorts, 274–276
Pippenger, N., 223
Pivots in quicksorts, 290–292
place function, 489–490
Planar graphs, 422, 426
Plane partitions in 2-d trees,

593–594
Plauger, P. J., 28
Plaxton, C. G., 329
Poblete, P. V., 268
Pohl, I., 328–329
Pointers in binary search trees, 113
Points, closest, 451–455
Polygons, convex, 503–504
Polyphase merges, 318–319
Pomerance, C., 511
Poonen, B., 329
pop function, 82–83
Port, G., 539
Position of list elements, 58
Positive-cost cycles, 382
Postfix expressions

infix conversion to, 87–90
stacks for, 85–87

Postfix operators, 71
Postorder traversal, 106–107, 109,

145
Potential functions, 517–520

costs of, 536
for splay trees, 533

pow (power) functions, 48
Pratt, V. R., 224, 329, 509
Prefix codes, 435–436
Prefix operators, 71
Preorder traversal, 105–106, 109,

146
Preparata, F. P., 511
previous method, 67
previous operations for lists, 58
Prim, R. C., 428
Prim’s algorithm, 394–397
Primary clustering in hash tables,

179
Prime numbers

proofs for, 7

Sieve of Eratosthenes for, 53
tests for, 483–486

Prime table size for hash tables, 182
Primitive types

restrictions on, 23
wrappers for, 14

print function, 61
Printable characters, 433
printHighChangeables function, 155
Printing

queues for, 95
recursion for, 10, 91–92

printList function, 58–59, 91
printOut function, 10
printPath function, 378
printRange function, 582
printTree function

for binary search trees, 114
for binary trees, 146
for red-black trees, 552

Priority queues, 225
binary heaps for. See Binary heaps
d-heaps, 240–241
for Dijkstra’s algorithm, 378–379
for heapsorts, 278–282
in Huffman algorithm, 438
implementations of, 226
leftist heaps, 241–249
model for, 225–226
references for, 268
for selection problem, 238–239
for simulation, 239–240
skew heaps, 249–252
in Standard Library, 261

Priority search trees, 595
Probability distribution functions,

95
Probing in hash tables

linear, 179–181, 188–190
quadratic, 181–183

Processor scheduling problem,
430–433

Progress in recursion, 10–11
Proofs, 6–7, 10–11
Proper ancestors in trees, 102
Proper descendants in trees, 102
Pruning

alpha-beta, 495–498, 509
in backtracking algorithms, 486

www.manaraa.com

610 Index

Pseudorandom numbers, 476–479
Puech, C., 596
Pugh, W., 511
Puglisi, S. J., 597
push functions, 83
put function, 153

Q
Quad trees, 594
Quadrangle inequality, 501
Quadratic growth rate, 31–32
Quadratic probing

in hash tables, 181–187
for rehashing, 188

QuadraticProbingHashTable class,
184–185

Queries for 2-d trees, 581–582
Queueing theory, 95
Queues

applications, 95
array implementation, 92–95
binomial. See Binomial queues
for breadth-first searches, 368
for level-order traversal, 147
model for, 92
priority. See Binary heaps;

Priority queues
simulating, 239–240
for topological sorts, 364–365

quickSelect algorithm
implementation, 300–302
running time, 456–458

Quicksort
algorithm, 288
analysis, 297–300
array size, 294
partitions in, 290–292
pivots in, 290–292
references for, 328
routines for, 294–297
for selection problem, 300–302

quicksort function, 295

R
Rabin, M. O., 224, 511
Radix sort, 311–315, 321, 564,

567, 569–571, 576–577
radixSort method, 312, 314

Raghavan, P., 511
Raising to powers functions, 47–49
Ramachandran, V., 511
Ramanan, P., 511
Random class, 478–479
Random48 class, 481
Random collisions in hash tables,

180
Random number generators

creating, 476–480
references for, 508

Random permutation generators,
51

Random pivot selections, 291
random0_1 function, 478, 481
randomInt function, 479, 481
randomIntWRONG function, 478
Randomized algorithms, 474–476

primality tests, 483–486
random number generators,

476–480
skip lists, 480–483

Range queries, 481–582
Ranks

binomial tree nodes, 514
for Fibonacci heaps, 538
in path compression, 341–352
for splay trees, 532–535

Rao, S., 427–428
Rates of function growth, 30–32
Raw class, 22
read function

in GenericMemoryCell, 17
in MemoryCell, 13

Reconstruction, turnpike, 487–490
Recurrence relations

in mergesorts, 284–288
in quicksorts, 297–300

Recursion, 8–12
binary search trees, 115
depth-first searches, 399–400
divide and conquer strategy. See

Divide and conquer strategy
exponentiation, 47–49
induction, 11–12
leftist heaps, 243–244
maximum subsequence sum

problem, 39–45
mergesorts, 284–288

path compression, 340–341
printing, 10, 91–92
quicksort, 294
red-black trees, 551–556
running time, 38–39
selection problem, 455–458
skew heaps, 250–251
stack overflow from, 91
vs. tables, 463–465
tree definitions, 101
tree traversals, 145–147

Recursively undecidable problems,
413

Red-black trees, 549
bottom-up insertion, 549–551
references for, 168
top-down deletion, 556–557
top-down insertion, 551–556

RedBlackNode class, 553
RedBlackTree class, 553
Reed, B. A., 269
Reflexive relations, 332
Regions in 2-d trees, 594
rehash function, 184, 191
Rehashing, 183, 188–189, 537
Reingold, E. M., 169, 597
Relations in disjoint sets, 331
Relative growth rates of functions,

30–31
Relaxed heaps, 268
Remainder function, 5
remove function

ArrayListIterator, 70
binary search trees, 114,

117–120
collections, 61–62
hash tables, 175, 178, 184, 187
Iterator, 61
linked lists, 65–66
LinkedListIterator, 80
lists, 63
MyArrayList, 67–68, 70, 74–75
MyLinkedList, 75–77, 79
priority queues, 261
top-down splay trees, 545, 548
treaps, 560
TreeMap and TreeSet, 153

Remove operations. See Delete
operations

www.manaraa.com

Index 611

removeEvens methods, 65–66
removeFirst method, 64
removeLast method, 64
removeMin method, 119
Replacement selection in external

sorting, 319–320
Residual edges, 388–389
Residual graphs, 388–389
Reverse Polish notation, 85–87
Right-justifying paragraphs,

504–505
Rivest, R. L., 357, 509–510
Roberts, F. S., 28
Rodler, F. F., 224
Rohnert, H., 223
Roots

decision trees, 302
leftist heaps, 242–244
top-down splay trees, 542
trees, 101–102

rotate function, 553
rotateWithLeftChild function, 133,

135, 545
rotateWithRightChild function,

545
Rotation operations

AVL trees, 124–125
double, 128–135
single, 125–128

red-black trees, 550–553
splay trees

limitations of, 137–139
running times, 531–535
top-down, 541–544
zig-zag, 140–145

Running times, 35
in algorithm selection, 1
amortized, 137
definitions for, 29–30
disjoint sets, 337–338
disk I/O assumptions in, 147
divide and conquer algorithms,

448–451
examples, 36–37
factors in, 33–37
general rules, 36–38
logarithmic, 45–49
maximum subsequence sum

problem, 39–45

mergesorts, 284–288
quicksorts, 288, 297–300
randomized algorithms,

474–476
rates of growth, 30–32
Shellsorts, 276–278
skip lists, 480–483
splay trees, 531–535

Runs in external sorting, 317–321

S
Sack, J. R., 268–269
Saks, M. E., 357
Salesman problem, 416–417, 503
Samet, H., 597
Samples of medians, 455–458
Sanders, P., 223, 595–596
Santoro, N., 268
Satisfiability problem, 416
Saturated edges, 388
Saxe, J. B., 509
Saxena, N., 509
Schaeffer, J., 511
Schaffer, R., 329
Scheduling problem, 430–433
Schellbach, U., 223
Schonhage, A., 358
Schrage, L., 508, 511
Schwab, B., 596
Scroggs, R. E., 169
Search trees

binary. See Binary search trees
k-d trees, 578–582, 595
red-black. See Red-black trees
splay trees. See Splay trees
treaps, 558–559

Searches. See also Find operations
binary, 45–47
breadth-first, 368–369
depth-first. See Depth-first

searches
Secondary clustering in hash tables,

183
Sedgewick, R., 169, 268, 278,

328–329, 596, 597
Seeds for random numbers, 476
Segev, G., 223
Seidel, R., 357, 596

Selection (lower bound), 274
Selection problem

alternate algorithms for, 1–2
divide and conquer strategy for,

455–458
lower bounds, 304–307
priority queues for, 238–240
quicksorts for, 300–301
references for, 508

Selection replacement in external
sorting, 320–321

Self-adjusting structures
binary search trees, 122
disjoint sets. See Disjoint sets
lists, 99
path compression, 355
skew heaps, 249–251
splay trees. See Splay trees

Sentinel nodes, 75
Separate chaining for hash tables,

174–179
SeparateChainingHashTable class,

175–177
Sequences of random numbers,

476
Series, 4–5
set method

ListIterators, 67
lists, 63
MyArrayList, 67–69
MyLinkedList, 77

Sets
disjoint. See Disjoint sets
overview, 152

setValue function, 153
Shamos, M. I., 511
Shapiro, H. D., 428, 597
Sharir, M., 357, 428
Shell, Donald L., 274–275, 328
Shellsort

comparing, 320
description, 274–275
references for, 327
worst-case analysis of, 276–278

shellsort function, 275
Shing, M. R., 510
shortest function, 506
Shortest-path algorithms

acyclic graphs, 380–384, 507

www.manaraa.com

612 Index

Shortest-path algorithms (continued)
all-pairs, 384, 472–474
Dijkstra’s algorithm, 372–379
example, 384–386
negative edge costs, 380
single-source, 366–367
unweighted, 367–373

Shrairman, R., 268
Siblings in trees, 102–103
Sieve of Eratosthenes, 53
Simon, I., 357
Simple paths, 359
Simulation, priority queues for,

239–240
Single rotation operations

in AVL trees, 125–128
limitations of, 137–139

Single-source algorithm, 366–367
Sinks in network flow, 386
size function and size

arrays, 93–94
binomial queues, 252
collections, 61
directory structures, 106–107
hash tables, 171–172, 182
input, in running time, 33–35
lists, 63
maps, 153
MyArrayList, 67–69, 73
MyLinkedList, 76–77

Skew heaps, 249–251
amortized analysis of, 519–521
references for, 267

Skiena, S. S., 512
Skip lists

working with, 480–483
Slack time in acyclic graphs,

383–384
Sleator, D. D., 169, 268–269, 596
Smart union algorithms, 337–329
Smith, H. F., 169
Smith, W. D., 512
Smyth, W. F., 597
Smolka, S. A., 510
SortedMap class, 153
SortedSet interface, 152
Sorting, 271

algorithm comparison, 320
bucket sorts, 310–311

Counting radix sort, 312–315
external, 315–321
heapsorts, 278–282
insertion sorts, 272–273
lower bounds for, 273–274,

302–304
mergesorts, 282–288
quicksort. See Quicksort
Radix sort, 311–315, 321, 564,

567, 569–571, 575–577
references for, 327–329
Shellsort, 274–278
topological, 362–365

Sources in network flow, 386
Spanning trees, minimum,

393–394, 503
Kruskal’s algorithm, 397–400
Prim’s algorithm, 394–397
references for, 425

Sparse graphs
adjacency lists for, 361
with Dijkstra’s algorithm, 377

Special cases in recursion, 9
Spelling checkers, 218
Spencer, T. H., 427
Spirakis, P., 223
splay function, 546
Splay trees, 123, 137

amortized analysis, 531–535
vs. single rotations, 137–139
top-down, 541–548
zig-zag rotations in, 140–145

SplayTree class, 543, 545–548
Stable sorting algorithms, 324
Stack frames, 91
Stacks

for balancing symbols, 84–85
implementation, 83
for infix to postfix conversions,

87–90
for method calls, 90–92
model of, 82
for postfix expressions, 85–87
for topological sorts, 364

Standard Library
hash tables in, 189–192
priority queues in, 261
sets in, 152

Stasevich, G. V., 329

Stasko, J. T., 597
States in decision trees, 302
Static contexts, 23
Static methods, 20–21
Steele, G., 28
Stege, U., 596
Steiglitz, K., 428
Stephenson, C. J., 597
Stirling’s formula, 324
Strassen, V., 512
Strassen’s algorithm, 460–462
String class, 192
Strip areas in closest points

problem, 453–454
Strong, H. R., 223
Strong components, 411–412
Strongly connected graphs,

359–360
Strothotte, T., 268–269
Suboptimal solutions, 429
Substitution problem, maps for,

154–159
Successor positions in games, 492
Suel, T., 329
Suffix array, 561–580, 591–592,

595
Suffix trees, 541, 561, 565–567,

590–591, 595
Sums

maximum subsequence sum
problem, 33–35, 39–45

telescoping, 286, 299
Sutphen, S., 511
swapChildren function, 246
Symbol tables, 217
Symmetric relations in disjoint sets,

331
System clocks for random numbers,

477
Szemeredi, E., 223

T
Table size in hash tables, 171–172,

182
Tables

vs. recursion, 463–466
symbol, 217
transposition, 217, 495

www.manaraa.com

Index 613

Tail nodes in linked list, 75–76
Tail recursion, 91, 115
Takaoka, T., 512
Tan, Z., 512
Tapes, sorting on, 271, 316–321
Tardos, E., 427
Tarjan, R. E., 169, 223, 268–269,

357–358, 426–428, 509,
538–539, 596

Telescoping sums, 286, 299
Terminal positions in games, 490,

495
TestMemoryCell class, 13
TestProgram class, 25
Tests, primality, 483–486
Theta notation, 29–32
Thomo, A., 596
Thornton, C., 169
Thorup, M., 224
Threaded trees, 154, 166
Threads, 166
Thurston, W. P., 169
Tic-tac-toe game, 490–495
Ticks for event simulation, 239
Time bound proof for Fibonacci

heaps, 529–531
Top-down red-black trees

deletion, 556–557
insertion, 551–556

Top-down splay trees, 541–548,
594

Top of stacks, 82
top operations, 84
Topological sorts, 362–365
topSort function, 364–365
TotalArea function, 19–20
Tours, Euler, 406
Traffic flow, graphs for, 360
Traffic problems, 430
Transitive relations, 331
Transposition tables, 218, 495
Traveling salesman problem,

415–417, 503
Traversing

binary trees, 145–147
directories, 103–107

TreapNode class, 558–559
Treaps, 558–560
TreeMap class, 101, 153–154, 190

Trees
2-d, 592–593
AVL, 123–125

double rotation, 128–135
single rotation, 125–128

B-trees, 147–152
binary, 107–112
Cartesian, 595
decision, 302–304
definitions, 101–102
for disjoint sets, 333–334
game, 495
implementations of, 102–103
isomorphic, 166
k-d, 578–579
minimum spanning, 393–394,

503
Kruskal’s algorithm, 397–399
Prim’s algorithm, 394–399

parse, 160
quad, 594
red-black, 549

bottom-up insertion, 549–551
top-down deletion, 556–557
top-down insertion, 551–556

splay, 123, 137
amortized analysis, 531–535
vs. single rotations, 137–139
top-down, 541–548
zig-zag rotations in, 140–145

suffix trees, 541, 560–578, 590,
595

threaded, 154, 166
traversing, 103–107, 145–147
treaps, 558–560
weight-balanced, 595

TreeSet class, 101, 153
Tries, 435–439
trimToSize method

lists, 65
MyArrayList, 68–69

Tsur, S., 169
Tucker, A., 28
Turing machines, 417
turnpike function, 489–490
Turnpike reconstruction problems,

487–491
Turpin, A., 597
2-d heaps, 592

2-d trees, 593–594
Two-dimensional range queries,

578–579
Two-pass algorithms

Huffman algorithm, 439
pairing heap merging, 587

Type parameters for generic classes,
17

Types
bounds, 21–22
erasure, 22–23

U
Ukkonen, E., 595, 597
Ullman, J. D., 55, 168, 357–358,

426, 510
Unary minus operator, 109
Undecidable problems, 413
Undirected graphs, 359

biconnected, 402–406
depth-first searches, 400–401

Union algorithms, 337–339
Union-by-height approach,

338–339, 341
Union-by-rank approach, 341–342
Union-by-size approach, 337–339
Union/find algorithm

for disjoint sets, 332
union function, 336, 339
Union operations

disjoint sets, 332–337
Kruskal’s algorithm, 397

Universal hashing, 211–214, 475
unweighted function, 370, 372
Unweighted path length, 366–373
update function, 156
Upfal, E., 223
Upper bounds of function growth,

30
Upton, C., 596

V
Vallner, S., 269
valueType function, 153–154
van Emde Boas, P., 269
van Kreveld, M. J., 358
van Leeuwen, J., 358, 597
van Vliet, A., 512

www.manaraa.com

614 Index

Variables, stacks for, 90
Vertex class, 361, 378
Vertex cover problem, 425
Vertices

graph, 359–360
topological sorts for, 362–365

Vishkin, U., 510
Visibility of packages, 72
Vitanyi, P., 329
Vitter, J. S., 224, 597
Vöcking, B., 224
Voronoi diagrams, 503
Vuillemin, J., 269, 539, 597

W
Wagner, R. A., 512
Wayne, K., 597
Weakly connected graphs, 360
Wegman, M. N., 223–224
Weidling, C., 223
Weight-balanced trees, 168, 595
Weighted path lengths, 366–367,

372–379
weightedNegative function, 381
Weights

graph edges, 359–361
in Huffman algorithm, 435–436

Wein, J., 509
Weiner, P., 595, 597

Weiss, M. A., 28, 268, 329, 596
Westbrook, J., 358
Wieder, U., 224
Wildcards with bounds, 19–20
Williams, J. W. J., 269, 328–329
Winograd, S., 508, 510
witness function, 486–487
Witten, I. H., 509
Wong, C. K., 597
Wong, J. K., 427
Wood, D., 169
Word puzzles, 2

hash tables for, 217
word ladders, 384–386
word substitution problem,

154–158
Worst-case analysis, 33

quicksorts, 297–298
randomized algorithms,

474–476
Shellsort, 276–278
union-by-rank approach,

341–352
WrapperDemo class, 14
Wrappers for primitive types,

14–15
write function

in GenericMemoryCell, 17
in MemoryCell, 13

X
Xia, B., 512

Y
Yao, A. C., 169, 222, 327, 329,

428, 512
Yao, F. F., 512

Z
Zero-slack edges, 384
Zhang, Z., 512
Zig operations

for red-black trees, 550–551
for splay trees, 531–535,

541–542, 544
Zig-zag operations

for red-black trees, 550–551
for splay trees, 140–145,

531–535, 541–544
Zig-zig operations

for red-black trees, 550
for splay trees, 531–535,

541–544
Zijlstra, E., 269
Ziv, J., 512
Ziv–Lempel encoding, 508
Ziviana, N., 169
Zwick, U., 328, 510

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	Chapter 1 Introduction
	1.1 What’s the Book About?
	1.2 Mathematics Review
	1.2.1 Exponents
	1.2.2 Logarithms
	1.2.3 Series
	1.2.4 Modular Arithmetic
	1.2.5 The P Word

	1.3 A Brief Introduction to Recursion
	1.4 Implementing Generic Components Pre-Java 5
	1.4.1 Using Object for Genericity
	1.4.2 Wrappers for Primitive Types
	1.4.3 Using Interface Types for Genericity
	1.4.4 Compatibility of Array Types

	1.5 Implementing Generic Components Using Java 5 Generics
	1.5.1 Simple Generic Classes and Interfaces
	1.5.2 Autoboxing/Unboxing
	1.5.3 The Diamond Operator
	1.5.4 Wildcards with Bounds
	1.5.5 Generic Static Methods
	1.5.6 Type Bounds
	1.5.7 Type Erasure
	1.5.8 Restrictions on Generics

	1.6 Function Objects
	Summary
	Exercises
	References

	Chapter 2 Algorithm Analysis
	2.1 Mathematical Background
	2.2 Model
	2.3 What to Analyze
	2.4 Running Time Calculations
	2.4.1 A Simple Example
	2.4.2 General Rules
	2.4.3 Solutions for the Maximum Subsequence Sum Problem
	2.4.4 Logarithms in the Running Time
	2.4.5 A Grain of Salt

	Summary
	Exercises
	References

	Chapter 3 Lists, Stacks, and Queues
	3.1 Abstract Data Types (ADTs)
	3.2 The List ADT
	3.2.1 Simple Array Implementation of Lists
	3.2.2 Simple Linked Lists

	3.3 Lists in the Java Collections API
	3.3.1 Collection Interface
	3.3.2 Iterators
	3.3.3 The List Interface, ArrayList, and LinkedList
	3.3.4 Example: Using remove on a LinkedList
	3.3.5 ListIterators

	3.4 Implementation of ArrayList
	3.4.1 The Basic Class
	3.4.2 The Iterator and Java Nested and Inner Classes

	3.5 Implementation of LinkedList
	3.6 The Stack ADT
	3.6.1 Stack Model
	3.6.2 Implementation of Stacks
	3.6.3 Applications

	3.7 The Queue ADT
	3.7.1 Queue Model
	3.7.2 Array Implementation of Queues
	3.7.3 Applications of Queues

	Summary
	Exercises

	Chapter 4 Trees
	4.1 Preliminaries
	4.1.1 Implementation of Trees
	4.1.2 Tree Traversals with an Application

	4.2 Binary Trees
	4.2.1 Implementation
	4.2.2 An Example: Expression Trees

	4.3 The Search Tree ADT—Binary Search Trees
	4.3.1 contains
	4.3.2 findMin and findMax
	4.3.3 insert
	4.3.4 remove
	4.3.5 Average-Case Analysis

	4.4 AVL Trees
	4.4.1 Single Rotation
	4.4.2 Double Rotation

	4.5 Splay Trees
	4.5.1 A Simple Idea (That Does Not Work)
	4.5.2 Splaying

	4.6 Tree Traversals (Revisited)
	4.7 B-Trees
	4.8 Sets and Maps in the Standard Library
	4.8.1 Sets
	4.8.2 Maps
	4.8.3 Implementation of TreeSet and TreeMap
	4.8.4 An Example That Uses Several Maps

	Summary
	Exercises
	References

	Chapter 5 Hashing
	5.1 General Idea
	5.2 Hash Function
	5.3 Separate Chaining
	5.4 Hash Tables Without Linked Lists
	5.4.1 Linear Probing
	5.4.2 Quadratic Probing
	5.4.3 Double Hashing

	5.5 Rehashing
	5.6 Hash Tables in the Standard Library
	5.7 Hash Tables with Worst-Case O(1) Access
	5.7.1 Perfect Hashing
	5.7.2 Cuckoo Hashing
	5.7.3 Hopscotch Hashing

	5.8 Universal Hashing
	5.9 Extendible Hashing
	Summary
	Exercises
	References

	Chapter 6 Priority Queues (Heaps)
	6.1 Model
	6.2 Simple Implementations
	6.3 Binary Heap
	6.3.1 Structure Property
	6.3.2 Heap-Order Property
	6.3.3 Basic Heap Operations
	6.3.4 Other Heap Operations

	6.4 Applications of Priority Queues
	6.4.1 The Selection Problem
	6.4.2 Event Simulation

	6.5 d-Heaps
	6.6 Leftist Heaps
	6.6.1 Leftist Heap Property
	6.6.2 Leftist Heap Operations

	6.7 Skew Heaps
	6.8 Binomial Queues
	6.8.1 Binomial Queue Structure
	6.8.2 Binomial Queue Operations
	6.8.3 Implementation of Binomial Queues

	6.9 Priority Queues in the Standard Library
	Summary
	Exercises
	References

	Chapter 7 Sorting
	7.1 Preliminaries
	7.2 Insertion Sort
	7.2.1 The Algorithm
	7.2.2 Analysis of Insertion Sort

	7.3 A Lower Bound for Simple Sorting Algorithms
	7.4 Shellsort
	7.4.1 Worst-Case Analysis of Shellsort

	7.5 Heapsort
	7.5.1 Analysis of Heapsort

	7.6 Mergesort
	7.6.1 Analysis of Mergesort

	7.7 Quicksort
	7.7.1 Picking the Pivot
	7.7.2 Partitioning Strategy
	7.7.3 Small Arrays
	7.7.4 Actual Quicksort Routines
	7.7.5 Analysis of Quicksort
	7.7.6 A Linear-Expected-Time Algorithm for Selection

	7.8 A General Lower Bound for Sorting
	7.8.1 Decision Trees

	7.9 Decision-Tree Lower Bounds for Selection Problems
	7.10 Adversary Lower Bounds
	7.11 Linear-Time Sorts: Bucket Sort and Radix Sort
	7.12 External Sorting
	7.12.1 Why We Need New Algorithms
	7.12.2 Model for External Sorting
	7.12.3 The Simple Algorithm
	7.12.4 Multiway Merge
	7.12.5 Polyphase Merge
	7.12.6 Replacement Selection

	Summary
	Exercises
	References

	Chapter 8 The Disjoint Set Class
	8.1 Equivalence Relations
	8.2 The Dynamic Equivalence Problem
	8.3 Basic Data Structure
	8.4 Smart Union Algorithms
	8.5 Path Compression
	8.6 Worst Case for Union-by-Rank and Path Compression
	8.6.1 Slowly Growing Functions
	8.6.2 An Analysis By Recursive Decomposition
	8.6.3 An O(M log * N) Bound
	8.6.4 An O(M α (M, N)) Bound

	8.7 An Application
	Summary
	Exercises
	References

	Chapter 9 Graph Algorithms
	9.1 Definitions
	9.1.1 Representation of Graphs

	9.2 Topological Sort
	9.3 Shortest-Path Algorithms
	9.3.1 Unweighted Shortest Paths
	9.3.2 Dijkstra’s Algorithm
	9.3.3 Graphs with Negative Edge Costs
	9.3.4 Acyclic Graphs
	9.3.5 All-Pairs Shortest Path
	9.3.6 Shortest-Path Example

	9.4 Network Flow Problems
	9.4.1 A Simple Maximum-Flow Algorithm

	9.5 Minimum Spanning Tree
	9.5.1 Prim’s Algorithm
	9.5.2 Kruskal’s Algorithm

	9.6 Applications of Depth-First Search
	9.6.1 Undirected Graphs
	9.6.2 Biconnectivity
	9.6.3 Euler Circuits
	9.6.4 Directed Graphs
	9.6.5 Finding Strong Components

	9.7 Introduction to NP-Completeness
	9.7.1 Easy vs. Hard
	9.7.2 The Class NP
	9.7.3 NP-Complete Problems

	Summary
	Exercises
	References

	Chapter 10 Algorithm Design Techniques
	10.1 Greedy Algorithms
	10.1.1 A Simple Scheduling Problem
	10.1.2 Huffman Codes
	10.1.3 Approximate Bin Packing

	10.2 Divide and Conquer
	10.2.1 Running Time of Divide-and-Conquer Algorithms
	10.2.2 Closest-Points Problem
	10.2.3 The Selection Problem
	10.2.4 Theoretical Improvements for Arithmetic Problems

	10.3 Dynamic Programming
	10.3.1 Using a Table Instead of Recursion
	10.3.2 Ordering Matrix Multiplications
	10.3.3 Optimal Binary Search Tree
	10.3.4 All-Pairs Shortest Path

	10.4 Randomized Algorithms
	10.4.1 Random Number Generators
	10.4.2 Skip Lists
	10.4.3 Primality Testing

	10.5 Backtracking Algorithms
	10.5.1 The Turnpike Reconstruction Problem
	10.5.2 Games

	Summary
	Exercises
	References

	Chapter 11 Amortized Analysis
	11.1 An Unrelated Puzzle
	11.2 Binomial Queues
	11.3 Skew Heaps
	11.4 Fibonacci Heaps
	11.4.1 Cutting Nodes in Leftist Heaps
	11.4.2 Lazy Merging for Binomial Queues
	11.4.3 The Fibonacci Heap Operations
	11.4.4 Proof of the Time Bound

	11.5 Splay Trees
	Summary
	Exercises
	References

	Chapter 12 Advanced Data Structures and Implementation
	12.1 Top-Down Splay Trees
	12.2 Red-Black Trees
	12.2.1 Bottom-Up Insertion
	12.2.2 Top-Down Red-Black Trees
	12.2.3 Top-Down Deletion

	12.3 Treaps
	12.4 Suffix Arrays and Suffix Trees
	12.4.1 Suffix Arrays
	12.4.2 Suffix Trees
	12.4.3 Linear-Time Construction of Suffix Arrays and Suffix Trees

	12.5 k-d Trees
	12.6 Pairing Heaps
	Summary
	Exercises
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

